当前位置:文档之家› 有限体积法讲义

有限体积法讲义

有限体积法讲义
有限体积法讲义

有限元分析中英文对照资料

The finite element analysis Finite element method, the solving area is regarded as made up of many small in the node connected unit (a domain), the model gives the fundamental equation of sharding (sub-domain) approximation solution, due to the unit (a domain) can be divided into various shapes and sizes of different size, so it can well adapt to the complex geometry, complex material properties and complicated boundary conditions Finite element model: is it real system idealized mathematical abstractions. Is composed of some simple shapes of unit, unit connection through the node, and under a certain load. Finite element analysis: is the use of mathematical approximation method for real physical systems (geometry and loading conditions were simulated. And by using simple and interacting elements, namely unit, can use a limited number of unknown variables to approaching infinite unknown quantity of the real system. Linear elastic finite element method is a ideal elastic body as the research object, considering the deformation based on small deformation assumption of. In this kind of problem, the stress and strain of the material is linear relationship, meet the generalized hooke's law; Stress and strain is linear, linear elastic problem boils down to solving linear equations, so only need less computation time. If the efficient method of solving algebraic equations can also help reduce the duration of finite element analysis. Linear elastic finite element generally includes linear elastic statics analysis and linear elastic dynamics analysis from two aspects. The difference between the nonlinear problem and linear elastic problems: 1) nonlinear equation is nonlinear, and iteratively solving of general; 2) the nonlinear problem can't use superposition principle; 3) nonlinear problem is not there is always solution, sometimes even no solution. Finite element to solve the nonlinear problem can be divided into the following three categories: 1) material nonlinear problems of stress and strain is nonlinear, but the stress and strain is very small, a linear relationship between strain and displacement at this time, this kind of problem belongs to the material nonlinear problems. Due to theoretically also cannot provide the constitutive relation can be accepted, so, general nonlinear relations between stress and strain of the material based on the test data, sometimes, to simulate the nonlinear material properties available mathematical model though these models always have their limitations. More important material nonlinear problems in engineering practice are: nonlinear elastic (including piecewise linear elastic, elastic-plastic and viscoplastic, creep, etc. 2) geometric nonlinear geometric nonlinear problems are caused due to the nonlinear relationship between displacement. When the object the displacement is larger, the strain and displacement relationship is nonlinear relationship. Research on this kind of problem Is assumes that the material of stress and strain is linear relationship. It consists

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元分析复习资料打印版

有限元复习资料 1.简述有限单元法的应用范围 答:①工程地质现象机制的研究;②工程区岩体应力边界条件或区域构造力的反馈;③工程岩土体位移场和应力场的模拟;④岩土体稳定性模拟 2.简述有限元单元法的基本原理 答:有限元单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域----飞机结构静,动态特性分析中应用的一种由此奥的数分析方法,随后很快广泛的应用于求解热传导。电磁场、流体力学等连续性问题。有限元分析计算的思路和做法可归纳如下: ①物体离散化 将整个工程结构离散为由各个单元组成的计算模型,这一步称作单元剖分。离散散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、树木等应是问题的性质,描述变形形态的需要和计算进度而定(一般情况但愿划分月息则描述变形情况月精确,及月接近实际变形,但计算两越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 ②单元特性分析 A.选择位移模式 在有限单元法中,选择节点位移为基本未知量称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算机自动化,所以,在有限单元法中位移法应用范围最广。当采用位移法时,物体或结构离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。这时可以对单元中位移的分布采用一些能逼近原原函数的近似函数予以描述。通常,有限元法我们就将位移作为坐标变量的简单函数。这种函数称为位移模式或位移函数,如y=a其中a 是待定系数,y是与坐标有关的某种函数。 B.分析但愿的力学性质 根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,折中单元分析中的关键一部。此时需要应用弹性力学中的几何方程和物理方程来来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。C.计算等效节点力 物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续题,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元辩解上的表面力、体积力和集中力都需要等效的移动节点上去,也就是用等效的节点力来代替所有作用在单元上的力。 ③单元组集 利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程 ④求解未知节点位移 解有限元方程式得出位移。这里,可以根据方程的具体特点来选择合适的计算方法。通过上述分析,可以看出,有限单元法的基本思想是“一分一合”,分是为了进行单元分

