当前位置:文档之家› Affymetrix 全基因组 SNP 芯片检测

Affymetrix 全基因组 SNP 芯片检测

Affymetrix 全基因组 SNP 芯片检测
Affymetrix 全基因组 SNP 芯片检测

Affymetrix 全基因组SNP 芯片检测

单核苷酸多态性(single nucleotide polymorphism, SNP) 指基因组单个核苷酸的变异,它是最微小的变异单元,是由单个核苷酸对置换、颠换、插入或缺失所形成的变异形式。单核苷酸多态性是基因组上高密度的遗传标志,在人类基因组中已发现的SNP数量超过3000万。作为第三代遗传标记,SNP数量众多、分布密集、易于检测,因而是理想的基因分型目标。SNP分型检测在疾病基因组(如疾病易感性),药物基因组(药效、药物代谢差异和不良反应)和群体进化等研究中具有重大意义。在人研究方面,Affymetrix 公司有分别基于GeneChip和GeneTitan平台的SNP 6.0 芯片和针对中国人群设计的CHB1&2 Array,既可用于全基因组SNP分析,又可用于CNV分析,极大地方便了中国人类疾病GWAS研究。Affymetrix公司针对多个农业物种也开发了多款商品化的基因分型芯片,如鸡、牛、水牛、鲑鱼、水稻、小麦、辣椒、草莓等,为农业育种研究、遗传图谱构建、群体基因组学研究提供研究手段。此外,Affymetrix公司还支持定制芯片,最低起订量为480个样品。

检测原理| 技术优势| 产品列表| 定制芯片| 数据分析|

基于GeneChip平台的人SNP 6.0 芯片实验流程:

基于GeneTitan平台的Axiom基因分型芯片检测流程:

从SNP原理谈SNP分析技术之SNP芯片

日期:2012-05-21 来源:网络

标签:SNP原理SNP分析SNP芯片

摘要: SNP是近年来基因突变的热点研究之一。它是指在单个的核苷酸上发生了变异,有四种不同的变异形式,而实际上只发生转换和颠换这两种。当科学家弄清了SNP的突变原理以后,他们就着手对SNP进行分析,以求找到疾病相对应的突变位点或者是进行个性化药物治疗研究。其中应用到的技术多达上百余种,其中包括有测序技术、质谱分析技术、HRM技术、Taqman技术以及SNP芯片技术。

恩必美生物新一轮2-5折生物试剂大促销!

Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统

广州赛诚生物基因表达调控专题

SNP是近年来基因突变的热点研究之一。它是指在单个的核苷酸上发生了变异,有四种不同的变异形式,而实际上只发生转换和颠换这两种。当科学家弄清了SNP的突变原理以后,他们就着手对SNP进行分析,以求找到疾病相对应的突变位点或者是进行个性化药物治疗研究。其中应用到的技术多达上百余种,其中包括有测序技术、质谱分析技术、HRM 技术、Taqman技术以及SNP芯片技术。

SNP 的分型技术可分为两个时代,一为凝胶时代,二为高通量时代。凝胶时代的主要技术和方法包括限制性酶切片段长度多态性分析(RFLP)、寡核苷酸连接分析(OLA)、等位基因特异聚合酶链反应分析(AS2PCR)、单链构象多态性分析(SSCP)、变性梯度凝胶电泳分析(DGGE),虽然这些技术与高通量时代的技术原理大致一样,但是由于它不能进行自动化,只能进行小规模的SNP分型测试,所以必然会被淘汰。高通量时代的SNP分型技术按其技术原理可分为:特异位点杂交(ASH)、特异位点引物延伸(ASPE)、单碱基延伸(SBCE)、特异位点切割(ASC)和特异位点连接(ASL)5 种方法。此外,采用特殊的质谱法和高效液相层析法也可以大规模、快速检出SNP 或进行SNP 的初筛。近年来已经在晶体上用“光刻法”实现原位合成,直接合成高密度的可控序列寡核苷酸,使DNA 芯片法显示出强大威力,对SNP 的检测可以自动化、批量化,并已在建立SNP 图谱方面投入实际应用。DNA 芯片法有望在片刻之间评价整个人类基因组。

2007 年5月份,Affymetrix公司发布了Genome-wide SNP 6.0 芯片,除包括90多万个用于单核苷酸多态性(SNP)检测探针外,还有90多万个用于拷贝数变化(CNV)检测的探针,可使全基因组平均分辨率达3 kb,既可用于全基因组SNP分析,又可用于CNV分析,真正实现了一种芯片两种用途,方便研究者挖掘基因组序列变异信息。通过基因分型信息还可以鉴别中性拷贝数的杂合性缺失(copy neutral LOH)、单亲二体病(UPD)及嵌合现象(可以精确检测到20% 嵌合体)。近来Affymetrix 公司又陆续发布了多款针对东亚、中国、

欧洲、非洲等不同人群的SNP基因分型芯片,采用GeneTitan平台进行高通量检测,极大地方便了人类疾病GWAS研究。另外,也推出了牛、水稻等物种的基因分型芯片。

基于GENE Chip平台的人SNP 6.0 芯片实验流程:

基于GeneTitan平台的Axiom基因分型芯片检测流程:

现已发现的单核苷酸多态性在人类基因组上就已经达到了三千万以上。SNP分析无论是对于疾病的诊治、药物的开发还是物种群体的进化都具有十分重要的意义。

问:

大夫您好,我女儿是高龄产妇,36岁,现在孕周是29周+,因为高龄所以未做唐筛,直接羊水穿刺,FLSH结果一周后出来无异常,羊水核型分析是9号染色体臂间倒位,医生建议他们夫妻做了外周血染色体检测,现在结果未出。为保险起见,医生还建议他们用羊穿剩余的细胞液继续做SNP Array基因芯片检测,结果两周后出。现在刚拿到结果,非常不好,9号染色体没有问题,却查出X染色体上有7.44M的片段缺失,并且包含了33个致病基因,特别是有一个CDKL5基因的缺失。医生建议放弃这个孩子,他们很不甘心,之前的几次排畸B超都显示胎儿无任何异常。所以,我们还想再请教一下,这样的检测结果是否100%准确?有这些致病基因的缺失是否一定会出现相应的表型?他们还需要再做什么进一步的检查吗?北京贝康医学检验所资质如何?他们如果还想怀孕需要注意什么?30周引产是不是会非常危险?

胎儿基因芯片检测结果显示X染色体上存在7.44mb的基因片段缺失,内含33个致病基因,这样的胎儿是否一定会出现致病基因提示的那些表型?B超显示胎儿无问题,我们是否必须放弃这个胎儿?我女儿这是第二胎,头胎是剖腹产,已经过了三年半,现在要30周引产,是否只能顺产不能剖腹产,危险很大吗?

