当前位置:文档之家› 疏水阀的选型与计算

疏水阀的选型与计算

疏水阀的选型与计算
疏水阀的选型与计算

疏水阀的选型与计算

疏水阀是从贮有蒸汽的密闭容器内自动排出凝结水,同时保持不泄漏新鲜蒸汽的一种自动控制装置,在必要时也允许蒸汽按预定的流量通过。在现代社会中,蒸汽广泛地应用于工农业生产和生活设施中,无论在蒸汽的输送管道系统,还是利用蒸汽来进行加热、干燥、保温、消毒、蒸煮、浓缩、换热、采暖、空调等工艺过程中所产生的凝结水,都需要通过蒸汽疏水阀排除干净,而不允许蒸汽泄漏掉。

按启闭件的驱动方式,蒸汽疏水阀可分为三类:由凝结水液位变化驱动的机械型蒸汽疏水阀;由凝结水温度变化驱动的热静力型蒸汽疏水阀;由凝结水动态特性驱动的热动力型蒸汽疏水阀。

蒸汽疏水阀是蒸汽使用系统的重要附件,其性能的优劣,对于系统的正常运行。设备热效率的提高及能源的合理利用等方面具有重要作用。

?机械型蒸汽疏水阀这类疏水阀主要有密闭浮子式、敞口向上浮子式、敞口向下浮子式等。这类型式的蒸汽疏水阀的工作原理运用了古老的阿基米德原理,性能可靠,能排除饱和水;但是体积比较大,较笨重。又由于颠簸摇摆的环境对其阻汽排水性能有相当的影响,因此,不能适应火车、轮船及有较大震动的装置上使用。

?热静力型蒸汽疏水阀这类疏水阀主要有蒸汽压力式蒸汽疏水阀、双金属片式或热弹性元件式蒸汽疏水阀、液体或固体膨胀式蒸汽疏水阀。这类疏水阀几乎与机械型疏水阀同时出现,最初是金属膨胀式蒸汽疏水阀,利用阀杆材料冷缩热胀的物理性能和凝结水温度的变化而实现阻汽排水作用。但是这种型式的蒸汽疏水阀不能适应蒸汽压力变化较大和凝结水量不稳的场合,后来研制出利用液体膨胀的压力平衡波纹管式蒸汽疏水阀。以上的问题得到了初步解决。随着材料科学技术的发展,双金属片得到了广泛应用,研制出了双金属片式蒸汽疏水阀,它是利用双金属片受到温度变化而产生的变形实现阻汽排水作用的。这种疏水阀体积小、重量轻,能排除大量空气,但是成本高。

?热动力型蒸汽疏水阀这类疏水阀有盘式蒸汽疏水阀、脉冲式蒸汽疏水阀、迷空式蒸汽疏水阀、孔板式蒸汽疏水阀。盘式蒸汽疏水阀是利用蒸汽的流速与凝结水流速的差别而实现阻汽排水动作,这种蒸汽疏水阀体积小、重量轻、结构简单,但排空气性能较差。脉冲式蒸汽疏水阀也具有体积小、重量轻的特点,但结构复杂,制造精度要求高、价格贵。

?疏水阀的选用由于各种型式的蒸汽疏水阀各有不同的优缺点和不同的适用条件,因此多年以来各种型式的蒸汽疏水阀长期并存,应用于各种工业管道中。在诸多型式的疏水阀中,必须正确地选择适合某一系统中的疏水阀,因为这对系统的正常运行影响很大,选择恰当可提高热效率和节省燃料。正确的选型应按下列标准:

①蒸汽疏水阀的公称压力及工作温度应大于或等于蒸汽管道及用汽设备的最高工作压力及最高工作温度。

②蒸汽疏水阀必须区别类型,按其工作性能、条件和凝结水排放量进行选择,不得只以蒸汽疏水阀的公称通径作为选择依据。

③在凝结水回收系统中,若利用工作背压回收凝结水时,应选用背压率较高的蒸汽疏水阀(如机械型蒸汽疏水阀)。

④当用汽设备内用汽不得积存凝结水时,应选用能连续排出饱和凝结水的蒸汽疏水阀(如浮球式蒸汽疏水阀)。

⑤在凝结水回收系统中,用汽设备用汽排出饱和凝结水,又用汽及时排除不凝结性气体时,应采用能饱和水的蒸汽疏水阀与排气装置并联的疏水装置或采用同时具有排水、排气两种功能的蒸汽疏水阀(如特经理型蒸汽疏水阀)。

⑥当用汽设备工作压力经常波动时,应选用不需调整工作压力的蒸汽疏水阀。

⑦蒸汽疏水阀的实际最高工作背压ρ′MOR的确定。

机械型蒸汽疏水阀:

ρ′MOR=0.8ρ′o(1)

安全阀分类和参数选型方法详解(精)