有限元讲义

《刚塑性有限元法及其在轧制中的应用》 1998年12月

刚塑性有限元法及其在轧制中的应用 1 本课程学习目的和要求 1.了解现代轧钢生产和轧制技术的发展概况 2.掌握现代轧制理论研究的基本任务; 3.掌握刚塑性有限元的基本概念、基本理论和基本方法; 2 本课程学习的主要内容 1.刚塑性有限元的基本理论; 2.刚塑性有限元有关技术问题的处理方法; 3.求解轧制过程的刚塑性有限元程序。 3 本课程的基础和相关知识 1.现代塑性加工力学:基本方程、变分原理、有限元基础知识; 2.工程数学:矩阵分析、优化方法、数值分析; 3.计算机基础知识:操作系统、FORTRAN语言和FORTRAN 4.0编程软件。 4 讲课和学习方法 1.课堂讲授:基本概念、基本理论、基本方法及程序剖析; 2.课外自学:消化理解、阅读程序; 3.上机实践:调试程序。

1 绪论 1.1 现代轧制理论研究的发展概况 轧制过程的理论研究与轧钢生产发展的实际需要密切相关。20世纪60年代以前,为了适应手工操作和单体设备为主的轧钢生产过程,轧制理论主要解决轧制力、力矩、功率、宽展和前滑等参数的近似计算问题。轧制理论的主要进展是提出了卡尔曼和奥罗万方程,采用一些假设条件推导出轧制力和宽展等公式,逐步形成了以工程法为核心的传统轧制理论体系。20世纪60年代以后,随着轧钢生产和轧制技术的飞跃发展和用户对产品质量要求的日益提高,以计算机为工具,以现代数值分析方法的为特征的现代轧制理论得到了迅速发展。 1.1.1 现代轧钢生产和轧制技术的发展 现代轧钢生产大体可分为两个阶段: 20世纪50~70年代—发展趋势是大型化、高速化和连续化;1960年以前建立了较多热带钢轧机,特点辊身范围1120~2490mm,年生产能力100~200万吨,带钢卷重6~14吨,最大精轧速度为10~12m/s,技术进步是将AGC应用于精轧机;20世纪60~70年代,轧机向现代化技术方面发展,同时连铸技术发展成熟。大型连铸坯、步进式加热炉、大型化的粗轧机、7机架精轧机组、AGC、升速轧制、层流冷却技术以及轧制过程计算机控制的全面应用。60年代美国建设了11套热带钢轧机,其中10套不同程度地采用计算机控制,日本到1971年共建19套热带轧机,14套采用计算机控制。 20世纪80年代以后—轧钢生产主要向提高产品质量、降低消耗、优化轧制过程、开发新钢材和新品种方向发展。(板形、厚度及超级钢) 我国1957年鞍钢建设了第一套2800/1700mm半连续式板带钢轧机,此外,我国还有辊身长度在1422mm以上的热轧宽带钢轧机8套、薄板坯连铸连轧带钢轧机3套。武钢、本钢1700mm3/4连续式热带钢轧机各一套,宝钢2050mm3/4连续式热带钢轧机,攀钢1450mm半连续式热带钢轧机,太钢1549 mm半连续式热带钢轧机,梅钢1422mm全连续式热带钢轧机,宝钢1580、鞍钢1780mm半连续式热带钢轧机各一套,珠钢1500、邯钢1900和包钢1750薄板坯连铸连轧带钢轧机各一套。

