当前位置:文档之家› 1微分(differential)的几何量化与代数推导.

1微分(differential)的几何量化与代数推导.

1微分(differential)的几何量化与代数推导.
1微分(differential)的几何量化与代数推导.

Sec. 3.7 Differentials 微分

1:微分(differential)的幾何量化與代數推導

增量(increment ): 函數)(x f y =,當x 分量由1x 變動到2x 時,12x x x

-=?稱為x 的一增量。

對應x 的此一增量x ?,y 的增量為)()()()(111212x f x x f x f x f y y y -?+=-=-=?

如圖示

例1~2:Let 3)(x x f y ==. Find x ? and y ?:

a) When x changes from 2to 01.2. b) When x changes from 2to 98.1.

解:

a) 01.0201.2=-=?x (新的減舊的)

1.1206.02)01.2()2()01.2()()(3311=-=-=-?+=?f f x f x x f y

b) 02.0298.1-=-=?x (新的減舊的)

237608.02)98.1()2()98.1()()(3311-=-=-=-?+=?f f x f x x f y

定義:函數)(x f y =,

x 的微分(differential )為x dx ?=

y 的微分(differential )為dx x f dy ?'=)(。 (dy 隨x 與dx 變動)

幾何說明:現賦予dy 、dx 幾何上的意義,讓來不尼茲符號dx dy 有兩數相除的意思。

如上圖所示(注意微分與增量的關係)

a)x 的增量為PR AB x ==?,y 的增量為RQ CD x f x x f y ==-?+=?)()(

b) 如圖過點P 的切線斜率dx dy x f m =

'=)(PR RS =; 若令PR x dx =?=,則dy 可取為如圖示的線段長RS ;

c) dy f ≈?即RQ RS ≈

d) 用切線逼近曲線

例(補充):Find dy if ()13y 3+-=x x a ()x x b 3y 2+= .

解:

()()

3313 23-=+-=x x x dx d dx dy a ()dx x dy 332-=? ()x

x x x x dx d dx

dy b 32323 22++=+=dx x x x dy 32322++=? #

例(補充):Find ()

()x x d x x d 31323++- . 解:

()

()x x d x x d 31323++-()()3233323322+-=+-=x x dx x dx x #

2、近似Approximations ): (看圖也有相同結論)

x

x f x x f x x f x x f x f x ?-?+≈?-?+='→?)()()()(lim )(0 x x f x f x x f ??'≈-?+?)()()(‥‥(1) (即dy f ≈?或RQ RS ≈)

x x f x f x x f ??'+≈?+?)()()(‥‥(2) (即RS BR BQ +≈)

例題3:Let 3)(x x f y ==.

a) Find the differential dy of y .

b) Use dy to approximate y ? When x changes from 2to 01.2.

c) Use dy to approximate y ? When x changes from 2to 98.1.

d) Compare the results of part (b) with those of Example 2.

解:

a) dx x dx x f dy x x f y ?='=?==233)()(

b)

01.0201.2=-=?=x dx , 2=x 12.0)01.0()2(32=?=?dy

c)

02.0298.1-=-=?=x dx , 2=x 24.0)02.0()2(32-=-?=?dy

d) part b) 近似值12.0=dy 與例2的真正值1.1206.0=?y 兩者很接近 #

例4:Use differential to approximate

5.2

6. 解: 取函數x x f y ==)(,x x f 21

)(='。

當x 分量由25=x 變動到5.26=?+x x 時,5.1=?x ;

x x f x f x x f ??'+≈?+)()()(

)5.1()25()25())5.1(25(5.26?'+≈+=?f f f

()15.515.055.125

2125=+=+≈ #

例 5:某一型的卡車行駛500英哩,若以時速每小時v 英哩,其營運成本為v

v v C 4500125)(++= 元。 求時速從每小時 55 英哩增加到每小時 58 英哩時營運成本的近似改變量是多少。

解:

2

45001)(v v C -='。 當v 分量由55=v 變動到58=?+v v 時,3=?v ;

v v C C ??'≈?)()3()55(?'=C ()46.1355450012-=??

? ??-= 元 #

例 6:Cannon 精密儀器公司花費x 千元的廣告時,其銷售量200)(0 5006.0002.0)(23≤≤+++-=x x x x x S 。

以微分估計廣告費從 $100,000 (100=x ) 增加到 $105,000 (105=x )時,銷售量的改變量是多少。

例 7:一環(ring)的內半徑r 而外半徑R ,與內半徑r 相比較,r R -是一微小量。

以微分(differential)估計此環的面積。

解:

設半徑x 的圓面積函數2

)(x x f y ?==π,x x f ?='π2)(,r R x -=?

利用df f ≈?

環的面積 = (外半徑R 的圓面積) 減 (內半徑r 的圓面積) )( )(r f R f -=)( )(r f x r f -?+=)()(r R r f -?'=)(2r R r -??=π #

例 8:一半徑為 0.5英吋的球形容器(ball-bearing),最大測量誤差為0002.0±英吋。

則半徑的相對誤差(relative error) 是0004.05

.00002.0±=±=r dr 且其百分誤差( percentage error )是

=?%100r

dr %04.0±。

隨堂練習(例 9):測量一立方體(cube)的邊長,最大百分誤差 2%。以微分估計計算體積時的最大百分誤差。 解:

邊長x 公分的立方體體積3)(x x V =,已知邊長相對誤差02.0≤x

dx ,故 立方體體積相對誤差323x dx x V dV ?=x

dx 3= 計算體積時的最大百分誤差為%606.03==?≤x

dx V dV #

东南大学高数a下实验报告

高数实验报告 学号: 姓名: 数学实验一 一、实验题目:(实验习题7-3) 观察二次曲面族kxy y x z ++=22的图形。特别注意确定k 的这样一些值,当k 经过这些值时,曲面从一种类型变成了另一种类型。 二、实验目的和意义 1. 学会利用Mathematica 软件绘制三维图形来观察空间曲线和空间曲线图形的特点。 2. 学会通过表达式辨别不同类型的曲线。 三、程序设计 这里为了更好地分辨出曲线的类型,我们采用题目中曲线的参数方程来画图,即t t kr r z sin cos 22+= 输入代码: ParametricPlot3D [{r*Cos[t],r*Sin[t],r^2+ k*r^2*Cos[t]*Sin[t]}, {t, 0, 2*Pi}, {r, 0, 1},PlotPoints -> 30] 式中k 选择不同的值:-4到4的整数带入。 四、程序运行结果

k=4: k=3: k=2:

k=1: k=0:

k=-1: k=-2:

k=-3: k=-4: 五、结果的讨论和分析 k取不同值,得到不同的图形。我们发现,当|k|<2时,曲面为椭圆抛物面;当|k|=2时,曲面为抛物柱面;当|k|>2时,曲面为双曲抛物面。

数学实验二 一、实验题目 一种合金在某种添加剂的不同浓度下进行实验,得到如下数据: 2 + y+ = cx a bx 法确定系数a,b,c,并求出拟合曲线 二、实验目的和意义 1.练习使用mathematic进行最小二乘法的计算 2.使用计算机模拟,进行函数的逼近 三、程序设计 x={,,,,}; y={,,,,}; xy=Table[{x[[i]],y[[i]]},{i,1,5}]; q[a_,b_,c_]:=Sum[(a+b*x[[i]]+c*x[[i]]*x[[i]]-y[[i]])^2,{i,1 ,5}]; Solve[{D[q[a,b,c],a]?0,D[q[a,b,c],b]?0,D[q[a,b,c],c]?0},{a, b,c}] A={a,b,c}/.%; a=A[[1,1]]; b=A[[1,2]];

济宁学院 微分几何 期末试卷及参考答案

。。。。。。。。。。。。。。。。。。。。。。。装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。订。。。。。。。。。。。。。。。。。。。。。。。。。线。。。。。。。。。。。。。。。。。。。。。。。。。。。。 济宁学院继续教育学院《微分几何》考试试卷 一、填空题(每小题4分,共20分) 1、 曲面上的曲纹坐标网是渐进网的充分必要条件是 . 2、平面族1sin sin cos =-+αααz y x 的包络面是 . 3、N M L ,,是曲面的第二类基本量,则02=-M LN 的点是曲面上的 . 4、球面{}θ?θ?θsin ,sin cos ,cos cos R R R r =→ 的第二基本形式为 . 5、圆柱螺线{}bt t a t a r ,sin ,cos =→ 的自然参数表示式为 . 二、选择题(每小题2分,共20分) 6、下列属于曲面内蕴量的是 ( ) A 、主方向 B 、共轭方向 C 、高斯曲率 D 、渐近方向 7、空间曲线在一点的密切平面上的投影近似于 ( ) A 、直线 B 、半立方抛物线 C 、立方抛物线 D 、抛物线 8、空间曲面在抛物点邻近的形状近似于 ( ) A 、双曲抛物面 B 、立方抛物线 C 、椭圆抛物面 D 、圆锥面 9、曲线()r r t =r r 在点()P t 处的挠率 ( ) A 、可正可负 B 、一定为负 C 、不可为负 D 、 一定为正 10、下列概念中,能刻画曲面上一点在某一方向上的弯曲性的是 ( ) A 、高斯曲率 B 、曲率 C 、挠率 D 、法曲率 11、曲面在一点处的高斯曲率a K =,平均曲率)(2a b b H ≥=,则曲面在该点处的主曲率为 ( ) A 、a b b -+2 B 、a b b --2 C 、a b b -+2, a b b --2 D 、无法知道 12、下列不是曲面的第一类基本量的是 ( ) A 、u u r r E →→?= B 、v u r r F →→?= C 、v v r r F →→?= D 、uv r n M → →?= 13、曲面(,)r r u v =r r 的曲纹坐标网的微分方程是 ( ) A 、0du dv -= B 、0du dv += C 、0dudv = D 、220du dv -= 14、单位向量函数)(t r → 关于t 的旋转速度等于 ( ) A 、)(t r →' B 、)(t r →' C 、)(t r → D 、)(t r → 15、过2C 类空间曲线上一点最贴近曲线的平面是 ( ) A 、切平面 B 、从切平面 C 、密切平面 D 、法面 三、计算题(每小题10分,共20分)

东南大学往年高数期末考试试题及答案-8篇整合

东南大学往年高数期末考试试题及答案-8篇 整合 https://www.doczj.com/doc/72838680.html,work Information Technology Company.2020YEAR

2 东 南 大 学 考 试 卷( A 卷) 一.填空题(本题共5小题,每小题4分,满分20分) 1.2 2lim sin 1 x x x x →∞ =+ 2 ; 2.当0x →时 ,()x α=2()x kx β=是等价无穷小,则 k = 3 4 ; 3.设()1sin x y x =+,则d x y π == d x π- ; 4.函数()e x f x x =在1x =处带有Peano 余项的二阶Taylor 公式为 ()223e e 2e(1)(1)(1)2 x x x ο+-+ -+- ; 5.已知函数3 2e sin , 0()2(1)9arctan ,0 x a x x f x b x x x ?+