安全阀的介绍与选用 一概述 安全阀是锅炉、压力容器和其他受压力设备上重要的安全附件。其动作可靠性和性能好坏直接关系到设备和人身的安全,并与节能和环境保护紧密相关。而有的用户和设计部门在选型时,总是选错型号。为此本文对安全阀的选用加以分析。 二、定义 所谓安全阀广义上讲包括泄放阀,从管理规则上看,直接安装在蒸汽锅炉或一类压力容器上,其必要条件是必须得到技术监督部门认可的阀门,狭义上称之为安全阀,其他一般称之为泄放阀。安全阀与泄放阀在结构和性能上很相似,二者都是在超过开启压力时自动排放内部的介质,以保证生产装置的安全。由干存在这种本质上类似性,人们在使用时,往往将二者混同,另外,有些生产装置在规则上也规定选用哪种均可。因此,二者的不同之处往往被忽视。从而也就出现了许多间题。如果要将二者作出比较明确的定义,则可按照《ASME 锅炉及压力容器规范》第一篇中所阐述的定义来理解: (l)安全阀(Safety Valve)一种由阀前介质静压力驱动的自动泄压装置。其特征为具有突开的全开启动作。用于气体或蒸汽的场合,如图1。

(2)泄放阀(Relief Valve),又称溢流阀一种由阀前介质静压力驱动的自动泄压装置。它随压力超过开启力的增长而按比例开启。主要用于流体的场合。如图2所示。 (3)安全泄放阀(Safet Relief Valve),又称安全溢流阀一种由介质压力驱动的自动泄压装置。根据使用场合不同既适用作安全阀也适用作泄放阀。以日本为例,给安全阀和泄放阀作出明确定义的比较少,一般用作锅炉这类大型贮能压力容器的安全装置称之为安全

阀,安装在管道上或其他设设施上的称之为泄放阀。不过,若按日本通产省的《火力发电技术标准》的规定看,设备上安全保障的重要部分,指定使用安全阀,如锅炉、过热器、再热器等。而在减压阀的下侧需要与锅炉和涡轮机相接的场合,都需要安装泄放阀或安全阀。如此看,安全阀要求比泄放阀更具可靠性。另外,从日本劳动省的高压气体管理规则、运输省及各级船舶协会的规则中,对安全排放量的认定和规定来看,我们把保证了排放量的称之为安全阀,而不保证排放量的阀门称作泄放阀。在国内不论全启式或微启式统称为安全阀。 三、选型 1.分类 目前大量生产的安全阀有弹簧式和杆式两大类。另外还有冲量式安全阀、先导式安全阀、安全切换阀、安全解压阀、静重式安全阀等。弹簧式安全阀主要依靠弹簧的作用力而工作,弹簧式安全阀中又有封闭和不封闭的,一般易燃、易爆或有毒的介质应选用封闭式,蒸汽或惰性气体等可以选用不封闭式,在弹簧式安全阀中还有带扳手和不带扳手的。扳手的作用主要是检查阀瓣的灵活程度,有时也可以用作手动紧急泄压用,如图3。杠杆式安全阀主要依靠杠杆重锤的作用力而工作,但由于杠杆式安全阀体积庞大往往限制了选用范围。温度较高时选用带散热器的安全阀。

安全阀的正确使用、选型和定压(2021)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 安全阀的正确使用、选型和定压 (2021)

安全阀的正确使用、选型和定压(2021)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 安全阀是锅炉压力容器以及所有承压设备的重要安全附件之一,它是一种自动阀门,当承压设备超过允许的工作压力后,安全阀自动开启,排放出多余的介质。当压力降到允许的工作压力后,安全阀自动关闭,设备正常运行。由此可见安全阀在承压设备安全运行中起着很重要的作用。 笔者在从事安全阀校验工作中发现有不少用户如何对安全阀的正确使用、选型和定压上缺少认识,甚至什么叫安全阀都不懂。在此笔者经过十几年的工作经验谈谈自己的看法。 一、安全阀的选型 1、小型汽水两用锅炉不得采用弹簧式安全阀 根据“小型和常压热水锅炉安全监察规程”规定应当采用水封式安全装置,而且水封管的直径不得小于25mm,其有效水柱高度不得超过4m且只允许负偏差,也可选用静重式安全阀。 2、蒸汽锅炉应选用弹簧全启式安全阀

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09 来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。 调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。 控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。

调节阀的选型计算

二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适

用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。(8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。 三、调节阀的流量特性及其选择 调节阀流量特性分固有特性和工作特性两种。固有特性又称调节阀的结构特性,是由生产厂制造时决定的。调节阀在管路中工作,管路系