流体计算理论基础讲解

流体计算理论基础 1 三大基本方程 连续性方程 连续性方程也称质量守恒方程,任何流动问题都必须满足质量守恒定律,该定律可表示为:单位时间内流体微元中质量的增加等于同一时间间隔内流入该微元体的净质量,其形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 可以写成: ()0div u t ρ ρ?+=? 其中ρ密度,t 为时间,u 为速度矢量,u ,v 和w 为速度矢量在x ,y 和z 方向上的分量。 若流体不可压缩,密度为常数,于是: 0u v w x y z ???++=??? 若流体处于稳态,则密度不随时间变化,可得出: ()()() 0u v w x y z ρρρ???++=??? 动量守恒定律 该定律可以表述为:微元体中流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和,该定律实际是牛顿第二定律,按照这一定律,可导出x ,y 和z 三个方向上的动量守恒方程: ()()() ()()()yx xx zx x xy yy zy y yz xz zz z u p div uu F t x x y z u p div uv F t y x y z u p div uw F t z x y z τττρρτττρρτττρρ??????+=-++++? ?????????????+=-++++??????? ??????+=-++++???????? 式中,p 为微元体上的压力,xx τ,xy τ和xz τ等是因分子粘性作用而产生的作用在微元体表

面上的粘性应力τ的分量。x F ,y F 和z F 是微元体上的体力,若体力只有重力,且z 轴竖直向上,则:0,0x y F F ==,z F g ρ=-。 对于牛顿流体,粘性应力τ与流体的变形率成比率,有: x yy x 2();==()2();==()2();==()xx xy y xz z zz yz zy u u v div u x y x v u w div u x z x w v w div u x z y τμλττμτμλττμτμλττμ???? =++????? ???? =++????? ???? =++????? 其中,μ为动力粘度,λ为第二粘度,一般可取2 3 λ=- ,将上式代入前式中为: ()()()() ()()()()()u v w u p div uu div gradu S t x v p div uv div gradv S t y w p div uw div gradw S t z ρρμρρμρρμ???+=-+???? ???+=-+? ??????+=-+? ??? 其中: ()()/()/()/grad x y z =??+??+?? μ为动力粘度(dynamic viscosity),λ为第二粘度(second viscosity),一般可取: 2 3 λ=-(参考文献:,Boundary Layer Theory,8th ed,McGraw Hill, New York,1979)。u S ,v S 和w S 为动量守恒方程中的广义源项,u x x S F S =+,v y y S F S =+,w z z S F S =+,而其中 x S ,y S 和z S 表达式为: ()()()(())()()()(())()()()(()) x y z u v w S div u x x y x x x x u v w S div u x x y y x y y u v w S div u x z y z x z z μμμλμμμλμμμλ????????=+++????????????????? =+++????????????????? =+++????????? 一般来讲,x F ,y F 和z F 是体积力在x ,y ,z 方向上的分量。x S ,y S 和z S 是小量,对于粘性为常数的不可压缩流体,0x y z S S S ===,动量守恒,简称动量方程,也称N-S 方程。 关于牛顿体与非牛顿体的定义如下:

fluent-有限体积法

第4章 有限体积法 1.1 积分方程 守恒方程的形式为积分方程。 ???+?=?Ω S S Ωq S ΓS d d grad d φφρφn n v ( 4-1 ) 4.1 控制体积 求解区域用网格分割有限个控制体积(Control V olumes, CVs )。同有限差分不同的是,网格为控制体积的边界,而不是计算节点。为了保证守恒,CVs 必须是不重叠的,且表面同相邻CVs 是同一个。 i. 节点为中心 CVs 的节点在控制体积的中心。先定义网格,任何找出中心点。优点:节点值代表CVs 的平均值,可达二阶精度。 ii. 界面为中心 CVs 的边界线在节点间中心线上。先定义节点,再划分网格。优点:CV 表面上的CDS 差分精度比上面方法高。 两个方法基本一样,但在积分时要考虑到位置。但第一个方法用得比较多。 节点为中心 界面为中心