答:

建议问问羊水穿刺检查实验室,胎儿如果是男胎,最好查下母亲的基因芯片分析。如果女胎,则查夫妇双方芯片,看是否遗传。

问:

实验室告知了是女胎,认为遗传可能性不大,因为如果有这么大片段的基因缺失,我们夫妻二人一定会有表型,但我们现在很健康,基本可以排除是遗传因素,应该是基因突变。而且如果我们夫妻二人再做基因检查,好需要三周时间,这样胎儿月份就更大了,引产会更困难了吧?

答:

缺失这么大片段理论上会有表型,但只是理论上,最好需要验证夫妇芯片,还是建议查夫妇芯片,至少弄清这个问题。引产在22-28周之间差别不大。

问:

谢谢何大夫,我女儿现在已经30周了,等做完夫妻芯片就该33周了,有点太迟了。另外,如果证明是夫妻一方遗传给孩子的,那能保证孩子也会像父母一样没有表型,是健康的吗?再次感谢您的回复,我们一家人在得知检查结果后各种纠结痛苦难以名状,遗传专家的号又极为难挂,您的回复给了我们极大的帮助,不管最后结局如何,我们都对您感激不尽。

答:

如果遗传自夫妇双方之一,提示出生后理论上应该和夫妇之一表型类似,即没有多大影响,这个问题一直没得到证实,孕周一天天大,你考虑的问题可以理解,但没得到明确的答案,所以一直纠结。应该拿到报告时就果断去检测。

使用电话咨询服务

提交时

间:2016-03-12 11:45:06 预约

间:

2016-03-12

服务

费:200元/次(最长15分钟) 订单

态:

已结束

病情信息:1,基因分析正常,父母核型正常,羊穿fish结果正常,羊穿核型异常,一条4号染色体为衍生染色体,短臂末端有遗传物质增加。脐带血核型异常,嵌合体,46,xn,der(4)[3] /46,xn[42] ,异常核型细胞比例6%,正常核型细胞比例94%。镜下分析45个细胞,核型配对15个细胞。

2,22周大排畸发现侧脑室双侧宽9mm,29周5天核磁共振左侧宽14.5右侧宽13.3,33周5天侧宽是15和17。核磁共振除了侧宽,其他结构正常。3,孩子可以生吗?嵌合体的异常核型对孩子有什么影响?孩子以后能正常生育的比例有多少?

Affymetrix全基因组SNP芯片检测

A f f y m e t r i x全基因组S N P芯片检测 单核苷酸多态性(single nucleotide polymorphism, SNP) 指基因组单个核苷酸的变异,它是最微小的变异单元,是由单个核苷酸对置换、颠换、插入或缺失所形成的变异形式。单核苷酸多态性是基因组上高密度的遗传标志,在人类基因组中已发现的SNP数量超过3000万。作为第三代遗传标记,SNP数量众多、分布密集、易于检测,因而是理想的基因分型目标。SNP分型检测在疾病基因组(如疾病易感性),药物基因组(药效、药物代谢差异和不良反应)和群体进化等研究中具有重大意义。在人研究方面,Affymetrix 公司有分别基于GeneChip和GeneTitan平台的SNP 6.0 芯片和针对中国人群设计的CHB1&2 Array,既可用于全基因组SNP分析,又可用于CNV分析,极大地方便了中国人类疾病GWAS研究。Affymetrix公司针对多个农业物种也开发了多款商品化的基因分型芯片,如鸡、牛、水牛、鲑鱼、水稻、小麦、辣椒、草莓等,为农业育种研究、遗传图谱构建、群体基因组学研究提供研究手段。此外,Affymetrix公司还支持定制芯片,最低起订量为480个样品。 检测原理|?技术优势|?产品列表|?定制芯片|?数据分析| 基于GeneChip平台的人SNP 6.0 芯片实验流程: 基于GeneTitan平台的Axiom基因分型芯片检测流程: 从SNP原理谈SNP分析技术之SNP芯片 日期:2012-05-21 ? ? 来源:网络 标签:?SNP原理?SNP分析?SNP芯片 摘要:?SNP是近年来基因突变的热点研究之一。它是指在单个的核苷酸上发生了变异,有四种不同的变异形式,而实际上只发生转换和颠换这两种。当科学家弄清了SNP的突变原理以后,他们就着手对SNP进行分析,以求找到疾病相对应的突变位点或者是进行个性化药物治疗研究。其中应用到的技术多达上百余种,其中包括有测序技术、质谱分析技术、HRM技术、Taqman技术以及SNP芯片技术。 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 SNP是近年来基因突变的热点研究之一。它是指在单个的核苷酸上发生了变异,有四种不同的变异形式,而实际上只发生转换和颠换这两种。当科学家弄清了SNP的突变原理以后,他们就着手对SNP进行分析,以求找到疾病相对应的突变位点或者是进行个性化药物治疗研究。其中应用到的技术多达上百余种,其中包括有测序技术、质谱分析技术、HRM 技术、Taqman技术以及SNP芯片技术。

SNP芯片数据分析

Affymetrix SNP芯片数据分析方案

项目一、基本分析 包括: 芯片原始数据的处理和基因分型,我们给出有统计意义的SNP列表。 描述性统计,如minor allele frequency,Hardy-Weinberg equilibrium等。 显著性检验,实验组与对照组的差异,假阳性率(FDR)的计算等。 SNP的关联分析,建立线性模型或logistic回归模型等。(所有的统计可以选择由SAS,SPSS,或S-Plus/R给出) 项目二、Copy Number Variation(CNV)的计算。 CNV是目前的一个热点研究内容。SNP芯片数据可以用于精确地计算CNV。我们提供针对SNP芯片的基于CNAG(Copy Number Analyser for GeneChip), dChip(DNA-Chip Analyzer)和CNAT(Chromosome Copy Number Analysis Tool)等算法的CNV计算结果。 项目三、SNP注释 通过SNP在染色体上的位置,利用寻找SNP可能影响的基因( or EST)。我们也可以对相应基因进行功能的注释(gene ontology ,pathway和转录因子分析等),进而解释SNP可能的作用机理。该部分可以参考常规表达谱芯片的分析。 项目四:基于模式识别的SNP挖掘 传统的SNP挖掘使用统计学的方法来进行,往往在敏感性与特异性上有一定的限制。利用一些模式识别/机器学习的方法可以更好解决SNP筛选问题。我们提供基于决策树等SNP挖掘算法。 Hsiang-Yu Yuan et al. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Research 2006 34(Web Server issue):W635-W641

snp检测方法汇总(1)