安全阀计算与选型

安全阀计算与选型 1. 确定确定安全阀类型安全阀类型 根据卸放介质物性、卸放量确定安全阀类型。 2. 确定安全阀公称压力 根据介质操作条件确定PN,选定弹簧工作压力级。 3. 安全阀安全阀计算计算 3.1 由工艺计算软件(hysis,pro II,aspen)计算获得介质基本物性数据(比重ρ,分子量M, 粘度μ,泄放量Gv,气体特性系数C,流量系数Kf,压缩系数Z,最高泄放压力Pm,泄放温度Ti,操作压力P 0,整定压力Ps)。 3.2 计算公式: 安全阀的计算参照GB/T 12241-2005(它与ISO 4126 安全阀一般要求计算方法相同) 中 的公式并依据实测额定排量系数来计算安全阀的额定排量,进而确定安全阀的口径,是比较可靠的计算方法。具体计算公式见GB/T 12241-2005 6.3节/6.5节。 3.2.1 介质为气体或蒸汽 1)临界流动下的理论排量计算 在下列条件下达到临界流动: 临界流动下的理论排量计算公式: 2)亚临界流动下的理论排量计算: 在下列条件下达到亚临界流动: 亚临界流动下的理论排量计算公式: 3)Excel 表格计算安全阀卸放面积A 0(作者Huang WenJia)

3.3 将必须的介质物性数据编入Excel 表格,并在安全阀卸放面积栏编好计算公式(见安全阀 计算excel 表格)。 安全阀安全阀的选用与的选用与的选用与计算实例计算实例计算实例 安全阀系压力容器在运行中实现超压泄放的安全附件之一,也是在线压力容器定期检验中必检 项目。它包括防超压和防真空两大系列,即一为排泄容器内部超压介质防止容器失效,另一方面则为吸入外部介质以防止容器刚度失效。凡符合《容规》适用范围的压力容器按设计图样的要求装设安全阀。 一.安全阀的选用安全阀的选用 1. 1. 安全阀安全阀安全阀各种参数的确定各种参数的确定各种参数的确定 a)确定安全阀公称压力。 根据阀门材料、工作温度和最大工作压力选定公称压力。 b) 确定安全阀的工作压力等级。 根据压力容器的设计压力和设计温度选定工作压力等级。安全阀的工作压力与弹簧的工作压力级有着不同的含义,不能混为一谈。工作压力是指安全阀正常运行时阀前所承受的静压力,它与被保护系统或设备的工作压力相同。而弹簧的工作压力级则是指某一根弹簧所允许使用的工作压力范围,在该压力范围内,安全阀的开启压力(即整定压力)可以通过改变弹簧的预紧压缩量进行调节。同一公称压力的安全阀,根据弹簧设计要求,可以分为多种不同的工作压力级。具体划分见下表,划分的前提是能足以保证各个工作压力级的压力上限与下限均能符合有关标准所规定的动作性能指标。 选用安全阀时,应根据所需开启压力值确定阀门的工作压力级。 表1 安全阀公称压力PN 与弹簧工作压力关系表 PN 弹簧工作压力等级 1.6 0.06~0.1 >0.12 >0.16~0.25 >0.25~0.4 >0.4~0.5 >0.5~0.6 >0.6~0.8 >0.8~1.0 >1.0~1.3 >1.3~1.6 2.5 >1.3~1.6 >1.6~2.0 >2.0~2.5 只能用于大于 1.3MP 6.4 ->1.3~1.6 >1.6~2.0 >2.0~2.5 >2.5~3.2 >3.2~4.0 >4.0~6.4 只能用于大于1.3MPa 10 >4~5 >5~6.4 >6.4~8 >8~10 只能用于大于4.0MPa

调节阀Kv值计算

调节阀Kv 计算 上期简述控制阀选型,本期主要介绍调节阀Kv 计算。 一、调节阀Kv 值计算 1) 一般液体的Kv 值计算 a 、 非阻塞流 判别式:()21L F V p F P F P <-V ; 计算公式:Kv = 或 Kv =; b 、 阻塞流 判别式:()21L F V p F P F P ≥-V ; 计算公式: Kv = 或 Kv = 式中: F L ——压力恢复系数 X T ——压差比系数 F F ——流体临界压力比系数,0.96F F =-P V ——入口温度下,介质的饱和蒸汽压(绝对压力),MPa P C ——流体热力学临界压力(绝对压力),MPa Q ——体积流量m3/h W ——质量流量T/h P1——阀前压力(绝对),MPa (A ) P2——阀前压力(绝对),MPa (A ) △P ——阀入口和出口间的压差,即(P1-P2),MPa ;

ρ——介质密度,Kg/m 3 表1 调节阀的压力恢复系数 F L,、临界压差比系数X T 调节阀 的类型 单座阀 双座阀 套筒阀 角型阀 V 型球阀 偏心旋转阀 蝶阀 VP VN VM VS VV VE VW 流开 流关 任意 流开 流关 流开 流关 任意 流开 90° 60° F L 0.90 0.80 0.85 0.90 0.80 0.93 0.80 0.62 0.85 0.55 0.68 X T 0.72 0.55 0.70 0.75 0.70 0.56 0.53 0.40 0.61 0.72 0.52 2) 低雷诺数修正(高粘度液体KV 值的计算) 当流经阀门的介质为高粘度、低流速或相当低的压差液体时,此时流体在阀门处于低雷诺数(层流)状态,(流经调节阀流体雷诺数Rev 小于104),需对Kv 值进行粘度修正。 计算公式:'/V V R K K F = 在求得雷诺数Rev 值后可查曲线图得F R 值。 计算调节阀雷诺数Rev 公式如下: 对于单座阀、套筒阀、角阀、球阀等只有一个流路的阀 Re 70700L V v v F K = 对于双座阀、碟阀、偏心旋转阀等具有二个平行流路的阀 Re 49490L V Q v v F K =