微分几何期末1

1、等距变换一定是保角变换 (×) 2、空间曲线的形状由曲率与挠率唯一确定. (√) 3、二阶微分方程 22 A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线. (×) 4、连接曲面上两点的所有曲线段中,测地线一定是最短的 (×) 5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量 (√) 6、在空间曲线的非逗留点处,密切平面存在且唯一。 ( √ ) 7、空间曲线的曲率与挠率完全确定了空间曲线的形状与位置。 ( × ) 8、在曲面的非脐点处,最多有二个渐近方向。 ( √ ) 9、LN-M 2不是内蕴量。 ( × ) 10、高斯曲率恒为零的曲面一定是可展的。 ( √ ) 11、曲线→ r =→ r (s)为一般螺线的充要条件为(r &&ρ,r &&&ρ,....r ρ)=0 (√) 12、主法向量正向总是指向曲线凹入的方向。(√) 13、不存在两条不同曲线,使得一条曲线的主法线都是另一曲线的主法线。(×) 14、曲面上平点对应的杜邦指标线是一条直线。(× ) 15、每一个可展曲面或是柱面,或是锥面,或是一条曲线的切线曲面。(√ ) 16、椭圆的曲率和挠率特征为k=1,τ=0。( × ) 17、若曲线的所有切线都经过定点,则该曲线一定是直线. ( √ ) 18、球面曲线的主法线必过球心 (×) 19、曲面上的曲纹坐标网为共轭网的充要条件为L=N=0. ( × ) 20、曲面上的渐进网一定存在. (×) 21、在光滑曲线的正常点处,切线存在而且唯一。 ( √ ) 22、圆的曲率、挠率特征是:k=常数,τ=0。 ( × ) 23、在曲面的非脐点处,有且仅有二个主方向。 ( √ ) 24、高斯曲率 与第二基本形式有关,不是内蕴量。 ( × ) 25、曲面上连接两点的最短线一定是测地线。 ( × ) 26、在空间曲线的非逗留点处,密切平面存在且唯一。 ( √ ) 27、在曲面的非脐点处,有且仅有二个主方向。 ( √ ) 28、存在第一类基本量E=1,F=3,G=3的曲面。 ( ╳ )

微分几何期末复习题

微分几何复 习题 一、填空题 1. 向量具有固 ()(,3,)r t t t a =定方向,则a = 。 2. 非零向量满 ()r t 足的充要条 (),,0r r r '''=件是 。 3. 若向量函数 ()r t 满足()()0r t r t '?=,则具有固定 ()r t 。 4. 曲线的正常 ()r r t =点是指满足 的点. 5. 曲线在任意 3()(2,,)t r t t t e =点的切向量 为 。 6. 曲线在点的 ()(cosh ,sinh ,)r t a t a t at =0t =切向量为 。 7. 曲线在点的 ()(cos ,sin ,)r t a t a t bt =0t =切向量为 。 8. 设曲线在P 点的切向量 为α,主法向量为 β,则过P 由确 ,αβ定的平面 是曲线在P 点的 。 9. 若是曲线的 0()r t ()r r t =正则点,则曲线在的 ()r r t =0()r t 密切平面方 程是 。 10. 曲线在点的 ()r r t =0()r t 单位切向量 是α,则曲线在点 0()r t 的法平面方 程是 。 11. 一曲线的副 法向量是常 向量,则这曲线的 挠率τ= 。 12. 曲线()r r t =在t = 1点处有2γβ=,则曲线在 t = 1对应的点 处其挠率 (1)τ= 。 13. 曲线x =cos t ,y =sin t , z =t 在t =0处的切线 方程是 。 14. 曲线的主法 向量的正向 总是指向 。 15. 空间曲线为 一般螺线的 充要条件是 它的副法向 量 。 16. 曲线()r t ={t 3-t 2-t , t 2-2t +2, 2}上的点不是 正常点的是 t = 。 17. 曲线的曲率 ()r r t =是 。 18. 曲线的挠率 ()r r t =是 。 19. 一般螺线的 曲率和挠率 的关系是 。 20. 曲率为0的 曲线是 , 挠率为0的 曲线是 。 21. 设有曲线2:,,t t C x e y e z t -===,当时的切线 1t =方程为 。

素数的几何解释

素数的几何解释 数学概念的几何解释,常常赋予概念另一种透视和视觉上的意义.根据定义,素数是大于1的数,它只有1和自身作为因子.让我们看看,怎样从几何上去满足这个定义. 观察12个方块: 现在重新排列它们,使之形成不同形状的矩形. 正像我们看到的,每个矩形都图示了12的因子——1×12;2×6;3×4——其因子为:1,12,2,6,3,4. 现在我们看看,如果一个数是素数,例如5,会出现什么情况?——它只可能有一个矩形!即如下图所示.这表明5只有因子1和5. 海伦公式的几何意义 初等数学2009-12-28 11:38:54 阅读27 评论0 字号:大中小 在有一次遇到海伦公式时,不禁想起以前的困惑,这海伦公式的几何意义到底是什么。因为我们知道每一个公式都有对应的几何图形,只不过有些图形表达起来不是很容易了,尤其是高阶的方程。但是,海伦公式是一个面积公式,无论如何 都应该可以说得清楚。 于是在网上查了半天,终于知道大数学家欧拉是最早把这个事情表达清楚的。可是,我们的教科书却一直没有交代这件事,即使中文网站上也都是用勾股定理或者余弦定理来推导的,没有什么趣味。于是觉得自己不妨把这个事情写出来,也好给有同样困惑的网友一个参考。特别说明,这些资料综合了几个来源。