现在SNP的常用检测方法主要有:Taqman法、质谱法、芯片法、测序法。 Taqman法:准确性高,适合于大样本、少位点,价格比较贵;质谱法:准确性高,适合于大样本、多位点(能检测25个位点);芯片法:准确性较低,适合于超多位点分析;测序法:非常准确,但是价格也非常的高,但是对于少样本、超多位点还是非常好的选择。 SNP检测方法汇总 分析SNP的方法有许多种,本文收集目前还在用的方法,按通量从高到低排列: 全基因组测序 这是最贵的方法,但也是看SNP最全的方法 大概一个人样本,花2万元 外显子组测序 外显子组测序,也可以得到较全面的SNP信息

大概一个人样本,花1.5万元 随着人全基因组测序的价格降到2万元左右,外显子组测序会很快退出市场 全基因组SNP芯片 原理,核酸杂交,荧光扫描 Illumina和Affymetrix都有很著名的全基因组SNP芯片,例如: Affymetrix: CytoScan,SNP 6.0, Illumina: 660,中华,450K等 SNP芯片,在2000~5000元每样本,还是比全基因组测序的2万元一个样本的价格要低质谱法

原理,精确测量PCR产物的分子量,就可以知道SNP位点上是A/C/G/T中的哪一个Sequenome MassArray法测中等通量的SNP位点是十分准确的 单个位点、单个样本的费用约2元人民币 无需预制芯片、预订荧光探针,只要合成常规的PCR引物就可以做实验了 如果测几十个点,到上百个点,是很方便的方法 SNPseq法 此方法为天昊公司所创,一次测几百个位点 原理:

用Goldgate法做出针对某些位点的多重PCR片段高通量测序,数据分析得到SNP位点结果SNPlex 中等偏高通量的方法,一次几十个位点 原理: 用末端特异的引物做多重PCR,把模板进行扩增基于毛细管电泳,把片段分离开,读颜色SNaPshot

生物芯片的市场分析

生物芯片的市场分析 全球市场总额很小 企业收入增长缓慢 全球的市场有多大?国内的市场又有多大?前景如何?现在国内没有公开的文章回答这些问题。国内的市场小,人们对生物芯片的技术和应用还没有普遍的认识。介绍生物芯片技术的论文、报告和新闻唾手可得,前几年投资炒作的文章也能找到几篇大作,但关于生物芯片的市场,现在国内还看不到一篇专题文章,也没有一家芯片公司或咨询公司做过有意义的市场调查;曾有公司在网上做过消费者调查,响应者却寥寥无几。我从网上找到了3家国际知名市场研究公司的公开数据,翻译过来,列举如下:2003年7月24日,国际知名的市场研究和数据分析公司Research and Markets公司发布了定价998美元的159页的报告《美国生物芯片和设备的市场和业务》,这份报告认为,2002年的全球生物芯片市场规模是11亿美元,将以19.5%的年平均增长率增长,2007年将达到27亿美元。2003年底,雷曼兄弟(Lehman Brother)公司发布的分析报告指出,全球芯片市场约有8亿美元的规模。2004年3月30日,英国伦敦的大型国际咨询公司Frost & Sullivan公司出版了价值4,950美元的关于全球芯片市场的分析报告:《世界DNA芯片市场的战略分析》。报告认为,全球DNA生物芯片市场每年平均增长6.7%,2003年的市场总值是5.96亿美元,2010年将达到9.37亿美元。 比较这3家公司估计的2003年生物芯片市场的市场规模:Frost & Sullivan公司仅考虑了生物芯片市场中的DNA芯片市场,为6亿美元;雷曼兄弟估计为8亿美,Research and Markets公司估计为13亿美元,我们发现,这3家单位估计的全球生物芯片市场总额的数据相差不远,在8-13亿美元,他们估计的数据体现了这个产业的客观市场规模应该在这个范围内。台湾生物芯片协会估计的市场是2003年为2.2亿美元,其中医疗芯片销售额6,500万美元,研究芯片销售额1.55亿美元,数额偏低,估计没有包括生物芯片仪器市场。 全球生物芯片霸主是以医药个体化为目标的Affymetrix公司,今年继续在全球市场上领先,很多专家估计其市场份额占全球1/3至1/2。如果我们清楚了Affymetrix公司的市场情况,也就知道了全球一半的市场。根据Affymetrix公司《2003年年度报告》披露的信息,我们能看到这个霸主的一些市场业绩。假设市场份额正如专家们所估计的那样,Affymetrix公司占了全球1/2至1/3的市场,按Affymetrix公司的营业额估算,2003年全球市场也就6-9亿美元左右。如果最近5年的市场增长速度保持下去,今后5年的全球市场增长2倍,至2008年,全球市

基因芯片数据功能分析

生物信息学在基因芯片数据功能分析中的应用 2009-4-29 随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。生物信息学在基因组学中发挥着重大的作用, 而另一项崭新的技术——基因芯片已经成为大规模探索和提取生物分子信息的强有力手段,将在后基因组研究中发挥突出的作用。基因芯片与生物信息学是相辅相成的,基因芯片技术本身是为了解决如何快速获得庞大遗传信息而发展起来的,可以为生物信息学研究提供必需的数据库,同时基因芯片的数据分析也极大地依赖于生物信息学,因此两者的结合给分子生物学研究提供了一条快捷通道。 本文介绍了几种常用的基因功能分析方法和工具: 一、GO基因本体论分类法 最先出现的芯片数据基因功能分析法是GO分类法。Gene Ontology(GO,即基因本体论)数据库是一个较大的公开的生物分类学网络资源的一部分,它包含38675 个Entrez Gene注释基因中的17348个,并把它们的功能分为三类:分子功能,生物学过程和细胞组分。在每一个分类中,都提供一个描述功能信息的分级结构。这样,GO中每一个分类术语都以一种被称为定向非循环图表(DAGs)的结构组织起来。研究者可以通过GO分类号和各种GO数据库相关分析工具将分类与具体基因联系起来,从而对这个基因的功能进行描述。在芯片的数据分析中,研究者可以找出哪些变化基因属于一个共同的GO功能分支,并用统计学方法检定结果是否具有统计学意义,从而得出变化基因主要参与了哪些生物功能。 EASE(Expressing Analysis Systematic Explorer)是比较早的用于芯片功能分析的网络平台。由美国国立卫生研究院(NIH)的研究人员开发。研究者可以用多种不同的格式将芯片中得到的基因导入EASE 进行分析,EASE会找出这一系列的基因都存在于哪些GO分类中。其最主要特点是提供了一些统计学选项以判断得到的GO分类是否符合统计学标准。EASE 能进行的统计学检验主要包括Fisher 精确概率检验,或是对Fisher精确概率检验进行了修饰的EASE 得分(EASE score)。 由于进行统计学检验的GO分类的数量很多,所以EASE采取了一系列方法对“多重检验”的结果进行校正。这些方法包括弗朗尼校正法(Bonferroni),本杰明假阳性率法(Benjamini falsediscovery rate)和靴带法(bootstraping)。同年出现的基于GO分类的芯片基因功能分析平台还有底特律韦恩大学开发的Onto-Express。2002年,挪威大学和乌普萨拉大学联合推出的Rosetta 系统将GO分类与基因表达数据相联系,引入了“最小决定法则”(minimal decision rules)的概念。它的基本思想是在对多张芯片结果进行聚类分析之后,与表达模式