蒸汽安全阀的选型及安装注意事项

行业资料:________ 蒸汽安全阀的选型及安装注意事项 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共5 页

蒸汽安全阀的选型及安装注意事项 蒸汽安全阀在我们的生活当中应用的越来越广泛了现在,因此我们要注意的事项也多,安装.维修.保养等 1、安全阀应垂直安装在锅商、集箱的最高位置。在安全阀和锅筒或集箱之间,不得装有取用蒸汽的出口管和阀门。 2、杠杆式安全阀要有防止重锤自行移动的装置和限制杠杆越轨的导架,弹簧式安全阀要有提升手把和防止随便拧动调整螺钉的装置。 3、对于额定蒸汽压力小于或等于3.82MPa的锅炉,安全阀喉径不应小于25mm;对于额定蒸汽压力大于3.82MPa的锅炉,安全阀喉径不应小于20mm。 4、安全阀与锅炉的连接管,其截面积应不小于安全阀的进口截面积。如果几个安全阀共同装设在一根与锅筒直接相连的短管上,短管的通路截面积应不步于所有安全阀排汽面积的1.25倍。 5、安全阀一般应装设排汽管,排汽管应直通安全地点,并有足够的截面积,保证排汽畅通。安全阀排气管底部应装腔作势有接到安全地点的疏水管,在排气管和疏水管上都不允许装设阀门。 6、额定蒸发量大于0.5t/h的锅炉,至少装设两个安全阀;额定蒸发量小于或等于0.5t/h的锅炉,至少装一个安全阀。可分式省煤器出口处、蒸汽过热器出口处都必须装设安全阀。 7、压力容器的安全阀最好直接装在压力容器本体的最高位置上。液化气体贮罐的安全阀必须装设在气相部位。一般可用短管与容器连接,则此安全阀短管的直径应不小于安全阀的阀径。 8、安全阀与容器之间一般不得装设阀门,对易燃易爆或黏性介质 第 2 页共 5 页

疏水阀的准确选型条件.

疏水阀的正确选型条件 简介:机械型疏水阀按不同的工作压差段,分成多种规格阀座孔径的“阀座号” , 每个工作压差段与“阀座号”组成一条坐标曲线的排水量, 不同“阀座号” 的疏水量有很大差别。机械型疏水阀应根据工艺条件的最高工作压差和最大排水量两者相对应的坐标曲线来选合适的“阀座号” 。不能以公称压力来定“阀座号” , 如果选错“阀座号” , 有可能出现疏水阀不工作或设备存水, 影响设备正常运行。 1. 疏水阀的疏水量: 选用疏水阀时, 必须按设备每小时的耗汽量乘以选用倍率 2-3倍为最大凝结水量, 来选择疏水阀的排水量。才能保证疏水阀在开车时能尽快排出凝结水, 迅速提高加热设备的温度。疏水阀排放能量不够,会造成凝结水不能及时排出,降低加热设备的热效率。 (当蒸汽加热设备刚开始送汽时, 设备是冷的,内部充满空气, 需要疏水阀把空气迅速排出,再排大量低温凝结水, 使设备逐渐热起来, 然后设备进入正常工作状态。由于开车时, 大量空气和低温凝结水, 较低的入口压力, 使疏水阀超负荷运行, 此时疏水阀要求比正常工作时的排水量大, 所以按选用倍率 2-3倍来选择疏水阀。 2. 疏水阀的工作压差: 选用疏水阀时, 不能以公称压力选疏水阀, 因为公称压力只能表示疏水阀体壳承受压力等级, 疏水阀公称压力与工作压力的差别很大。所以要根据工作压差来选择疏水阀的排水量。工作压差是指疏水阀前的工作压力减去疏水阀出口背压的差值。疏水阀后背压计算方式是: (当疏水阀后凝结水排入大气时, 疏水阀的出口背压为零。如果把疏水阀排出的冷凝水集中回收,此时,疏水阀的出口背压是回水管的阻力、回水管抬升高度、二次蒸发器(回水箱内压力三者之和。 3. 机械型疏水阀的阀座号: 机械型疏水阀按不同的工作压差段,分成多种规格阀座孔径的“阀座号” , 每个工作压差段与“阀座号”组成一条坐标曲线的排水量, 不同“阀座号” 的疏水量有很大差