∑?? =k S S k fdS fdS ( 4-2 ) - 对流:n v ?=ρφf 在垂直于界面的方向 - 扩散:n ?=φgrad Γf 在垂直于界面的方向 如果速度也是未知的,则要结合其它方程一起求解。 考虑界面e ,通过表面的总通量为: 1. 基于界面中心值 中间点定理:(midpoint rule) 表面积分为格子表面上的中心点的值和表面积的乘积。 e e e S e e S f S f fdS F e ≈==? ( 4-3 ) 此近似为2阶精度。 由于f 在格子界面没有定义值,它必须通过插值来得到。为了保证原有的2阶精度,插值方法也须采用2阶精度的方法。 2. 基于界面顶角值 当已定义角上的值时,2阶精度的方法还有: ()?+= =e S se ne e e f f S fdS F 2 ( 4-4 ) 3. 高阶精度近似 ()?++= =e S se e ne e e f f f S fdS F 46 ( 4-5 ) 4阶精度Simpson 法。 4.3 体积积分近似 ??≈?==Ω P P Ωq Ωq qd ΩQ ( 4-6 ) q p 为CV 中心节点值。高阶精度要求为节点的插值或形状函数来表示。如 ),(),(y x f y x q =。然后对体积积分。

有限元方法讲义

第1讲抛物问题有限元方法 1、椭圆问题有限元方法 考虑椭圆问题边值问题: (1) 问题(1)的变分形式:求使满足 (2) 的性质,广义解的正则性结果。 区域的剖分,矩形剖分,三角剖分,剖分规则,正则剖分条件,拟一致剖分条件。 剖分区域上分片次多项式构成的有限元空间。 的逼近性质,逆性质: 这里,为的插值逼近。 问题(2)的有限元近似:求使满足 (3) (3)的解唯一存在,且满足。 (3)的解所满足的矩阵方程(离散方程组)形式: (4) 刚度矩阵的由单元刚度矩阵组装而成。 模误差分析:由(2)-(3)可得 (5) 由(5)可首先得到 则得到 (6) -模误差分析 设满足 用与此方程做内积,由(5)式和插值逼近性质得到 再利用模误差估计结果,得到 (7) 最优阶误差估计和超收敛估计概念。 当与时间相关时(为抛物问题准备),由(5)式得 (8) 利用(7),类似分析可得 (9) 2、抛物问题半离散有限元方法 考虑抛物型方程初边值问题:

(10) (10)的变分形式:求使满足 (11) (11)的半离散有限元近似:求使满足 (12) 令,代入(12),依次取可导出常微分方程组: (13) 其中为质量矩阵,K为刚度矩阵。。 求解常微分方程组(13),得到代回的表达式,即得半离散有限元解。 定理1.问题(12)的解唯一存在且满足稳定性估计: (14) 证明:在(12)中取得到 整理为(注意是正定的) 对此式积分,证毕。 误差分析。引进解的椭圆投影逼近:满足 (15) 根据椭圆问题的有限元结果可知 (16) 分解误差: 的估计由(16)式给出,只须估计。 由(11),(12)和(15)知,满足 取,类似稳定性论证可得 (17) 可取为的投影,插值逼近等。 由(17)式,三角不等式和(16),得到 (18) 3、抛物问题全离散有限元近似 剖分时间区间:。 引进差分算子: 规定,当为连续函数时,,则有 由此得到 (19) (20) 定义问题(11)的全离散向后Euler有限元近似:求,使满足 (21) 将代入(21)可导出全离散方程组 (22)