欧拉是从三角形内切圆的半径入手的。 如上图所示假定做一个内切圆,那么,每个切点到三角形顶点的距离分别就是x,y,z。设内切圆的半径是r,那么一个三角形就可以分为六个三角形,或者三对三角形,三角形的面积就是r*(x+y+z)。如果三角形三条边上分别是a,b,c。那么很容易得到xyz和abc之间的关系。就是海伦公式里面的s-a,s-b,s-c。所以问题就变成求内切圆半径r。因为内切圆的圆心是在角平分线上,所以,我们一定可以把三个三角形合成一个直角(如上图右所示)而把这些三角形按比例放大,一定可以得到一个矩形PQST。下面,就来推导一下:

2002年东南大学考研高等代数试题

东南大学二○○二年攻读硕士学位研究生入学考试试卷(高等代数) 一、以下结论是否成立,如成立,试证明。否则举实例。(每题4分,共24分) 1、若α为()f x '的k 重根,则α为)(x f 的1+k 重根。这里)(x f '表示多项式)(x f 的微商(或导数)。 2、设A 为n m ?阵,B 为m n ?阵,且,n m >则0AB =。 3、若,A B 均为n 阶实对称阵,具有相同的特征多项式,则A 与B 相似。 4、设4321,,,αααα线性无关,则12233441,,,αααααααα++++秩为3。 5、设21,v v 均为线性空间v 的子空间,满足{}021=?v v ,则21v v v ⊕=。 6、设A 为n 阶正定矩阵,则一定存在正定阵B ,使2 B A =。 二、(10分)以知线性方程组21ββ+=k Ax ,其中,=A ????? ??-----111121111,???? ? ??=3121β,????? ??-=1312β,求 k 使方程组有解,并求有解时的通解。 三、(10分)已知A 是n 阶实对矩阵,n λλ,,1 是A 的特征阵,相对应的标准正交特征向量为1,,n εε。求 证:T n n n T A εελεελ++= 111。这里“T ”表示转置。 四、(12分)设线性变换A 在线性空间V 的基123,,ααα下矩阵为101210,113?? ?- ? ??? 1、求值域AV ,核1(0)A -的基。 2、问1(0)V AV A -=+吗?为什么? 五、(12分)设(),ij n n A a ?=如果10,1, ,n ij j a i n ===∑。求证:11221n A A A ===。 (这里ij A 为1j a 的代数余子式) 六、(12分)设A 为n 阶矩阵,试证:2A A =的充要条件为()()r A r I A n +-=。 (这里I 为n 阶单位阵,()r A 表示A 的秩) 七、(10分)设A 为4阶矩阵,且存在正整数k ,使0k A =,又A 的秩为3,分别求A 与2A 的若当()Jordan 标准形。 八、(12分)证明,若()f x 与()g x 互素,并且(),()f x g x 次数都大于零,那么可以选取(),()u x v x 使(())(()),(())(()),u x g x v x f x ?

微分几何期终试题

《微分几何》 期终考试题(A) 班级:____ 学号:______ 姓名:_______ 成绩:_____ 一、 填空题(每空1分, 共20分) 1. 半径为R 的球面的高斯曲率为 ;平面的平均曲率为 . 2. 若的曲率为,挠率为)(t r )(t k )(t τ,则关于原点的对称曲线的曲率为 )(t r ;挠率为 . 3. 法曲率的最大值和最小值正好是曲面的 曲率, 使法曲率达到最大值和最小值的方向是曲面的 方向. 4. 距离单位球面球心距离为)10(<

二、 单项选择题(每题2分,共20分) 1. 等距等价的两曲面上,对应曲线在对应点具有相同的 【 】 A. 曲率 B. 挠率 C. 法曲率 D. 测地曲率 2. 下面各对曲面中,能建立局部等距对应的是 【 】 A. 球面与柱面 B. 柱面与平面 C. 平面与伪球面 D. 伪球面与可展曲面 3. 过空间曲线C 上点P (非逗留点)的切线和P 点的邻近点Q 的平面π,当Q 沿曲线趋于点C P 时,平面π的极限位置称为曲线C 在P 点的 【 】 A. 法平面 B. 密切平面 C. 从切平面 D. 不存在 4. 曲率和挠率均为非零常数的曲线是 【 】 A. 直线 B. 圆 C. 圆柱螺线 D. 平面曲线 5. 下列关于测地线,不正确的说法是 【 】 A. 测地线一定是连接其上两点的最短曲线 B. 测地线具有等距不变性 C. 通过曲面上一点,且具有相同切线的一切曲线中,测地线的曲率最小 D. 平面上测地线必是直线 6. 设曲面的第一、第二基本型分别是,则曲面的两个主曲率分别是 【 】 2222,Ndv Ldu II Gdv Edu I +=+= A.G N k E L k ==21, B. N G k L E k ==21, C. v E G k k ???==ln 21 21 D. u G E k k ??==ln 2121 7. 曲面上曲线的曲率,测地曲率,法曲率之间的关系是 【 】 k g k n k

