当前位置:文档之家› 逻辑代数的基本定律和常用公式

逻辑代数的基本定律和常用公式

逻辑代数的基本定律和常用公式
逻辑代数的基本定律和常用公式

逻辑代数的基本定律与常用公式

1、基本定律

逻辑代数就是一门完整的科学。与普通代数一样,也有一些用于运算的基本定律。基本定律反映了逻辑运算的基本规律,就是化简逻辑函数、分析与设计逻辑电路的基本方法。

(1)交换律

(2)结合律

(3)分配律

(4)反演律(德·摩根定律)

2、基本公式

(1)常量与常量

(2)常量与变量

(3)变量与变量

3、常用公式

除上述基本公式外,还有一些常用公式,这些常用公式可以利用基本公式与基本定律推导出来,直接利用这些导出公式可以方便、有效地化简逻辑函数。

(1)

证明:

上式说明当两个乘积项相加时,若其中一项(长项:A·B)以另一项(短项:A)为因子,则该项(长项)就是多余项,可以删掉。该公式可用一个口诀帮助记忆:“长中含短,留下短”。

(2)

证明:

上式说明当两个乘积项相加时,若她们分别包含互为逻辑反的因子(B与),而其她因子相同,则两项定能合并,可将互为逻辑反的两个因子(B与)消掉。

(3)

证明:

上式说明当两项相加时,若其中一项(长项:·B)包含另一项(短项:A)的逻辑反()作为乘积因子,则可将该项(长项)中的该乘积因子()消掉。该公式可用一个口诀帮助记忆:“长中含反,去掉反”。

例如:

(4)

证明:

上式说明当3项相加时,若其中两项(AB与C)含有互为逻辑反的因子(A与),则该两项中去掉互为逻辑反的因子后剩余部分的乘积(BC)称为冗余因子。若第三项中包含前两项的冗余因子,则可将第三项消掉,该项也称为前两项的冗余项。该公式可用一个口诀帮助记忆:“正负相对,余(余项)全完”。

例:

§8.5 逻辑代数公式化简习题2 - 2017-9-10

第8章 §8.5 逻辑代数公式化简习题2 1 第8章 §8.5 逻辑代数公式化简习题2 (一)考核内容 1、第8章掌握逻辑运算和逻辑门;掌握复合逻辑运算和复合逻辑门;掌握逻辑函数的表示方法;掌握逻辑代数的基本定理和常用公式;掌握逻辑函数的化简方法。 8.6 逻辑函数的化简 8.6. 1 化简的意义 1、所谓化简就是使逻辑函数中所包含的乘积项最少,而且每个乘积项所包含的变量因子最少,从而得到逻辑函数的最简与–或逻辑表达式。 逻辑函数化简通常有以下两种方法: (1)公式化简法 又称代数法,利用逻辑代数公式进行化简。它可以化简任意逻辑函数,但取决于经验、技巧、洞察力和对公式的熟练程度。 (2)卡诺图法 又称图解法。卡诺图化简比较直观、方便,但对于5变量以上的逻辑函数就失去直观性。 2、逻辑函数的最简形式 同一逻辑关系的逻辑函数不是唯一的,它可以有几种不同表达式,异或、与或、与或非—非、与非—与非、或与非、与或非、或非—或非。 一个逻辑函数的表达式可以有与或表达式、或与表达式、与非-与非表达式、或非-或非表达式、与或非表达式5种表示形式。 (1)与或表达式:AC B A Y += (2)或与表达式:Y ))((C A B A ++= (3)与非-与非表达式:Y AC B ?= (4)或非-或非表达式:Y C A B A +++= (5)与或非表达式:Y C A B A += 3、公式化简法 (1)、并项法:利用公式A B A AB =+,把两个乘积项合并起来,消去一个变量。 例题1: B B A A B =+= (2)、吸收法:利用公式 A A B A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++= B A E B D A B A +=+++= (3)、消去法:利用公式B A B A A +=+,消去乘积项中多余的因子。 例题3:AC AB Y += C B A A C B A ++=++= (4)、配项消项法:利用公式C A AB BC C A AB +=++,在函数与或表达式中加上多余的项— —冗余项,以消去更多的乘积项,从而获得最简与或式。 例题4: B A C AB ABC Y ++=

第2章 逻辑代数基础 习题解答

第2章 逻辑代数基础 2.1 明下列异或运算公式。 (7)1A B A B A B ⊕= ⊕=⊕⊕ 2.2 用逻辑代数的基本公式和定律将下列逻辑函数式化简为最简与-或表达式。 (4) Y AB BD DCE AD =+++ =D(A+B)+AB+DCE =DAB+AB+DCE =D+AB+DCE =D+AB (6) ()()Y A B CD A CD AC A D =++++ ()CD A B A ACD CD ACD CD C D +++=+==+ = (9) ()()()Y A C BD A BD B C DE BC =+++++()()A BD AC B C C DE ABD B B =++++=+= (10) ()Y AC BC BD A B C ABCD ABDE =++++++ ()(1)A C B C BDE BC BD A C A BC BD ++++++++= = 2.3 证明下列恒等式(证明方法不限)。