安全阀的设置和选用

安全阀的设置和选用 安全阀是一种能使设备或管道自动泄压而防止超压发生爆炸的自动阀门,即当压力超过指定的值时,阀门自动开启,使流体外泄,而当压力回复到指定的压力后,阀门自动关闭,以保护设备或管道。 安全阀用在锅炉、压力容器等受压设备上作为超压保护装置。当被保护设备内介质压力异常升高达到规定值时,阀门自动开启,继而全量排放,以防止压力继续升高,当压力降低到另一规定值时,自动关闭。 1 安全阀的设置 凡属下列情况之一的容器必须安装安全阀: 1、独立的压力系统(有切断阀与其它系统分开)。该系统指全气相、全液相或气相连通。 2、容器的压力物料来源处没有安全阀的场合。 3、设计压力小于压力来源处的压力的容器及管道。 4、容积式泵和压缩机的出口管道。 5、由于不凝气的累积产生超压的容器。 6、加热炉出口管道上如设有切断阀或控制阀时,在该阀上游应设置安全阀。 7、由于工艺事故、自控事故、电力事故、火灾事故和公用工程事故引起的超压部位。 8、液体因两端阀门关闭而产生热膨胀的部位。 9、凝气透平机的蒸汽出口管道。 10、某些情况下,由于泵出口止回阀的泄漏,则在泵的入口管道上设置安全阀。 《石油化工企业设计防火规范》的规定,在不正常条件下,可能超压的下列设备应设安全阀: 1、顶部操作压力大于的压力容器。 2、顶部操作压力大于的蒸馏塔、蒸发塔和汽提塔(汽提塔顶蒸汽通入另一蒸馏塔者除外)。 3、往复式压缩机各段出口或电动往复泵、齿轮泵、螺杆泵等容积式泵的出口管道上,应设安全阀。安全阀的放空管应接至泵入口管道上,并宜设事故停车联锁装置(如设备本身已

有安全阀者除外)。 4、凡与鼓风机、离心式压缩机、离心泵或蒸汽往复泵出口连接的设备不能承受其最高压力时,上述机泵的出口管道需设安全阀。以上管道有可能由于火灾、操作故障或停水、停电等造成管道内压力超过设计压力而发生爆炸事故,故应设置安全阀或其他安全措施。 5、可燃气体或液体受热膨胀,可能超出设计压力的设备。 6、在两端有可能关闭,而导致升压的液化烃管道上,应设安全阀或采取其他安全措施。不宜设置安全阀的设备和工艺管道 1、加热炉炉管。 2、在同一压力系统中,压力来源处已有安全阀,则其余设备可不设安全阀。对扫线蒸汽不宜作为压力来源。 3、有可能被物料堵塞或腐蚀的安全阀应在其入口前设防爆片或在其出入口管道上采取吹扫、加热或保温等防堵措施。 4、有突然超压或发生瞬时分解爆炸危险物料的反应设备,如安全阀不能满足要求时,应装防爆片或爆破片和导爆管。 5、因物料爆聚、分解造成超温、超压可能引起火灾、爆炸的反应设备,应设报警信号和泄压排放设施,以及自动或手动遥控的紧急切断进料设施。 2 安全阀形式的选择 排放气体或蒸汽时,选用全启式安全阀。 排放液体时,选用全启式或微启式安全阀。 排放水蒸汽或空气时,可选用带扳手的安全阀。 对设定压力大于3 MP a,温度超过235℃的气体用安全阀,则选用带散热片的安全阀,以防止泄放介质直接冲蚀弹簧。 排放介质允许泄漏至大气的,选用开式阀帽安全阀;不允许泄漏至大气的,选用闭式阀帽安全阀。 排放有剧毒、有强腐蚀、有极度危险的介质,选用波纹管安全阀。 高背压的场合,选用背压平衡式安全阀或导阀控制式安全阀。 在某些重要的场合,有时要安装互为备用的两个安全阀。两个安全阀的进口和出口切断

调节阀计算选型培训教材

《调节阀计算选型培训教材》 本学习资料由海王仪器仪表技术开发部全体技术人员花费大量精力编制,在编制过程中得到了海王总裁郑云海先生及同行 专家的大力指导和帮助,在此表示感谢! 调节阀又称控制阀,是工业自动化过程控制仪表的执行单元,是工业自动化控制的手和足。正确选择和使用调节阀不仅 直接关系到整个系统的正常运行,同时涉及到人生和系统的安全、环保及经济效益等方面。据了解自控系统不能正常投入 运行,其中有70%?80%的原因是执行单元的影响。 随着我国生产的发展系统对流量、压力、温度等参数的过程控制要求不断提高;耐蚀性能、调节精度、可靠性要求也越 来越高。所以正确选择、合理使用调节阀对控制系统有着举足轻重的作用。 《调节阀计算选型资料》可供设计院、企业自动化控制室及工程部有关人员,在调节阀计算选型时参考;对从事调节阀 生产、销售、使用、维修人员作为调节阀基础知识的培训教材。 一概述 在工业生产中,往往要对被调介质的参数,如温度、压力、流量、液位、物位等进行控制,使其稳定并 达到预定的要求。从而实现生产过程的自动化。其控制过程简化示意如图1-1。 调节阀接受到调节器送来的(偏差)信号时,它是怎样实现对介质的调节的呢?伯努诺方程告诉我们: (1) 就是说流动介质处于任意状态(位置)时,它的能量(总水头)是一个定值(常数)(流体内部摩擦热能散失忽略不计)。它包括三部分:h —位能(位置水头)、一压力能(静压水头)、一动能(动力水头)。在 不同形状、大小的管道内三种能量(水头)只是相互转换而已。如图1-2,过水断面A、B两点的总能量(水头)都是等于Z。 在水平管道中,而A、B两点的h —位能(位置水头)是一个定值,则公式( 1 )可写成: ....................... . (2)