12-13(二)微分几何期末复习题

一, 填空 1. 若曲线C 能与另一条曲线1C 的点之间建立一一对应关系, 而且在对应点, C 的主法线与1C 的副法线重合, 则曲线C 称为 孟恩哈姆曲线 . 2. 曲线C 在正则点邻近的近似曲线*C 为x ¤(s ) = s; y ¤(s ) = k (0)2 s 2; z ¤(s ) = k (0)?(0)6 s 3; 3. 曲线在一点邻近和它的近似曲线有相同的 曲率和挠率 . 4.“采柴罗"不动条件是 dx ¤ds = ky ¤ ? 1, dy ¤ds = ?kx ¤ + ?z¤ dz ¤= ??y¤ . 5.空间曲线C : r = r (s ) 是球面曲线的充要条件是: 曲率k (s ) 和挠率? (s ) 满 足 . 6. 设C : r = r (s ) 是一条曲率处处不为零的一般柱面螺线, 则C 的曲率与挠率有 固定比值 . 7.半径为R 的圆的曲率为_____ R 1 ______. 8. 圆柱螺线x = 3a cos t; y = 3a sin t; z = 4at 从它与xy 平面的交点到意点M (t ) 的弧长是 5at . 9. 曲率和挠率均为非零常数的曲线是 圆柱螺线 。 10,曲面的坐标曲线网正交的充要条件是__F=0___________, 坐标曲线网成为曲率线网的充要条件是___F=M=0________________. 11,距离单位球面球心距离为()01d d <<的平面与球面的交线的法曲率为 1± , 12. 距离单位球面球心距离为()01d d <<的平面与球面的交线的测地曲率为 . 13.全脐点曲面(即曲面上的点全部是脐点)只有两个,它们是 平面,球面 . 14,沿渐近曲线的切方向,法曲率=____0___________;沿曲率线的切方向,法曲率=_________N/G_____________;沿测地线的切方向,法曲率=_______K ±______________. 15.曲面上非脐点处的两个主方向之间的夹角θ为 2π . 16.曲面上曲线的曲率K ,测地曲率K g ,法曲率K n 之间的关系是 K 2=K 2g +K 2n 。

东南大学高数上期末往年试题

2003级高等数学(A )(上)期末试卷 一、单项选择题(每小题4分,共16分) 1.设函数()y y x =由方程 ? +-=y x t x dt e 1 2 确定,则 ==0 x dx dy ( ) .e 2(D) ; 1-e (C) ; e -1(B) ;1)(+e A 2.曲线41 ln 2+-+ =x x x y 的渐近线的条数为( ) . 0 (D) ; 3 (C) ; 2 (B) ; 1 )(A 3.设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示, 则导函数)(x f y '=的图形为( ) 4.微分方程x y y 2cos 34=+''的特解形式为( ) . 2sin y )( ;2sin 2cos y )(;2cos y )( ;2cos y )( * * **x A D x Bx x Ax C x Ax B x A A =+=== 二、填空题(每小题3分,共18分) 1._____________________ )(lim 2 1 =-→x x x x e 2.若)(cos 21arctan x f e x y +=,其中f 可导,则_______________=dx dy 3.设,0,00 ,1sin )(?????=≠=α x x x x x f 若导函数)(x f '在0=x 处连续,则α的取值范围是__________。 4.若dt t t x f x ?+-=2032 4 )(,则)(x f 的单增区间为__________,单减区间为__________. 5.曲线x xe y -=的拐点是__________ 6.微分方程044='+''+'''y y y 的通解为__________________________=y

第四版微分几何期末复习总结

( )2 211 22222222221212u u 2222221u u 1.I I du sinh udv ,u=v u=v I du sinh udu =+sinh u du =cos h udu ,u=v A(u ),B(u )u 求曲率和挠率.(1)题1=解:求,,,,,,,,,/()(2)题2 ={}{ }{ }1212223123322112212222 ).r ),r r (1+t ),r 6a 0,6a ,(r r r )=216a k 1/[3a(1+t )],=k;(3).r a cos ,asin ,b k,;,,.r r r absin ,ab cos ,a ,r r k a /(a b ), =b /(a τθθθταβγθθτ?=?==-?=?=?=-?=?=++解:...,,,题3求圆柱螺线=的解:...{ }{ }{}1 2 1 1 12121 112121112b );=r /r -asin ,a cos ,b ,=(r r )/r r bsin ,b cos ,a =[(r r )r -(r r )r ]/[r r r ]cos ,-sin ,0. αθθγαβ θθβθθ=??=?=-????=-切向量, 主法u 222u u u uu u u uu u 3.(1) 1.r {(u)cos ,(u)sin ,(u)},(u)0,r ,r E=r r ='+',F=r r =0,G=r r r ,r ,r n [r r ]/L=n r =-[''''M=n r 0,N=n r [']/θθθθθθθθθθθ?θ?θψ??ψ??ψ?ψ?ψ =>?? ??== ?=? ?-?=?=题求的高斯曲率和平均曲率.解:求求23/2121222212xOz x=(z)z (u)u L=-M 0,N=F=M 0k L/E ''/[(1')],k N/G 1/[k k k -''/[(1')];H k +k '''(?ψ???????????==? ====-+==?==+-取平面上最初的曲线为得因为,所以旋转面的坐标曲线为曲率线,并且主曲率为高斯曲率平均曲率为=[1/2]()=[1+]/[223/222N T N N N N 222222*********')(2).r ucosv usinv bv k ,K,H.E=1,F=0,G=u +b ;L=0,L k E,M k F;M k F,N k G]0K b /[u +b ],K b /[u +b ];K K K b /[(u +b )],H [1/2](K +K )0..?+----=== -==- ==]. 题2 求正螺面={,,}的解:由题意得代入主曲率公式[解得(3)题3确定抛222200000T N N 12z a x +y .p ax q ay,r a,s 0,t a p q ,r a,s 0,t a E=1+p =1,F=pq=0,G=1+q 1,L=r /a M=s /N=t /a a-k ,0;0,a-k ]0K K ======?=====物面=()在(0,0)的主曲率解:由题意得=2,=222在(0,0)处=0,=022;2,,2代入主曲率公式得[22解得2a.“求主曲率,高斯曲率和平均曲率” 4.k 0k r 0,r =0r =a(),r a b,b =0r =0,r =a()s ττγαγγγ?? ?? ? ? ≡≡=≡+≡???证明的曲线是直线;0的曲线是平面曲线.证:已知因而,由此得到常向量再积分=其中也是常向量,即得证;若0,则是固定向量,但是我们已知,因而有积分后得常数,所以曲线在一个平面上。