有限体积法介绍

有限体积法 1 有限体积法基本原理 上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。 在本章所要学习的有限体积法则采用了不同的离散形式。首先,有限体积法离散的是积分形式的流体力学基本方程: ?d q ds ds S S ? ??Ω Ω+??Γ=?φφρφn n v (1) 计算域用数值网格划分成若干小控制体。和有限差分法不同的是,有限体积法的网格定 义了控制体的边界,而不是计算节点。有限体积法的计算节点定义在小控制体内部。一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。 积分形式的守恒方程在小控制体和计算域上都是成立的。为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。 2 面积分的近似 采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。计算节点用大写字母表示,控制体边界和节点用小写字母表示。为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。 控制体边界上的积分等于控制体个表面的积分的和: ∑?? =k S S k fds fdS (2) 上式中,f 可以表示n u ρφ或n ??Γ φ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。 整个近似过程分成两步 第一步:用边界上几个点的近似积分公式 第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分: e e e e S e S f S f fds F e ≈==? (3) 上式中e f 为边界中点出的函数值。近似为方格中心点的值乘以方格的面积。 三阶精度积分: e se ne S e S f f fds F e 2 +≈ =? (4) 四阶精度积分: e se e ne S e S f f f fds F e 6 4++≈ =? (5) 应该注意的是,采用不同精度的积分公式,在相应的边界点的插值时也应采用相应精度的插值函数。积分公式的精度越高,近似公式就越复杂。 3 体积分的近似 和面积分相似,体积分也有不同精度的近似公式 二阶精度积分公式 ?Ω≈==?P e S q S q qds Q e (6) 采用双二次样条函数 228272652423210),(y x a xy a y x a xy a y a x a y a x a a y x q ++++++++= (7)

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

计算流体力学中有限差分法、有限体积法和有限元法的区别

有限元法,有限差分法和有限体积法的区别 1. FDM 1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;

有限差分,有限元,有限体积等离散方法的区别介绍

有限差分,有限元,有限体积等等离散方法的区别介绍 一、区域离散化 所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。一般把节点看成是控制容积的代表。控制容积和子区域并不总是重合的。在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。网格是离散的基础,网格节点是离散化物理量的存储位置。 大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。 1. 有限差分法是数值解法中最经典的方法。它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。 2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。对椭圆型问题有更好的适应性。有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。目前的商用CFD软件中,FIDAP采用的是有限元法。 3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。其中的未知数十网格节点上的因变量。子域法加离散,就是有限体积法的基本方法。就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。 4. 有限分析法:同有限差分法一样,用一系列网格线将区域离散,所不同的是每个节点与相邻8个邻点组成。在计算单元中把控制方程中的非线形项局部线形化,并对该单元上未知函数的变化型线作出假设,把所选定型线表达式中的系数和常数项用单元边界节点上未知的变量值来表示,这样该单元内的被求问题就转化为第一类边界条件下的一个定解问题,可以找出分析解;然后利用这一分析解,得出该单元中点及边界上8个邻点上未知值间的代数方程,此即为单元中点的离散方程。两种离散方法外节点法:节点在子域的四角,先定节点位置而计算相应的界面内节点法:节点在子域中心,子域与控制容积重合。计算时先定界面后算出节点位置。 5. 边界元法(Boundary Element Method,BEM)上面四种方法都必须对整个区域作离散化处理,用分布在整个区域上的有限个节点上函数的近似值来代替连续问题的解。在边界元方法中应用格林函数公式,并通过选择适当的权函数把空间求解域的偏微分方程转换成为其边界上的积分方程,它把求解区中任一点的求解变量(如温度)与边界条件联系了起来。通过离散化处理,由积分方程导出边界节点上未知值的代数方程。解出边界上的未知值后就可以利用边界积分方程来获得内部任一点的被求函数之值。边界元法的最大优点是,可以使求解问题的空间维数降低一阶,从而使计算工作量及所需计算机容量大大减小。边界元法推广应用的一个最大限制是,需要已知所求解偏微分方程的格林函数基本解。虽然对不少偏微分方程这种基本解业已找出,但对Navier-Stoles方程这样的非线性偏微分方程,至今尚未找到其基本解。目前的一种处理方式是,把Navier-Stokes方程中的非线性项看作是扩散方程的源项并通过迭代的方式来求解,但一般只能获得Re较低情形的解。最近文献中采用高阶涡量—流函数方程的边界元方法,已使获得顶盖驱动流稳定解的Re高达10000。 格子—Boltzmann方法(Lattice-Boltzmann method,LBM)格子—Boltzmann方法是基于分子运动论的一种模拟流体流动的数值方法。在上述各种数值方法中,把本质上是离散的介质先假定是连续的,在此基础上建立起了N-S方程,然后又再把它离散化。在LBM中不再基于连续介质的假设,而是把流体看成是许多只有质量没有体积的微粒所组成,这些微粒可以向空间若干个方向任意运动。通过其质量、动量守恒的