()()()A B C A B C A B C A BC A B C A B C A BC A B C A BC A B C ⊕⊕=⊕⊕⊕+⊕+⊕+= (6)解:左式= = = = =右式 结果与等式右边相恒等,证毕。 (10)()()BC D D B C AD B B D ++++=+ ()()BC D D BC AD B BC D AD B B D =++?+=+++=+ 2.4 根据对偶规则求出下列逻辑函数的对偶式。 (2) ()()Y A B C AB C D ABC D =+++++ 解:'()[()]()Y A BC A B CD A B C D =+++++ (3) Y AB BC CA =++ 解:'()()()Y A B B C C A =+++ 2.5 根据反演规则,求出下列逻辑函数的反函数。 (2) [()]Y A BC CD E F =++ 解:[()()]Y A B C C D E F =++++ (3) Y A B CD C D AB =+++++ 解:()()Y AB C D CD A B =++ 2.6 将下列逻辑函数变换为最小项之和的表达式: (4) ()Y A B C A B C =+++++

逻辑代数的基本公式和常用公式

逻辑代数的基本公式和常用公式 一.基本定义与运算 代数是以字母代替数,称因变量为自变量的函数,函数有定义域和值域。——这些都是大家耳熟能详的概念。如 或; 当自变量的取值(定义域)只有0和1(非0即1)函数的取值也只有0和1(非0即1)两个数——这种代数就是逻辑代数,这种变量就是逻辑变量,这种函数就是逻辑函数。 逻辑代数,亦称布尔代数,是英国数学家乔治布尔(George Boole)于1849年创立的。在当时,这种代数纯粹是一种数学游戏,自然没有物理意义,也没有现实意义。在其诞生100多年后才发现其应用和价值。其规定: 1.所有可能出现的数只有0和1两个。 2.基本运算只有“与”、“或”、“非”三种。 与运算(逻辑与、逻辑乘)定义为(为与运算符,后用代替) 00=0 01=0 10=0 11=1 或 00=0 01=0 10=0 11=1 或运算(逻辑或、逻辑加)定义为(为或运算符,后用+代替) 00=0 01=1 10=1 11=1 或 0+0=0 0+1=1 1+0=1 1+1=1 非运算(取反)定义为:

至此布尔代数宣告诞生。 二、基本公式 如果用字母来代替数(字母的取值非0即1),根据布尔定义的三种基本运算,我们马上可推出下列基本公式: A A=A A+A=A A0=0 A+0=A A1=A A+1=1 =+= 上述公式的证明可用穷举法。如果对字母变量所有可能的取值,等式两边始终相等,该公 式即告成立。现以=+为例进行证明。对A、B两个逻辑变量,其所有可能的取值为00、01、10、11四种(不可能有第五种情况)列表如下:

由此可知: =+ 成立。 用上述方法读者很容易证明: 三、常用公式 1. 左边==右边 2. 左边==右边 例题:将下列函数化为最简与或表达式。 (公式1:) = (公式2:) ()

逻辑代数及逻辑函数化简.doc

第 2 章 逻辑代数和逻辑函数化简 基本概念:逻辑代数是有美国数学家 George Boole 在十九世纪提出 , 因此也称 布尔代数 , 是分析和设计数字逻辑电路的数学工具。 也叫开关代数, 是研究只用 0 和 1 构成的数字系统的数学。 基本逻辑运算和复合逻辑运算 基本逻辑运算:“与”、“或”、“非”。 复合逻辑运算:“与非”、“或非”、“与或非”、“异 或”、“同或”等。 A B 基本逻辑运算 ~ 220V F 1. “与”运算①逻辑含义:当决定事件成立的所有条件全部具 备时,事件才会发生。 ②运算电路:开关 A 、B 都闭合,灯 F 才亮。 ③表示逻辑功能的方法: 真值表 A B F 灯 F 的状态代表 开关 A 、B 的状态代 0 0 表输入: 0 1 0 输出: 1 0 0 “ 0”表示亮; “0”表示断开; 1 1 1 表达式: F A B = ? 逻辑符号: A & FA FA F B B B 国家标准 以前的符号 欧美符号 功能说明: 有 0 出 0,全 1 出 1。 在大规模集成电路可编程逻辑器件中的表示符号: A B A B A B & F F F