基因芯片数据处理流程与分析介绍

基因芯片数据处理流程与分析介绍 关键词:基因芯片数据处理 当人类基因体定序计划的重要里程碑完成之后,生命科学正式迈入了一个后基因体时代,基因芯片(microarray) 的出现让研究人员得以宏观的视野来探讨分子机转。不过分析是相当复杂的学问,正因为基因芯片成千上万的信息使得分析数据量庞大,更需要应用到生物统计与生物信息相关软件的协助。要取得一完整的数据结果,除了前端的实验设计与操作的无暇外,如何以精确的分析取得可信数据,运筹帷幄于方寸之间,更是画龙点睛的关键。 基因芯片的应用 基因芯片可以同时针对生物体内数以千计的基因进行表现量分析,对于科学研究者而言,不论是细胞的生命周期、生化调控路径、蛋白质交互作用关系等等研究,或是药物研发中对于药物作用目标基因的筛选,到临床的疾病诊断预测,都为基因芯片可以发挥功用的范畴。 基因表现图谱抓取了时间点当下所有的动态基因表现情形,将所有的探针所代表的基因与荧光强度转换成基本数据(raw data) 后,仿如尚未解密前的达文西密码,隐藏的奥秘由丝丝的线索串联绵延,有待专家抽丝剥茧,如剥洋葱般从外而内层层解析出数千数万数据下的隐晦含义。 要获得有意义的分析结果,恐怕不能如泼墨画般洒脱随兴所致。从raw data 取得后,需要一连贯的分析流程(图一),经过许多统计方法,才能条清理明的将raw data 整理出一初步的分析数据,当处理到取得实验组除以对照组的对数值后(log2 ratio),大约完成初步的统计工作,可进展到下一步的进阶分析阶段。

图一、整体分析流程。基本上raw data 取得后,将经过从最上到下的一连串分析流程。(1) Rosetta 软件会透过统计的model,给予不同的权重来评估数据的可信度,譬如一些实验操作的误差或是样品制备与处理上的瑕疵等,可已经过Rosetta error model 的修正而提高数据的可信值;(2) 移除重复出现的探针数据;(3) 移除flagged 数据,并以中位数对荧光强度的数据进行标准化(Normalized) 的校正;(4) Pearson correlation coefficient (得到R 值) 目的在比较技术性重复下的相似性,R 值越高表示两芯片结果越近似。当R 值超过0.975,我们才将此次的实验结果视为可信,才继续后面的分析流程;(5) 将技术性重复芯片间的数据进行平均,取得一平均之后的数据;(6) 将实验组除以对照组的荧光表现强度差异数据,取对数值(log2 ratio) 进行计算。 找寻差异表现基因 实验组与对照组比较后的数据,最重要的就是要找出显著的差异表现基因,因为这些正是条件改变后而受到调控的目标基因,透过差异表现基因的加以分析,背后所隐藏的生物意义才能如拨云见日般的被发掘出来。 一般根据以下两种条件来筛选出差异表现基因:(i) 荧光表现强度差异达2 倍变化(fold change 增加2 倍或减少2倍) 的基因。而我们通常会取对数(log2) 来做fold change 数值的转换,所以看的是log2 ≧1 或≦-1 的差异表现基因;(ii) 显著值低于0.05 (p 值< 0.05) 的基因。当这两种条件都符合的情况下所交集出来的基因群,才是显著性高且稳定的差异表现基因。

个体化医学检测微阵列基因芯片技术规范

个体化医学检测 微阵列基因芯片技术规范

微阵列基因芯片是基于DNA分子杂交技术原理研制,通过探针结合碱基互补序列的单链核酸,从而确定其相应序列来识别基因或其产物。能够同时快速检测多个基因及其多个位点,在多态性分析、突变分析、基因表达谱测定及杂交测序等多领域具有广泛应用价值。 临床诊断技术使用的微阵列基因芯片,可快速鉴定病原体、检测遗传突变及基因表达,更早更方便的检测肿瘤基因标志,检测药物反应和代谢相关基因多态性来指导临床个体化治疗。 本规范旨在对个体化医学检测中采用微阵列基因芯片检测核酸序列以及基因表达进行一般性技术指导,不包括行政审批要求。 本规范由全国生物芯片标准化技术委员会(SAC/TC 421)提出。 本规范起草单位:全国生物芯片标准化技术委员会、清华大学医学院、生物芯片北京国家工程研究中心、北京博奥医学检验所。 本规范起草人:项光新、李元源、王辉、邓涛、孙义民、张治位、张川、邢婉丽、程京。

1.适用范围 (1) 2.声明/警告 (1) 3.术语和定义 (1) 4.样本处理 (2) 4.1样本类型 (2) 4.2样本采集、运输与保存 (3) 4.3样本质量保证 (3) 4.4样本信息保存 (3) 5.检测各步骤分述 (4) 5.1核酸分离 (4) 5.2核酸定量(如适用) (4) 5.3核酸扩增和标记 (4) 5.4芯片杂交 (5) 5.5信号采集和数据分析 (5) 6.结果报告 (5) 7.质量控制 (5) 8.注意事项 (6) 9.参考文献 (6)