有限元讲义

§ 1.4 协调、非协调、广义协调及分电检验 1、4、0 引 以有限元数值分析的技术实现为目的本门课程,不仅要求学生能够进行实际的工程运算;另一方面也需要对解的收敛及精确性有所了解,是能从细节计算到理论性质都有所把握,这样,才能做到全面深入有助于对解结果得理论分析,此为基本之目的。 1、4、1 协调、非协调介绍 位移法有限元以Ritz 的结构最小有限元为基础,该原理在数学上是一个泛函极值(变分)问题,系统势能可以表为以下数学形式: π=ν?+=1/2?Ω Ωd T εσ - ?Ω Ωd p u T ' - ?Ωt T d p u '' (1) δπ=0 。 表述为:在所有满足内部连续性和运动学边界条件的位移中满足平衡方程的位移使系统势能取驻值。如果驻值是极小点的,则平分行是稳定阶。 又:对于精确于问题的位移函数,系统势能的变分可求得关于问题应满足的所有微分方程:平衡方程边界条件(几何关系及物理方程是自然满足的) 遗憾的是精确位移难得寻找,故一般采用泛函的极小化序列逼近方法。类似于傅立叶级数逼近函数那样,把无穷维空间用有限空间去逼近。在有限元当中,当元素尺寸趋近于0时(即节点数目或节点自由度数趋于∞时),最后的解答若能无限逼近准确解,那么这样的位移函数(或形状函数)就称为收敛的,因此从收敛性及算收敛速度方面提出几点对形状函数的要求: ①、函数本身及其导数应在元素上连续,并含有常数部分; ②、元素之间的位移协调,不仅节点处的位移应当协调,沿整个内边界上的位移也应当协调(或称相容 )。 ③、多项式的项数越多越好,因用高次比低次多项式收敛快。 ④、含有刚体位移(平动包含常数项,转动包含线性项)。 协调之: 即满足①、②条件的形状函数的元素,当然能满足3) 4)条件协调 元的收敛率就更高。 协调元的性质: 1) 能够以单调趋势逼近于正确解。如曲线①. 2) 势能总是大于最小状态,故解得上界。 3) 近似刚度k 偏大,即元素偏“硬”。 4) 近似的位移偏小,即求得位移的下界。 能够以单调趋势逼近于正确解。如曲线②. 势能总是大于最小状态,故解得上界。 近似刚度k 偏大,即元素偏“硬”。 近似的位移偏小,即求得位移的下界 非协调元:在弹性力学中,如板弯曲,相邻元素不仅要求位移本身连续,而且要求位移的导数连续(板弯边界上的相容性) 。而在工程上能够保证导数相容的 内力势能 体力势能 面力势能 给点数 ① ② ③ ④