疏水阀选择步骤

疏水阀选型步骤 1.凝结水负荷,如果没有负荷,可以参照凝结水计算公式,蒸汽凝结速率和正确的选型程序。 2.安全系数或经验系数的选取用户会发现,在蒸汽疏水阀的选型过程中,必须考虑安全系数。比如,一组盘管一小时的凝结水量是250kg,但是在选择疏水阀的时候,考虑整个系统的安全运行,要求选用处理量为每小时750kg的疏水阀。这个3:1的安全系数,考虑到了凝结速率的变化,偶尔出现的压降和系统设计的各种因素。 安全系数可以从1.5到10。安全系数是以用户多年的使用经验为基础的。 结构影响安全系数比一般的负荷和压力变化更重要的是,蒸汽加热单元本身的设计。蒸汽疏水阀的经济运行与阀孔的选择为了取得最佳运行效果,需要一个适当的安全系数,如果安全系数选得太大也会引起问题。除了会增加疏水阀成本和安装费用以外,尺寸过大的疏水阀磨损会更快。而且在疏水阀发生故障时,过大的疏水阀会损失更多的蒸汽,从而会引起水击和凝结水回水系统背压过高等问题。 3.压差即疏水阀前后压力之差,如:锅炉和蒸汽主管压力或减压阀下游压力与回水管线之间的压力差。疏水阀必须能在这种压差下打开。 注:由于回水管线里有闪蒸凝结水,所以在升高该凝结水时,不要假定由于有了静压头,压差会减少 工作压差:当用汽设备满负荷工作时,疏水阀进口的蒸汽压力可能会比蒸汽主管里的压力要低。而凝结水回水总管的压力可能会比大气压力高(背压高 如果工作压差不少于最大压差的80%,那么,在选择疏水阀时使用最大压差则是安全的。所供蒸汽的调控,会引起压差的大幅度变化。用汽设备的压力可能会降到大气压力,甚至更低(到真空)。如果按照本手册的要求进行设计的话,这种情况不会妨碍凝结水的排放 4.最大允许压力疏水阀必须能够承受系统最大压力或设计压力。它不一定要在这个压差下工作,但必须能够承受这个压力。例如,最大进口压力是2.5MPa,回水管线压力是1MPa。但是疏水阀必须能承受住2.5MPa的最大允许压力。因此而确定选择疏水阀体的材质 影响压差的各种因素 除了发生压力调节阀故障,压差一般只会比正常值或设计值略低一点。压差的变化可以由进口压力或背压压力的变化而引起 进口压力可能因下列因素而低于其正常值: 1.压力控制阀或温度调节阀调制动作;

调节阀流量系数计算公式与选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判不式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流

量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 关于只有一个流路的调节阀, 如单座阀、套筒阀,球阀等: 关于有五个平行流路调节阀, 如双座阀、蝶阀、偏心施转阀 等 文字符号讲明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临 界压力比系数, F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判不式(气体、蒸气)表1-2 文字符号讲明: X-压差与入口绝对压力之比(△P/P1);X T- 压差比系数; K-比热比; Qg-体积流量,Nm3/h

调节阀选型方法总结

调节阀选型 自动控制系统是通过执行器对被控对象进行作用的。调节阀是生产过程自动化控制系统中最常见的一种执行器。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程对于自动控制系统的稳定性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,使得自动控制系统产生震荡甚至不能正常运行。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑的重要环节。 1调节阀结构形式的选择 常用的调节阀结构形式有直通单座阀、直通双座阀、套筒阀、偏心旋转阀、蝶阀、全功能超轻型调节阀、球阀,应当根据不同的使用情况,结合不同结构形式阀门各自的特点,从调节性能、适用温度、适用口径、耐压、适用介质条件、切断差压、泄流量、压力损失、重量、外观、成本等方面对调节阀的结构形式进行选择。