1.适用范围 本规范适用于医疗机构开展微阵列基因芯片个体化医学检测服务。 检测服务需遵循国家卫生主管部门或各专业协会发布的疾病诊疗指南或国家卫生计生委医政医管局个体化医学检测技术专家委员会发布的个体化医学检测指南。 2.声明/警告 本规范所称微阵列基因芯片诊断技术是指从医疗机构获得的临床样本中,提取核酸(DNA或RNA),进行必要的扩增和标记,标记后的靶标与基因芯片进行分子杂交,通过基因芯片扫描仪器获得基因芯片杂交的图像与数据,经计算机程序分析,并给出检测报告的全过程。 3.术语和定义 (1)聚合酶链反应polymerase chain reaction(PCR) 聚合酶链反应或多聚酶链反应是一种对特定的DNA或RNA片段在体外进行快速扩增的方法。 (2)杂交hybridization 具有一定同源序列的两条核酸单链(DNA或RNA)可以通过氢键的方式,按碱基互补配对原则相结合。 (3)突变mutation 是细胞中DNA核苷酸序列发生了稳定的可遗传的改变。 (4)点重复spot replicates 每种探针在芯片上每个阵列中的重复次数。 (5)探针probe

SNP检测详细步骤

SNP检测(中文) Part I:样本基因组DNA的提取 1.取50 μl血样于离心管中,加PBS缓冲液至1.5mL,轻轻地摇匀。冷冻离心机6500 rpm离心10 min,去掉上清液,保留沉淀物。重复洗2次。 2.向保留沉淀物的离心管中加入DNA提取液500 μl,15 μl的蛋白酶K,混匀放入55℃水浴锅中消化过夜。 3.将消化过夜的反应液冷却至室温,加入等体积冰冷的饱和酚溶液,盖紧离心管盖,缓慢地来回颠倒10 min(在冰上进行),形成均匀的乳浊液。 4.冷冻离心机12000 rpm离心10min。 5.小心地吸取上层水相至新管,用等体积饱和酚再抽提一次。 6.用等体积的氯仿再抽提一次。 7.离心后再取上清液于另一离心管中,加入1∕10体积3mol/L的NaAc使终浓度达到0.3mol/L,并加2倍体积冷无水乙醇,上下倒置混匀,置-20℃冰箱沉淀30-60min。 8.冷冻离心机12000 rpm离心10 min,弃上清液。 9.加入500 μl 70%冷乙醇小心洗涤沉淀。冷冻离心机6500 rpm离心5 min,弃上清,用干净的吸水纸或用吸头将管壁残留的乙醇去除,干燥10~15 min,不要等沉淀完全干燥,否则难以溶解。 10.沉淀于100 μl超纯水中。 11.将提取的基因组DNA进行琼脂糖凝胶电泳及浓度的测定。 Part II:SNP分型检测 1.引物的设计与合成 (1)查阅文献,参考文献中的引物,直接合成; (2)根据SNP的位置找到其序列,设计引物并合成 2.PCR扩增片段 (1)PCR扩增体系: Components Volume (μl)

DNA template1 PrimeSTAR0.5 dNTPs (2.5 mM)1 Primer-F (10 μM)1 Primer-R (10 μM)1 5*PS buffer(Mg2+)10 ddH2O1 (2)PCR扩增程序: (3)将PCR产物进行琼脂糖凝胶电泳检测。 (4)A. 测序法:对目的条带进行切胶回收纯化测序,根据测序结果统计分析各个样本下该SNP的基因型。 B. 酶切法:一般这种方法都有文献支持,在前期可以确定好对应的内 切酶。根据内切酶的反应体系将PCR产物进行酶切,酶切产物进行琼脂糖凝胶电泳检测。根据酶切条带来统计分析各个样本下该SNP的基因型。 Part II 标签SNP检测 1.引物的设计与合成 根据基因的序列设计扩增片段引物并合成。 2.PCR扩增片段 (1)PCR扩增体系: Components Volume (μl) DNA template1 PrimeSTAR0.5 dNTPs (2.5 mM)1 Primer-F (10 μM)1 Primer-R (10 μM)1 5*PS buffer(Mg2+)10 ddH2O1

SNP及检测技术

1定义:单核苷酸多态性(single nucleotide polymorphism,SNP),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。它是人类可遗传的变异中最常见的一种。占所有已知多态性的90%以上。SNP在人类基因组中广泛存在,平均每500~1000个碱基对中就有1个,估计其总数可达300万个甚至更多。SNP所表现的多态性只涉及到单个碱基的变异,这种变异可由单个碱基的转换(transition)或颠换(transversion)所引起,也可由碱基的插入或缺失所致。但通常所说的SNP 并不包括后两种情况。单核苷酸多态性(SNP)是指在基因组上单个核苷酸的变异,包括置换、颠换、缺失和插入。所谓转换是指同型碱基之间的转换,如嘌呤与嘌呤( G2A) 、嘧啶与嘧啶( T2C) 间的替换;所谓颠换是指发生在嘌呤与嘧啶(A2T、A2C、C2G、G2T) 之间的替换。从理论上来看每一个SNP 位点都可以有4 种不同的变异形式,但实际上发生的只有两种,即转换和颠换,二者之比为2:1。SNP 在CG序列上出现最为频繁,而且多是C转换为T ,原因是CG中的C 常为甲基化的,自发地脱氨后即成为胸腺嘧啶。一般而言,SNP 是指变异频率大于1 %的单核苷酸变异。在人类基因组中大概每1000 个碱基就有一个SNP ,人类基因组上的SNP 总量大概是3 ×106个。依据排列组合原理,SNP 一共可以有6种替换情况,即A/ G、A/ T、A/ C、C/ G、C/ T 和G/ T ,但事实上,转换的发生频率占多数,而且是C2T 转换为主,其原因是Cp G的C 是甲基化的,容易自发脱氨基形成胸腺嘧啶T , Cp G 也因此变为突变热点。理论上讲,SNP既可能是二等位多态性,也可能是3个或4个等位多态性,但实际上,后两者非常少见,几乎可以忽略。因此,通常所说的SNP都是二等位多态性的。这种变异可能是转换(C T,在其互补链上则为G A),也可能是颠换(C A,G T,C G,A T)。转换的发生率总是明显高于其它几种变异,具有