常用微分公式

(1)dx dx =nx n -1 ,n ∈N 。 (2)d x dx n x n N n n =∈-11 1,。 (3)dc dx =0,其中c 为常数。(4)(sin x )/=cos x (5)(cos x )/=-sin x 另一种表示:① (x n )/=nx n -1 ② /)(n x =1n 1 1-x ③ (c )/=0 证明: (2)设a 为f (x )=n x 定义域中的任意点, 则f /(a )=a x →lim f (x )-f (a ) x -a =a x →lim a x a x n n --=a x →lim ] )(....)())[((121---++?+--n n n n n n n n n n n a a x x a x a x =1) (1-n n a n =1n (n a -1)=1n (1 1-a ) (4)设a 为任意实数,f (x )=sin x f (x )-f (a )x -a = sin x -sin a x -a = a x a x a x -+-2cos 2sin 2 计算f /(a )= a x →lim f (x )-f (a )x -a =a x →lim ( a x a x a x -+-2cos 2sin 2)=cos a 。 (1)(3)(5)自证 (1)f (x )与g (x )为可微分的函数。?f (x )+g (x )为可微分的函数。 且d dx (f (x )+g (x ))= d dx (f (x ))+ d dx (g (x ))成立。 另一种表示:(f (x )+g (x ))/=f /(x )+g /(x ) 证明:令h (x )=f (x )+g (x ),设a 为h (x )定义域中的任一点 h /(a )=a x →lim h (x )-h (a )x -a =a x →lim a x a g a f x g x f ---+) ()()()( =a x →lim (f (x )-f (a )x -a + g (x )-g (a )x -a )=a x →lim (f (x )-f (a )x -a )+a x →lim (g (x )-g (a )x -a ) =f /(a )+g /(a ) 例:求=+)(35x x dx d ? 推论:dx d (f 1(x )+f 2(x )+...+f n (x )) = dx x df dx x df dx x df n )() ()(21+???++

几何与代数教学大纲

线性代数(B)教学大纲 (课程编号学分:2;上课32;习题课0,实验0;课外上机:0) 东南大学数学系 一.课程的性质与目的 本课程是以矩阵为主要工具研究数量间的线性关系的基础理论课程,也是工科非电类专业学生本科阶段关于离散量数学的最重要的课程。本课程的目的是使学生熟悉线性代数的基本概念,掌握线性代数的基本理论和基本方法,提高其抽象思维、逻辑思维的能力,为用线性代数的理论解决实际问题打下基础。 二.课程内容的教学要求 1.行列式 (1)理解二阶、三阶行列式的定义,熟练掌握它们的计算; (2)知道全排列及全排列的逆序数的定义,会计算排列的逆序数,知道对换及对换对于排列的奇偶性的影响; (3)了解n阶行列式的定义,会用行列式的定义计算简单的n阶行列式; (4)掌握行列式的性质,熟练掌握行列式按行、列展开公式,了解行列式的乘法定理; (5)掌握不很复杂的低阶行列式及简单的高阶行列式的计算; (6)理解Cramer法则,掌握用Cramer法则求方程组的解的方法。 2.矩阵 (1)理解矩阵的概念; (2)理解矩阵的加法、数乘、乘法运算及矩阵的转置及相关的运算性质,熟练掌握上述运算; (3)理解零矩阵、单位矩阵、数量矩阵、对角阵、三角阵、对称矩阵、反对称矩阵的定义及其运算性质; (4)理解矩阵的可逆性的概念,掌握矩阵可逆的判别方法,掌握逆矩阵的性质; (5)了解伴随矩阵的概念,熟练掌握伴随矩阵的性质,掌握利用伴随矩阵计算矩阵的逆矩阵; (6)了解分块矩阵的运算性质,掌握简单的分块矩阵的运算规则。 3.矩阵的初等变换与Gauss消元法 (1)理解矩阵的初等行变换与Gauss消元法的关系; (2)理解矩阵的初等变换及矩阵的等价关系的概念; (3)了解矩阵的等价标准形的概念,理解矩阵的初等变换与矩阵的乘法间的关系; (4)了解可逆矩阵与初等矩阵间的关系,掌握用初等变换求逆矩阵的方法,会求简单的矩阵方程的解; (5)理解矩阵的秩的概念,熟练掌握矩阵的秩的求法,理解矩阵运算前后的秩之间的关系;

东南大学几何与代数B教学大纲2010

几何与代数教学大纲 (总学分: 4;总上课学时:64;课外上机时数:4) 东南大学数学系 一.课程的性质与目的 本课程是工科电类专业学生本科阶段关于几何及离散量数学重要的数学基础课程。本课程的目的是使学生熟悉空间解析几何与线性代数基本概念,掌握用坐标及向量的方法讨论几何图形的方法,熟悉空间中简单的几何图形的方程及其特点,掌握线性代数的基本理论和基本方法,熟悉矩阵运算的基本规律和基本技巧,熟悉矩阵在等价关系、相似关系、合同关系下的标准形,提高其空间想象能力、抽象思维和逻辑思维的能力,为后继课程的学习做好准备,并为用线性代数的理论解决实际问题打下基础。 二.课程内容的教学要求 1.向量代数平面与直线 (1)理解几何向量的概念及其加法、数乘运算,熟悉运算规律,了解两个向量共线和三个向量共面的充分必要条件; (2)理解空间直角坐标系的概念,理解仿射坐标系的概念,掌握向量的坐标表示; (3)理解向量的数量积、向量积和混合积的概念,理解它们的几何意义,了解相关的运算性质,掌握利用坐标进行计算的方法; (4)理解平面的法向量的概念,熟练掌握平面的方程的确定方法,熟悉特殊位置的平面方程的形式; (5)理解直线的方向向量的概念,熟练掌握直线的对称方程、一般方程及参数方程的确定方法; (6)了解直线、平面间的夹角的定义,了解点与直线、平面间的距离的定义,并掌握相关的计算; (7)了解平面束的概念,并会用平面束处理相关几何问题。 2.矩阵和行列式 (1)理解矩阵和n维向量的概念; (2)理解矩阵和向量的加法、数乘、乘法运算及矩阵的转置及相关的运算性质,熟练掌握上述运算; (3)理解零矩阵、单位矩阵、数量矩阵、对角阵、三角阵、对称矩阵、反对称矩阵的定义及其运算性质; (4)理解二阶、三阶行列式的定义,熟练掌握它们的计算; (5)知道全排列及全排列的逆序数的定义,会计算排列的逆序数,知道对换及对换对于排列的奇偶性的影响; (6 )了解n阶行列式的定义,会用行列式的定义计算简单的n 阶行列式;