球阀V形球阀的流量特性曲线近似对数 型,流量调节性能较好,小开度下 调节性能较好,可实现小流量下的 微调功能; O型球阀可调比R的范围为: 100-200 V型球阀可调比R的范围为 200-300球阀一般适用于低温 介质,在温度小于 160℃的情况下使用 球阀的公称通径范 围可从8mm到 1200mm 球阀适用于压力较高的 场合,从真空到40MPa 都可以选用球阀 对于粘度较大的介 质,适宜使用球阀。 球阀是石油和天然气 的理想阀门,并可用 于带固体颗粒的介 质,是自洁性能最好 的阀门 球阀全开时具有最小的 流体阻力,且密封性能良 好 球阀可以承受较高的截断差压, 适用于高压截断的情况,泄流量 小,密封性能较好 可靠性差、体积较大、结 构笨重、成本较高 套筒阀调节稳定性好,调节精度较高,可 调比R值在50左右;其可选公称通径从 15mm到250mm 套筒式调节阀可承受的 最大介质压力从到 40Mpa左右 对于不干净介质和易 结晶、结巴、结垢介 质不应选用此阀 套筒调节阀可承受较大的阀门前 后差压值,相同配置的条件下, 其承受差压值为为单座调节阀的 2倍;但套筒式调节阀的泄流量 较大 体积较大,结构笨重 直通单座阀直通单座阀的调节精度较高,其公称通径可在 20mm到200mm的范 围内进行选择,高 压差、大口径的应 用场合,不宜采用单座调节阀的使用压力 范围一般在到之间 不适用于含固体颗 粒、含纤维介质和高 黏度流体的控制 直通单座阀可承受的阀前后差压 值较小,DN100单座调节阀的允 许压差仅120kPa,但密闭性较好, 泄流量小,标准泄漏量为%C 体积大、结构笨重

气动调节阀选型及计算

气动调节阀选型及计算 执行器是控制系统的终端控制元件,是重要的环节,气动调节阀在常用的执行器中约占85﹪以上。控制系统中因气动调节阀造成不能投运或运行不良者有占50﹪-60﹪以上。其中除提供的工艺参数出入较大,阀制造质量欠佳和使用不当外,选型与计算的方法不妥则是一个相当突出的因素。因此,如何合理正确地选择和计算气动调节阀就是自控设计中至关重要的问题了。 调节阀按调节仪表的控制信号,直接调节流体的流量,在控制系统中起着十分重要的作用。要根据使用条件和用途来选择调节阀。选择调节阀项目有:结构型式、公称通经、压力-温度等级、管道连接、上阀盖型式、流量特性、材料及执行机构等。深入研究各个项目和它们之间的相互关系,是极其重要的。选择调节阀必须知道控制系统的各种工艺参数,以及调节仪表、管道连接等基本条件,才能正确地选择调节阀。下面为一般选用调节阀的基本准则:(图一、图二)

调节阀的选择 工艺流体条件流体名称、流量、进/出口确认选择条件压力、全开/全关时压差、温度、 比重、粘度、泥浆等。 选择品种规格调节仪表条件流量特性、作用型式、调节 仪表输出信号等。 写出规格书 管道连接条件公称压力、法兰连接型式、 材料等。 (图二) 选型和计算(定尺寸)是选择一个调节阀的两个重要部分。它们是不同的,然而又是互相关联的。以往,各工业部门的自控设计的选阀工作有些基本上没有考虑到它们之间的内在联系。对国内一般产品来说,用一组工艺参数计算两个不同阀型的流通能力,临界条件下的计算结果最大可相差40%以上。 不同结构的调节阀有其各自的压力恢复特性。此特性用压力恢复系数F L或最大有效压差比X T表示。一般的单、双座阀等属于低压力恢复阀,F L和X T较大;蝶阀和球阀等属于高压力恢复阀,F L和X T 较小;偏心旋转阀则介于两者之间。参数F L和X T的引入有助于在计算中根据已知的工艺参数来确定真正有效压差,以计算出精确的流通能力。 F L和X T的数值必须在阀型选定之后才能获得,而阀型的选定不仅与流体的性状、压力、温度、腐蚀性等因素有关,并且与流通能力、可调范围、允许压差等参数有关;但是这些参数必须经计算后才能得到,而往往由于这些参数的限制又必须改选阀型;因此问题的关键就在于要设计出一套合理的方法和步骤,把选型和计算作为一个有机的整体综合起来考虑。

安全阀分类和参数选型方法详解(标准版)

安全阀分类和参数选型方法详 解(标准版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0454

安全阀分类和参数选型方法详解(标准版) 1.分类 目前大量生产的安全阀有弹簧式和杆式两大类。另外还有冲量式安全阀、先导式安全阀、安全切换阀、安全解压阀、静重式安全阀等。弹簧式安全阀主要依靠弹簧的作用力而工作,弹簧式安全阀中又有封闭和不封闭的,一般易燃、易爆或有毒的介质应选用封闭式,蒸汽或惰性气体等可以选用不封闭式,在弹簧式安全阀中还有带扳手和不带扳手的。扳手的作用主要是检查阀瓣的灵活程度,有时也可以用作手动紧急泄压用,如图3。杠杆式安全阀主要依靠杠杆重锤的作用力而工作,但由于杠杆式安全阀体积庞大往往限制了选用范围。温度较高时选用带散热器的安全阀。 安全阀的主要参数是排量,这个排量决定于阀座的口径和阀瓣