基因表达谱芯片的数据分析

基因表达谱芯片的数据分析(2012-03-13 15:25:58)转载▼ 标签:杂谈分类:生物信息 摘要 基因芯片数据分析的目的就是从看似杂乱无序的数据中找出它固有的规律, 本文根据数据分析的目的, 从差异基因表达分析、聚类分析、判别分析以及其它分析等角度对芯片数据分析进行综述, 并对每一种方法的优缺点进行评述, 为正确选用基因芯片数据分析方法提供参考. 关键词: 基因芯片; 数据分析; 差异基因表达; 聚类分析; 判别分析 吴斌, 沈自尹. 基因表达谱芯片的数据分析. 世界华人消化杂志2006;14(1):68-74 https://www.doczj.com/doc/731119416.html,/1009-3079/14/68.asp 0 引言 基因芯片数据分析就是对从基因芯片高密度杂交点阵图中提取的杂交点荧光强度信号进行的定量分析, 通过有效数据的筛选和相关基因表达谱的聚类, 最终整合杂交点的生物学信息, 发现基因的表达谱与功能可能存在的联系. 然而每次实验都产生海量数据, 如何解读芯片上成千上万个基因点的杂交信息, 将无机的信息数据与有机的生命活动联系起来, 阐释生命特征和规律以及基因的功能, 是生物信息学研究的重要课题[1]. 基因芯片的数据分析方法从机器学习的角度可分为监督分析和非监督分析, 假如分类还没有形成, 非监督分析和聚类方法是恰当的分析方法; 假如分类已经存在, 则监督分析和判别方法就比非监督分析和聚类方法更有效率。根据研究目的的不同[2,3], 我们对基因芯片数据分析方法分类如下: (1)差异基因表达分析: 基因芯片可用于监测基因在不同组织样品中的表达差异, 例如在正常细胞和肿瘤细胞中; (2)聚类分析: 分析基因或样本之间的相互关系, 使用的统计方法主要是聚类分析; (3)判别分析: 以某些在不同样品中表达差异显著的基因作为模版, 通过判别分析就可建立有效的疾病诊断方法. 1 差异基因表达分析(difference expression, DE) 对于使用参照实验设计进行的重复实验, 可以对2样本的基因表达数据进行差异基因表达分

SNP开发验证的研究方法和技术路线

1分子标记: 分子标记,我想这部分是我们分子标记组最核心的任务。现在,我们没有任何可用的标记检测我们的定位材料。即使想要验证已经定位的QTLs,我们也需要相对应的区间内的分子标记,尤其是SNP标记。 全基因组SNP—Affymetrix芯片: 一套完整的全基因组的SNP芯片,相对于Douglas体系,其操作简单,高通量。可以直接对定位群体进行初定位的扫描或是对育种材料的背景进行分析。在国家玉米改良中心,有一套3k的Illumina芯片,就是用来对玉米材料进行高通量检测,基因型检测结果通常可以用来QTLs初定位,育种材料的群体划分与纯度鉴定以及低密度的关联分析等。在此,我建议我们应该开发一套番茄基因型检测的芯片。 目前,只是查找到Illumina芯片有一套全基因SNP信息,包含7,720条探针。而Affymetrix公司目前并没有相应的产品。但是通过跟Affymetrix公司了解,可以利用Illumina芯片已有的结果进行开发。 番茄目前测序结果显示其全基因组大小为~760Mb,而玉米为~2,500Mb,但是他们包括的基因数目~30,000个,整体情况相近。另外,番茄作为自交植物,其LD 的衰减值应该更大,有效的历史重组会更少,遗传多样性低。因此,综合考虑,我建议我们可以开发~3k芯片,应该可以满足大多数研究材料、育种材料的基因型检测需求。虽然目前下一代测序技术蓬勃发展,但是对于用于基因型检测来讲,其数据分析与成本相对于芯片都要更复杂和更高。总之,我们番茄处于刚刚发展阶段,我认为就基因型检测方面,芯片有其很高的应用价值。即使像玉米,这样测序技术发展很多年的材料,芯片技术也在应用。 全基因组SNP—Douglas: 当用Affymetrix芯片检测鉴定完番茄基因型并完成基因型分析之后,1)对于优良的QTLs或是基因,我们可以直接选择覆盖整个区间的分子标记运行Douglas 系统进行分子标记辅助育种,2)对于需要进一步验证的QTLs,我们也而不需要再一次利用系统只检测材料覆盖定位区间的基因型,Douglas可以利用. )对于一些高信息量,。3Affymetrix芯片或是其他方法进行全基因检测(图)一套可以用来构建番茄的指纹图谱。因此,均匀分布在全基因的SNP分子标记,SNP标记是必不可少的。完整能够与Affymetrix芯片相对应的 SNP标记分布图图 QTL区间上的注:蓝色为深入片段,棕色为背景染色体。SNP标记的开发Douglas系统下筛选具有一PCR反应体系,通过建立稳定、可靠的番茄DNA提取流程与优化致性、稳定性与多态性SNP分子标记引物,从而构建番茄全基因组SNP分子标记。全基因组的SNP分子标记,可以用于番茄QTL定位群体的检测,分子标记辅助育种的选择以及全基因组选择的群体基因型的检测。同时,从中挑选高质量,高信息量的分子标记用于构建一套完成的番茄指纹图谱,检测品种一致性。 供试材料: 22份材料的DNA用作特异性引物筛选,2份水作为NTC(None Template Control),共计24份模板作为SNP引物的初期筛选。以上实验在Q6仪器上进行。对于筛选获得的一致性引物,在利用94株番茄自交系与2份水作为模板,进一步在Douglas仪器上验证。 DNA提取:

基因芯片检测服务内容和技术指标

基因芯片检测服务内容和技术指标 一、服务内容说明: 、项目服务总样本量为:例,在合同订立后个月内完成检测,并完成例数据的生物信息学分析。 2、使用公司的? ,该芯片产品说明、技术指标等内容见下。 3、实验过程(包括样品收集、处理和运输;实验实施;数据处理及后续生物信息学 分析)中的具体内容: 提供项目总体实施方案,包括实验设计,实验样品准备,实验操作流程,数据处理,数据分析等部分。 ()实验设计中包括,对实验总体方案的设计,和对血液离体后快速分离核酸的方法,实验批次间的数据归一化问题,指控样本的选择及数量等问题的说明; ()实验实施中包括,对样本采集的要求,细胞数量质量的规定,核酸质量的规定,样本保存运输的条件及要求; ()实验操作中包括,提供样本前处理,样本核酸抽提,核酸质量控制及后续实验的整体详细的规范操作流程; ()数据处理中包括,数据标准化,如何处理质量较差的样本,如何特殊处理临界样本,如何进行批次间指控等特殊情况的处理说明; ()数据分析中包括,常规的选择差异基因,并根据顾客需求,设计定制服务。 要求提供分析总体方案和相应问题的解决策略。 二、技术指标: 1、必须提供公司在中国区的服务授权书,即:公司的认证证书; 2、必须是公司优秀服务商,并提供颁发的优秀服务商证书; 3、公司必须有完善的质量管理体系,包括 (1)有独立的部门, (2)有完善的,提供相应的文件, (3)有认证,提供质量管理体系的认证书, (4)有级实验室,提供相应的(病原微生物实验室备案凭证), 4、生物信息学分析方面,要有很强的分析能力或者成熟软件。 5、服务水平及反馈信息: ()实验需达到天处理个样本以上的能力,并提供完整的数据质量控制和质量分析报告,完成数据的初步分析。 ()返回给客户的数据包括: ()从样本中抽提的质量报告(),得率及质量报告,片度化后的得率及质量报告(所有应提供电泳或质检图); ()所有芯片扫描的原始文件,包括、、、、格式原始文件及原始扫描图片文件; ()返回总体质量评估报告和初步数据分析; ()定制化的分析流程,分析策略,源代码(若需要使用开源软件编写程序)及最终结果。