计算流体力学概述-转载

(计算流体力学概述) CFD仿真 3月20日309 计算流体力学概述 流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 计算流体力学的发展 计算流体动力学(Computational Fluid Dynamics)简写为CFD,是20世纪60年代起伴随计算科学与工程(Computational Science and Engineering, 简称CSE)迅速崛起的一门学科分支,经过半个世纪的迅猛发展,这门学科已经是相当的成熟了,一个重要的标志就是近几十年来,各种CFD通用软件的陆续出现,成为商品化软件,服务于传统的流体力学和流体工程领域,如航空、航天、船舶、水利等。随着CFD通用软件的性能日益完善,应用的范围也不断的扩大,在化工、冶金、建筑、环境等相关领域中也被广泛应用。 现代流体力学研究方法包括理论分析,数值计算和实验研究三个方面。这些方法针对不同的角度进行研究,相互补充。理论分析研究能够表述参数影响形式,为数值计算和实验研究提供了有效的指导;试验是认识客观现实的有效手段,验证理论分析和数值计算的正确性;计算流体力学通过提供模拟真实流动的经济手段补充理论及试验的空缺。 更重要的是,计算流体力学提供了廉价的模拟、设计和优化的工具,以及提供了分析三维复杂流动的工具。在复杂的情况下,测量往往是很困难的,甚至是不可能的,而计算流体力学则能方便的提供全部流场范围的详细信息。与试验相比,计算流体力学具有对于参数没有什么限制,费用少,流场无干扰的特点。出于计算流体力学如此的优点,我们选择它来进行模

有限元资料讲解

有限元分析 计算机辅助工程(CAE)作为一门新兴的学科已经逐渐的走下神坛,成为了各大企业中设计新产品过程中不可缺少的一环。传统的CAE技术是指工程设计中的分析计算与分析仿真,具体包括工程数值分析、结构与过程优化设计、强度与寿命评估、运动/动力学仿真,验证未来工程/产品的可用性与可靠性。 如今,随着企业信息化技术的不断发展,CAE软件与 CAD/CAM/CAPP/PDM/ERP一起,已经成为支持工程行业和制造企业信息化的主导技术,在提高工程/产品的设计质量,降低研究开发成本,缩短开发周期方面都发挥了重要作用。 而CAE技术出现则是要归功于有限元分析的诞生,在有限元法诞生的早期,几乎所有的CAE软件都是使用有限元法来进行计算求解。因此,可以说有限元法的发展也间接反映了CAE软件在这半个世纪的发展历史。 1 有限元法的诞生 每一项新技术的推出都是由于时代的迫切需要,而新技术的出现后也需要经历历史的重重考验。在上个世纪40年代,由于航空事业的快速发展,对飞机内部结构设计提出了越来越高的要求,即重量轻、强度高、刚度好,人们不得不进行精确的设计和计算。正是在这一背景下,有限元分析的方法逐渐的发展起来。 早期的一些成功的实验求解方法与专题论文,完全或部分的内容对有限元技术的产生做出的贡献,首先在应用数学界第一篇有限元论文是1943年Courant R发表的《Variational methods for the solution of problems of equilibrium and vibration》一文,文中描述了他使用三角形区域的多项式函数来求解扭转问题的近似解,由于当时计算机尚未出现,这篇论文并没有引起应有的注意。 1956年,M.J.Turner (波音公司工程师),R.W.Clough (土木工程教授), H.C.Martin (航空工程教授)及L.J.Topp (波音公司工程师) 等四位共同在航空科技期刊上发表一篇采用有限元技术计算飞机机翼的强?的论文,名为《Stiffness and Deflection Analysis of Complex Structures》,文中把这种解法称为刚性法(Stiffness),一般认为这是工程学界上有限元法的开端。 1960年,Ray W. Clough教授在美国土木工程学会(ASCE)之计算机会议上,发表另一篇名为《The Finite Element in Plane Stress Analysis》的论文,将应用范围扩展到飞机以外之土木工程上,同时有限元法(Finite Element Method)的名称也第一次被正式提出。 由此之后,有限元法的理论迅速地发展起来,并广泛地应用于各种力学问题和非线性问题,成为分析大型、复杂工程结构的强有力手段。并且随着计算机的迅速

相关主题
文本预览
相关文档 最新文档