如何理解几何直观

浅谈几何直观的含义 数学是研究数量关系与空间形式的科学。空间形式最主要的表现就是图形。在数学研究、学习、讲授中,不仅需要关注研究图形的方法、研究图形的结果,还需要感悟图形给我们带来的好处,几何直观就是在“数学――几何――图形”这样的一个关系链中让我们体会到它带来的最大好处。《课程标准(2011版)》中指出:几何直观主要是指利用图形描述和分析问题。几何直观所指有两点:一是几何,这是主要是指图形;二是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西,以前看到的东西进行思考、想象、综合起来,几何直观就是依托、利用图形进行数学的思考和想象。它在本质上是一种通过图形所展开的想象力。用最通俗的话说几何直观,就是看图想事,看图说理,也包括想图、画图、表达想法。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。 培养学生的几何直观(1)使学生养成画图习惯,鼓励用图形表达问题可以通过多种途径和方式使学生真正体会到画图对理解概念、寻求解题思路上带来的便利。在教学中应有这样的导向:能画图时尽量画,其实质是将相对抽象的思考对象“图形化”,尽量把问题、计算、证明等数学的过程变得直观,直观了就容易展开形象思维,无论计算还是证明,逻辑的、形式的结论都是在形象思维的基础上产生的。(2)重视变换----让图形动起来几何变换或图形的运动既是学习的对象,也是认识数学的思想和方法。在数学中,我们接触的最基本的图形都是对称图形,例如球、圆锥、圆台、正多面体、圆、正多边形、长方体、长方形、菱形、平行四边形等;另一方面,在认识、学习、研究非对称图形时,又往往是运用这些对称图形为工具的。变换又可以看作运动,让图形动起来是指再认识这些图形时,在头脑中让图形动起来,例如,平行四边形是一个中心对称图形,可以把它看作一个刚体,通过围绕中心(两条对角线的交点)旋转180度,去认识、理解、记忆平行四边形的其他性质。充分地利用变换去认识、理解几何图形是建立几何直观的好办法。(3)学会从“数”与“形”两个角度认识数学数形结合首先是对知识、技能的贯通式认识和理解。以后逐渐发展成一种对数与形之间的化归与转化的意识,这种对数学的认识和运用的能力,应该是形成正确的数学态度所必需要求的。(4)掌握、运用一些基本图形解决问题把让学生掌握一些重要的图形作为教学任务,贯穿在义务教育阶段数学教学、学习的始终。例如,除了前面指出的图形,还有数轴,方格纸,直角坐标系等等。在教学中要有意识地强化对基本图形的运用,不断地运用这些基本图形去发现、描述问题,理解、记忆结果,这应该成为教学中关注的目标。如:在讲解圆锥的侧面积和全面积时,很多学生不理解,死记硬背又记不牢。所以在讲解之前我准备了几个扇形的纸板。同时也让学生自己动手制作了扇形。对上节课的知识进行了复习。制作完扇形后让学生小组合作将所制作的扇形围起来看看是个什么图形。有了这个基础之后,我通过手中的圆锥模型将其各部分的名称讲解。然后让学生通过自己手中的模型再进行熟悉彼此交流。有了这个直观的模型,学生很容易就想到了圆锥的侧面是扇形,进而侧面积就解决了。然后再进行公式之间的转化。圆锥的高、母线长和底面圆的半径之间的关系凭空想象有一定难度,但借助了这个直观的集合模型,一切问题都不是问题了。 培养学生几何直观能力要达到的目标。 通过研讨,大家一致达成共识,培养学生几何直观能力要让学生形成如下三种能力:1、空间想象能力;2、直观洞察能力;3、利用几何直观解决问题的能力。 培养学生几何直观能力的常见策略有哪些? 1、数形结合的策略;数学是研究数量关系和空间形式的科学。而数形结合的思想就是抓住了数学的本质数与形,把抽象的数与具体的形结合在一起,让数与形有机结合,从而培养学生几何直观的能力。比如在教学小数除以整数一课,如何让学生理解小数除以整数的算理,我们就采用了数形结合的策略。结合图示说算理。用11个小正方形表示11个1,用涂色部分表示0.5.把11.5平均分给5袋牛奶,