Affymetrix 全基因组 SNP 芯片检测

Affymetrix 全基因组SNP 芯片检测 单核苷酸多态性(single nucleotide polymorphism, SNP) 指基因组单个核苷酸的变异,它是最微小的变异单元,是由单个核苷酸对置换、颠换、插入或缺失所形成的变异形式。单核苷酸多态性是基因组上高密度的遗传标志,在人类基因组中已发现的SNP数量超过3000万。作为第三代遗传标记,SNP数量众多、分布密集、易于检测,因而是理想的基因分型目标。SNP分型检测在疾病基因组(如疾病易感性),药物基因组(药效、药物代谢差异和不良反应)和群体进化等研究中具有重大意义。在人研究方面,Affymetrix 公司有分别基于GeneChip和GeneTitan平台的SNP 6.0 芯片和针对中国人群设计的CHB1&2 Array,既可用于全基因组SNP分析,又可用于CNV分析,极大地方便了中国人类疾病GWAS研究。Affymetrix公司针对多个农业物种也开发了多款商品化的基因分型芯片,如鸡、牛、水牛、鲑鱼、水稻、小麦、辣椒、草莓等,为农业育种研究、遗传图谱构建、群体基因组学研究提供研究手段。此外,Affymetrix公司还支持定制芯片,最低起订量为480个样品。 检测原理| 技术优势| 产品列表| 定制芯片| 数据分析| 基于GeneChip平台的人SNP 6.0 芯片实验流程: 基于GeneTitan平台的Axiom基因分型芯片检测流程:

从SNP原理谈SNP分析技术之SNP芯片 日期:2012-05-21 来源:网络 标签:SNP原理SNP分析SNP芯片 摘要: SNP是近年来基因突变的热点研究之一。它是指在单个的核苷酸上发生了变异,有四种不同的变异形式,而实际上只发生转换和颠换这两种。当科学家弄清了SNP的突变原理以后,他们就着手对SNP进行分析,以求找到疾病相对应的突变位点或者是进行个性化药物治疗研究。其中应用到的技术多达上百余种,其中包括有测序技术、质谱分析技术、HRM技术、Taqman技术以及SNP芯片技术。 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 SNP是近年来基因突变的热点研究之一。它是指在单个的核苷酸上发生了变异,有四种不同的变异形式,而实际上只发生转换和颠换这两种。当科学家弄清了SNP的突变原理以后,他们就着手对SNP进行分析,以求找到疾病相对应的突变位点或者是进行个性化药物治疗研究。其中应用到的技术多达上百余种,其中包括有测序技术、质谱分析技术、HRM 技术、Taqman技术以及SNP芯片技术。 SNP 的分型技术可分为两个时代,一为凝胶时代,二为高通量时代。凝胶时代的主要技术和方法包括限制性酶切片段长度多态性分析(RFLP)、寡核苷酸连接分析(OLA)、等位基因特异聚合酶链反应分析(AS2PCR)、单链构象多态性分析(SSCP)、变性梯度凝胶电泳分析(DGGE),虽然这些技术与高通量时代的技术原理大致一样,但是由于它不能进行自动化,只能进行小规模的SNP分型测试,所以必然会被淘汰。高通量时代的SNP分型技术按其技术原理可分为:特异位点杂交(ASH)、特异位点引物延伸(ASPE)、单碱基延伸(SBCE)、特异位点切割(ASC)和特异位点连接(ASL)5 种方法。此外,采用特殊的质谱法和高效液相层析法也可以大规模、快速检出SNP 或进行SNP 的初筛。近年来已经在晶体上用“光刻法”实现原位合成,直接合成高密度的可控序列寡核苷酸,使DNA 芯片法显示出强大威力,对SNP 的检测可以自动化、批量化,并已在建立SNP 图谱方面投入实际应用。DNA 芯片法有望在片刻之间评价整个人类基因组。 2007 年5月份,Affymetrix公司发布了Genome-wide SNP 6.0 芯片,除包括90多万个用于单核苷酸多态性(SNP)检测探针外,还有90多万个用于拷贝数变化(CNV)检测的探针,可使全基因组平均分辨率达3 kb,既可用于全基因组SNP分析,又可用于CNV分析,真正实现了一种芯片两种用途,方便研究者挖掘基因组序列变异信息。通过基因分型信息还可以鉴别中性拷贝数的杂合性缺失(copy neutral LOH)、单亲二体病(UPD)及嵌合现象(可以精确检测到20% 嵌合体)。近来Affymetrix 公司又陆续发布了多款针对东亚、中国、

基因芯片检测试剂盒

基因芯片检测试剂盒 研发背景 致病微生物是影响人类健康、食品安全的主要因素之一。对于致病微生物的检测除了传统的免疫学检测之外,分子生物学检测以其灵敏度高、检测时间短等特点得到越来越广泛的应用。基因芯片检测试剂盒是利用高通量生物芯片检测技术制备而成的快速集成检测产品,该类产品灵敏快速、信息量大、操作便捷,可对样品中多种致病菌同时进行检测分析。目前,天津生物芯片已自行研发出8种基因芯片检测试剂盒产品(检测菌种总计可达69种菌,44种血清型)。这些产品已在出入境检验检疫局、中国CDC及各省市CDC应用,效果良好。 核心技术 掌握利用细菌表面多糖抗原合成基因簇中的特异基因筛选特异分子标识的关键技术,已获得了 建立了当前国际上容量最大的致病微生物特异分子标识库——包括520余种不同细菌的特异分 ●种属水平——拥有121个细菌种属水平的特异分子标识。 ●血清型水平——拥有针对405种血清型的特异分子标识。 在FEMS Microbiology Reviews、Journal of Bacteriology等国际微生物权威期刊上发表65篇关于 具有丰富的菌株资源——菌种库中共有标准菌株3500余株、临床分离株8000余株,其中包括 产品特性 芯片所用探针均经过生物信息学分析,确保了每条探针都有着较高的种内保守性和种间特异性, 芯片所用探针均经过大量菌株实验验证,监测范围内和范围外均经过了标准株和临床株的双重 实用性强。针对高致病性或者食品、水产品、饮用水中较常出现并且对人类有着较高威胁的致 灵敏度高。可实现对检测菌1ng DNA的检测。 1

