当前位置:文档之家› 遗传信息传递

遗传信息传递

遗传信息传递
遗传信息传递

第11章 遗传信息的传递

学习目标

2 掌握DNA 的复制过程。

3 掌握DNA 、RNA 和蛋白质合成的原料和主要酶类。

4 掌握遗传信息的传递流程。

5 理解DNA 的修复种类和修复的意义。

6 理解转录、翻译的过程和蛋白质合成与医学的关系。

7 了解转录后加工过程和转录的调控。

DNA 是遗传的主要物质,遗传信息以碱基排列顺序的方式贮藏在DNA 分子中。基因(gene )是编码生物活性物质的DNA 片断。DNA 通过复制把遗传信息由亲代传递给子代,通过转录将遗传信息传递到RNA 分子上,后者指导蛋白质的生物合成,这一过程称为翻译。遗传信息传递的这种规律称为中心法则(central dogma )。70年代Temin 和Baltimore 分别从致癌RNA 病毒中发现逆转录酶,可以RNA 为模板指导DNA 的合成,遗传信息的传递方向和上述转录过程相反,故称为逆转录(reverse transcription ),并发现某些病毒中的RNA 也可以进行复制,这样就对中心法则提出了补充和修正,修正与补充后的中心法则如图11-l 。

蛋白质

翻译

图11-l 遗传信息传递的中心法则

DNA 为主导的中心法则是单向的信息流,体现了遗传的保守性;补充修正后的中心法则,使RNA 也处于中心地位,预示着RNA 可能有更广泛的功能。

2

DNA 的生物合成(复制)

一、DNA 的复制

(一)DNA 复制的方式

Watson 和Crick 在提出DNA 双螺旋结构模型时即推测,在DNA 复制过程中,两

条螺旋的多核苷酸链之间的氢键断开,然后以每条链各作为模板在其上合成新的互补链。这样新形成的两个子代DNA分子与原来DNA分子的碱基顺序完全相同。每个子代DNA分子的一条链来自于亲代,而另一条链则是新合成的产物,这种复制方式称为半保留复制。

1958年经Messelson与Stahl实验证实了Watson和Crick的DNA半保留复制假说。他们将细菌培养在以15NH4Cl为唯一氮源的培养基中,经多代培养之后,细胞内所有的DNA是含15N的重DNA,其密度比普通14N-DNA的密度大,在密度梯度离心时,15N-DNA形成的区带在14N-DNA形成的区带下放。

然后把含15N的细菌转入14N的培养基中培养,让细胞生长几代,并在不同时间取样进行分析。实验结果表明,第一代之后,DNA只出现一条区带,位于15N-DNA 和14N-DNA之间,这条区带的DNA是由14N-DNA和15N-DNA组成的。经两代之后,出现二条区带,一条为14N-DNA,另一条为14N-15N-DNA。三代后,则14N-DNA分子逐渐增多,而14N-15N-DNA分子不再增加,这些结果及解释可用图11-2来表示,证明DNA的复制是以半保留复制的方式进行的。

复制是在酶催化下的核苷酸聚合过程,需要多种酶和蛋白质因子参与。

1.DNA聚合酶DNA聚合酶又称DNA指导的DNA聚合酶(DNA directed DNA polymerase,DDDP)。在大肠杆菌提取液中发现了三种DNA聚合酶,分别称为DNA 聚合酶Ι、Ⅱ、Ⅲ。它们都是以DNA为模板催化DNA合成的酶。

DNA聚合酶Ι是一条单链多肽,其功能有:①催化DNA沿5’→3’方向延长。②具有3’→5’外切酶的活性。③5’→3’外切酶活性。

DNA聚合酶Ⅱ的作用尚不完全清楚。

DNA聚合酶Ⅲ是复制时起主要作用的酶,催化反应速度最快,每分钟能催化

相关主题
文本预览
相关文档 最新文档