的开启高度,由开启高度不同,又分为微启式和全启式两种。微启式是指阀瓣的开启高度为阀座喉径的1/40~l/20。全启式是指阀瓣的开启高度为阀座喉径的1/4。 2.安全阀的选用 由操作压力决定安全阀的公称压力,由操作温度决定安全阀的使用温度范围,由计算出的安全阀的定压值决定弹簧或杠杆的定压范围,再根据使用介质决定安全阀的材质和结构型式,再根据安全阀泄放量计算出安全阀的喉径。以下为安全阀选用的一般规则。(l)热水锅炉一般用不封闭带扳手微启式安全阀。(2)蒸汽锅炉或蒸汽管道一般用不封闭带扳手全启式安全阀。(3)水等液体不可压缩介质一般用封闭微启式安全阀,或用安全泄放阀。(4)高压给水一般用封闭全启式安全阀,如高压给水加热器、换热器等。(5)气体等可压缩性介质一般用封闭全启式安全阀,如储气罐、气体管道等。(6)E级蒸汽锅炉一般用静重式安全阀。(7)大口径,大排量及高压系统一般用脉冲式安全阀,如减温减压装置、电站锅炉等,如图8所示。(8)运送液化气的火车槽车、汽车槽车、贮罐等一般用内装式安全

疏水阀选型参数

蒸汽疏水阀选型的技术参数 在根据制程工艺和加热需求的工况下,选择了合适的疏水阀类型,正确的疏水阀类型是是一切疏水阀选型的基础。 在选择和是的疏水阀形式(倒置桶、杠杆浮球、热静力、热动力、双金属等)以后,还必须选择正确的疏水阀口径,因为疏水阀的排量是基于排水孔的孔径、冷凝水的温度以及排水孔上下游的压差。 由于二次蒸汽的影响、对于一个给定的疏水阀在同样的上下游压差下,冷凝水的温度越低,排量也越大。瓦特节能的疏水阀排量图表中显示的是热态的冷凝水排量,在系统冷态起机时,疏水阀排量会有所增加。 起机负荷是必须予以考量的技术参数,很多情况下,客户会为了生产效率而牺牲节能。 通常情况下,起机负荷是正常工作负荷的2倍甚至更多。更为重要的是,在起机时由于蒸汽的流动受到阀门或管道通径的限制,蒸汽空间内的压力会显著降低此时,疏水阀上下游的压差也会随之降低。另外,冷凝水管道内的压力也降低疏水阀工作时的压差。瓦特节能的经验是在没有使用温控设备的系统中,按照正常工作时疏水阀上下游压差和两倍的正常工作负荷或更高来选择疏水阀,能够满足大部分使用工况。 连续调节的温度控制式需要注意的应用。在负荷降低时,连续调节的温度控制系统会减小控制阀的开度来减少进入系统内的蒸汽流量。蒸汽量减少使得蒸汽空间内的压力降低,导致疏水阀的上下游压差降低。 当系统控制温度低于疏水阀背压所对应的饱和蒸汽温度时,即使在仍有负荷的情况下,蒸汽空间的压力有可能会与疏水阀的背压相同(甚至背压等于大气压力时同样如此)。 当系统压力与疏水阀背压相同时,疏水阀就会积水,此时必须依靠冷凝水产生的重力压头来进行排水。0.5米的冷凝水高度能够产生0.05bar的重力压头,此时冷凝水就必须依靠这有限的重力压头来进行排放,在这种情况下,疏水阀必须根据正常的工作压差和正常工作负荷的4倍甚至更多来进行选型。 最高工作压力的考虑。在机械型疏水阀中,动作机构必须克服蒸汽压力作用在阀芯上的力才能动作对于浮球式和倒吊桶式疏水阀,最大工作压差受到其排放孔的孔径限制。尽管疏水 阀阀体能够耐受某一范围内的最高压力,但是对于此疏水阀而言,其最高工作压力仍然取决于排放孔的孔径.对于每一特定型号的疏水阀,排量曲线给出了其最高工作压差范围内的排量数据。 冷凝水实际排量的峰谷值和持续时间也会影响疏水阀的选型,过大的尺寸会导致疏水阀使用的寿命和泄漏问题,而过小的尺寸往往会导致疏水阀内流速太快导致内件寿命减短,流动容易被冲刷破损等问题。

各种流量调节阀的工作原理及正确选型

各种流量调节阀的工作原理及正确选型

————————————————————————————————作者:————————————————————————————————日期:

各种流量调节阀的工作原理及正确选型? 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。??一、温控阀 ?1、散热器温控阀的构造及工作原理? 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果

空调冷冻水系统压差调节阀的选择计算

空调冷冻水系统压差调节阀的选择计算在中央空调管路中,对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户则要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,压差旁通阀工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,压差旁通阀将自动打开,由于压差旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容易烧毁也就是这个结果,因此,在一般的情况下,最好能使水泵在一个稳定的状态运行,这就要求我们用旁通,无论上面的负荷怎样变化,水泵都能在稳定的流量下运行,而不会导致电机的电流不段变化,使电机的寿命降低! 为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一、压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二、选择调节阀应考虑的因素

相关主题
文本预览
相关文档 最新文档