2.4性能指标 高特异性和高保守性:实现对每一种检测菌的准确检测,确保试剂盒具有较高的保守性和特异 高灵敏性:当样品中检测菌的DNA量达到1ng时,可实现对检测菌的准确检测。 高重复性:针对每一种检测菌多次重复可实现100%的重复检测。 稳定性:有效期长达6个月。 2.5订货信息

SNP开发验证的研究方法和技术路线

. SNP开发/验证的研究方法和技术路线 1分子标记: 分子标记,我想这部分是我们分子标记组最核心的任务。现在,我们没有任何可用的标记检测我们的定位材料。即使想要验证已经定位的QTLs,我们也需要相对应的区间内的分子标记,尤其是SNP标记。 1.1 全基因组SNP—Affymetrix芯片: 一套完整的全基因组的SNP芯片,相对于Douglas体系,其操作简单,高通量。可以直接对定位群体进行初定位的扫描或是对育种材料的背景进行分析。在国家玉米改良中心,有一套3k的Illumina芯片,就是用来对玉米材料进行高通量检测,基因型检测结果通常可以用来QTLs初定位,育种材料的群体划分与纯度鉴定以及低密度的关联分析等。在此,我建议我们应该开发一套番茄基因型检测的芯片。 目前,只是查找到Illumina芯片有一套全基因SNP信息,包含7,720条探针。而Affymetrix公司目前并没有相应的产品。但是通过跟Affymetrix公司了解,可以利用Illumina芯片已有的结果进行开发。 番茄目前测序结果显示其全基因组大小为~760Mb,而玉米为~2,500Mb,但是他们包括的基因数目~30,000个,整体情况相近。另外,番茄作为自交植物,其LD 的衰减值应该更大,有效的历史重组会更少,遗传多样性低。因此,综合考虑,我建议我们可以开发~3k芯片,应该可以满足大多数研究材料、育种材料的基因型检测需求。虽然目前下一代测序技术蓬勃发展,但是对于用于基因型检测来讲,其数据分析与成本相对于芯片都要更复杂和更高。总之,我们番茄处于刚刚发展阶段,我认为就基因型检测方面,芯片有其很高的应用价值。即使像玉米,这样测序技术发展很多年的材料,芯片技术也在应用。 1.2全基因组SNP—Douglas: 当用Affymetrix芯片检测鉴定完番茄基因型并完成基因型分析之后,1)对于优良的QTLs或是基因,我们可以直接选择覆盖整个区间的分子标记运行Douglas 系统进行分子标记辅助育种,2)对于需要进一步验证的QTLs,我们也. . 而不需要再一次利用系统只检测材料覆盖定位区间的基因型,可以利用Douglas 对于一些高信息量,)。3)Affymetrix芯片或是其他方法进行全基因检测(图1.1分子标记,可以用来构建番茄的指纹图谱。因此,一均匀分布在全基因的SNP Affymetrix芯片相对应的SNP标记是必不可少的。套完整能够与

芯片达人教你如何看数据手册

芯片达人教你如何看数据手册 2013-11-30 15:21:38 分享: 标签:数据手册datasheet 【摘要】数据手册怎么看?先看芯片特性、应用场合、内部框图,有一个宏观的了解。重点关注芯片参数,同时参考手册给出的参数图。选定器件后,研究管脚定义、推荐的PCB layout。内部寄存器,时序图必须研究透彻。数据手册中的note,都必须仔细阅读,是把芯片用好的关键所在。 不管什么芯片手册,它再怎么写得天花乱坠,本质也只是芯片的使用说明书而已。而说明书一个最显著的特点就是必须尽可能地使用通俗易懂的语句,向使用者交代清楚该产品的特点、功能以及使用方法。无论什么芯片手册,都不会存在生僻的单词语法(专业词汇除外),运用在大学英文知识去分析这些手册足矣。(当然另外一种选择是看中文版数据手册,像搜ic 数据手册之类的专业datasheet翻译网站,语法不一定符合国人语言习惯,但术语还是基本正确的,见仁见智吧。) Datasheet为何难读?难点有三: 语言风格——跟平常我们所阅读的新闻、报导都不一样,好多数据手册在表达意思上的连贯性做得不好,没有太大联系的两句话就放在了一起,没办法,只得接受(莫非这也是中外思维的差异?) 长句太多——为保证严谨,不至于让读者产生误解,数据手册通常多用长句描述,并且长句所描述问题都比较关键。这很让人头疼,要连贯地理解这些长句,需要较好的记忆力。当然,俺们也有笨办法:按照古老的主谓宾状补结构,把整个长句拆开,对每一个小短句进行分析,最后联系上下文揣摩出整句意思。

专业词汇多,甚至有字典上都找不到的单词,——没办法,一得靠平时的积累,二得善于借助网络资源翻译,比如搜ic数据手册(https://www.doczj.com/doc/731119416.html,)就是个挺专业的网站。不过强调一下:我们没有必要把每一个单词的意思都完完全全地、准确无误地翻译出来,只要理解它所表达的意思就足够了,就说是只需意会,不必言传倒也合适。 以AD9945为例,我们可以这么去读芯片数据手册: 1、先看看芯片的特性(Features)、应用场合(Applications)以及内部框图。这有助于我们对芯片有一个宏观的了解,此时需要弄清楚该芯片的一些比较特殊的功能,充分利用芯片的特殊功能,对整体电路的设计,将会有极大的好处。比如AD9945可以实现相关双采样(CDS),这可以简化后续信号调理电路,并且抵抗噪声的效果还好。 2、重点关注芯片的参数,同时可以参考手册给出的一些参数图(如AD9945的TPC 1,TPC2等),这是是否采用该芯片的重要依据。像AD9945,就可以关注采样率(maximum clock rate)、数据位数(AD converter)、功耗(power consumption)、可调增益范围(gain range)等。 3、选定器件后,研究芯片管脚定义、推荐的PCB layout,这些都是在硬件设计过程中必须掌握的。所有管脚中,要特别留意控制信号引脚或者特殊信号引脚,这是将来用好该芯片的前提。比如AD9945的SHP、SHD、PBLK、CLPOB等。 4、认真研读芯片内部寄存器,对寄存器的理解程度,直接决定了你对芯片的掌握程度。比如AD9945就有4个寄存器:Operation、Control、Clamp Level和VGA gain,对于这些寄存器,必须清楚它们上电后的初始值、所能实现的功能、每个bit所代表的含义这些基本情况。

相关主题
文本预览
相关文档 最新文档