东南大学考研真题高等代数++2003

东南大学二00三年攻读硕士学位研究生入学考试试卷 课程编号:433 课程名称:高等代数 一、填空题(每小题6分,共30分) 1、设12312,,,,αααββ均为四维列向量,且四阶行列式12311223,,,,,,,m n αααβααβα==。则四阶行列式32112,,,()αααββ+= 。 2、已知()111,2,3,1,,23αβ?? == ??? ,设T A αβ=,其中T α表示α的转置,则n A = 。 3、设矩阵A 的行列式因子为()3 1,1,1λλ--,则A 的初等因子为 ,A 的若当标准形为 。 4、设V 是数域P 上全体次数4<的多项式与零多项式组成的线性空间,且232,,1,1x x x x x +++是V 的一组基,则223x x ++在这组基下的坐标(写成行向量形式)为 。 5、()()43232341,1f x x x x x g x x x x =+---=+--的最大公因式()(),()f x g x 为 。 二、选择题(每小题6分,共30分) 1、设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( ) (A )12312,,,k αααββ+线性无关 (B )12312,,,k αααββ+线性相关 (C )12312,,,k αααββ+线性无关 (D )12312,,,k αααββ+线性相关 2、设A 是m n ?矩阵,B 是n m ?矩阵,则( ) (A )当m n >时,0AB ≠ (B )当m n >时,0AB = (C )当n m >时,0AB ≠ (D )当n m >时,0AB = 3、设n ()2≥阶矩阵A 可逆,* A 为A 的伴随矩阵,则( ) (A )()*1*n A A A += ( B )()*1*n A A A -= ( C )()*2*n A A A += ( D )()*2 *n A A A -= 4、设12324369Q t ?? ?= ? ??? ,P 为三阶非零矩阵,且满足0PQ =,则( ) (A )当6t =时,P 的秩必为1 (B )当6t =时,P 的秩必为2 (C )当6t ≠时,P 的秩必为1 (D )当6t ≠时,P 的秩必为2 5、已知12,ββ是非齐次线性方程组Ax b =的两个不同的解,12,αα是0Ax =的基础解系,12,k k 为任意常数,

东南大学 高数实验

高等数学数学实验报告 院(系) 软件学院 学号 71110325 姓名 向往 实验地点: 计算机中心机房 实验一 一、 实验题目 设数列}{n x 由下列递推关系式给出:),2,1( ,2 1211 =+==+n x x x x n n n ,观察数列11111121++++++n x x x 的极限。 二、 实验目的和意义 1、通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。 2、通过此实验对数列极限概念的理解形象化、具体化。 三、程序设计 f[x_]=x^2+x;xn=0.5; g[x_]=1/(x+1); S=0; For[n=1,n 10,n++,xN=xn;xn=f[xN];yn=g[xN];S+=N[yn];Print[S]] 四、程序运行结果 0.666667 1.2381 1.67053 1.91835 1.99384 1.99996 2. 2. 2. 2.

五、结果的讨论和分析 观察数列的极限可采用数形结合的方法或者通过输出N项来观察数列逼近趋势。本题我采用后者,才仅仅输出10项(其实比10项还要少)之后就得出了数列极限,程序设计较数行结合法来说更简单,同时也比较直观的得出了结论。并且由此看出此数列极限的逼近速度还是相当快的。 实验二 实验题目:用梯形法计算定积分 2 2 sin x dx π ?的近似值。(精确到0.0001)。 实验目的:根据本实验介绍的方法(如梯形法),利用mathematica进行定积分的近似计算。这样比求其原函数要更加简便。 实验设计: f[x_]:=Sin[x^2]; a=0;b=Pi/2;m2=N[f''[2]];delta=10^(-4);n0=100; t[n_]:=(b-a)/n*((f[a]+f[b])/2+Sum[f[a+i*(b-a)/n],{i,1,n-1}]); Do [ Print[n," ",N[t[n]]] ; If [ (b-a)^3/(12n^2)

东南大学线性代数几何代数历年试题

- 8 - 04-05学年第二学期 几何与代数期终考试试卷 一、 (24%)填空题 1. 以(1,1,2)A ,(2,1,1)B --,(1,1,1)C --为顶点的三角形的面积为 ; 2. 设3阶矩阵12(,,)A ααα =,23131(,2,)B ααααα=+-。若A 的行列式3A =,则B 的行列式B = ; 3. 若向量(1,0,1)α=,(2,1,1)β=-,(1,1,)k γ=-共面,则参数k = ; 4. 若A 为n 阶方阵,则方阵2I O B A I ??= ??? 的逆矩阵1B -= ;

- 9 - 5. 已知向量111η?? ?= ? ??? 是矩阵11201122a A ?? ?= ? ?-??的特征向量,则参数a = ,相应的特征值等于 ; 6. 假设矩阵1000A ??= ??? ,则在实矩阵11001110,,,,11021101B C D E ????????==== ? ? ? ?--???????? 1300F ??= ??? 中,与A 相抵的有 ;与A 相似 的有 ;与A 相合的有 . 二、 (8%)计算行列式121 111 x x x x x x x x x x . 三、 (10%)假设 200110102A ?? ?= ? ??? ,121210B -??= ?-??, 求矩阵方程3X B XA =+的解.

- 10 - 四、 (14%)假设矩阵 1101011A λλλ?? ?=- ? ???,000θ?? ?= ? ???,11a b ?? ?= ? ??? . 1. 已知齐次线性方程组Ax θ=的基础解系中有两个 线性无关的解向量.试确定这时参数λ的值,并求这时Ax θ=的一个基础解系. 2. 若在非齐次线性方程组Ax b =的解集中,存在两 个线性无关的解向量,但不存在更多的线性无关的解向量,试确定这时参数λ及a 的值,并求Ax b =的通解. 五、 (10%)已知直线l 过点(1,1,1)P ,与平面 :1 x y z π+-=平行,且与直线1121 x y z λ- ==: 相交。求直线l 的方向向量,并写出直线l 的方程. 六、 (10%)假设二次曲面1π的方程为: 2242x y z +=;平面2π的方程为:1x z =-.

相关主题
文本预览