通过“ ?”接入到此线上的输入信号都是该与门的一个输入端。推广:当有 n 个变量时: F=A 1A 2 A 3 ? ? ? A n “与”运算的几个等式: 0?0=0,0?1=0, 1?1=1 A?0=0(0-1 律), A?1=A (自等律),A?A=A (同一律), A?A?A=A (同一律)。 2. “或”运算①逻辑含义:在决定事件成立的所有条件中,只 要具备一个,事件就会发生。 A ②运算电路: 开关 A 、B 只要闭合一个,灯 F 就亮。 B ~220V F ③表示逻辑功能的方法: 逻辑功能: 有 1 出 1,全 0 出 0。 真值表:(略) 表达式: F=A+B 逻辑符号: A ≥ 1 F A FA F B + B B 国家标准 以前的符号 欧美符号 推广:当有 n 个变量时: F=A 1+A 2+ A 3+? ? ? +A n “或”运算的几个等式: 0+0=0,0+1=1, 1+1=1 A+0=A (自等律) A+1=1( 0-1 律),A+A=A (同一律)。 上次课小结:与、或的功能、表达式等,几个等式。 3.“非”运算 ①逻辑含义:当决定事件的条件具备时, 事件不 发生;当条件不具备时,事件反而发生了。 R ②运算电路:开关 A 闭合,灯 F 不亮。 ~ 220V A F ③表示逻辑功能的方法: 逻辑功能: 入 0 出 1,入 1 出 0。 真值表:(略) 表达式: F= A

逻辑代数基础习题

第二章逻辑代数基础 [题] 选择题 以下表达式中符合逻辑运算法则的是。 ·C=C2+1=10 C.0<1 +1=1 2. 逻辑变量的取值1和0可以表示:。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n个变量时,共有个变量取值组合。 A. n B. 2n C. n2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.在输入情况下,“与非”运算的结果是逻辑0。 A.全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 6.在输入情况下,“或非”运算的结果是逻辑0。 A.全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 7.求一个逻辑函数F的对偶式,可将F中的。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8. 在同一逻辑函数式中,下标号相同的最小项和最大项是 关系。 A.互补 B.相等 C.没有关系 9. F=A +BD+CDE+ D= 。 A. A B. A+D C. D D. A+BD 10.A+BC= 。 A .A+ B + C C.(A+B)(A+C) +C 11.逻辑函数F== 。 C. D. [题]判断题(正确打√,错误的打×) 1.逻辑变量的取值,1比0大。() 2.异或函数与同或函数在逻辑上互为反函数。()3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。()

4.因为逻辑表达式A+B+AB=A+B成立,所以AB=0成立。()5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。()6.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。()7.逻辑函数两次求反则还原,逻辑函数的对偶式再作对偶变换也还原为它本 身。 ( )8.逻辑函数Y=A + B+ C+C 已是最简与或表达式。()9.对逻辑函数Y=A + B+ C+B 利用代入规则,令A=BC代入,得Y= BC + B+ C+B = C+B 成立。() [题] 填空题 1. 逻辑代数又称为代数。最基本的逻辑关系有、、三种。常用的几种导出的逻辑运算为、、、、。 2. 逻辑函数的常用表示方法有、、。 3. 逻辑代数中与普通代数相似的定律有、、。摩根定律又称为。 4. 逻辑代数的三个重要规则是、、。 5.逻辑函数化简的方法主要有化简法和化简法两种。 6.利用卡诺图化简法化简逻辑函数时,两个相邻项合并,消去一个变量,四个相邻项合并,消去个变量等。一般来说,2n 个相邻一方格合并时,可消去个变量。 7. 和统称为无关项。 8.逻辑函数F= B+ D的反函数 = 。 9.逻辑函数F=A(B+C)·1的对偶函数是。 10.添加项公式AB+ C+BC=AB+ C的对偶式为。 11.逻辑函数F=+A+B+C+D= 。 12.逻辑函数F== 。 13.已知函数的对偶式为+,则它的原函数为。 [题] 将下列各函数式化成最小项表达式。 (1) (2) (3) [题] 利用公式法化简下列逻辑函数。 (1)

第二章 逻辑代数的基本运算

第二章逻辑代数的基本运算…………………………………………………………… 2.1 逻辑代数 2.1.1 与运算…………………………………………………………………… 2.1.2 或运算…………………………………………………………………… 2.1.3 非运算…………………………………………………………………… 2.1.4 几种常见的复合逻辑关系………………………………………………… 2.2 逻辑函数及其表示方法……………………………………………………… 2.3 逻辑代数的基本定律和恒等式………………………………………………… 2.3.1 逻辑代数的基本定律和恒等式…………………………………………… 2.3.2 逻辑代数的三个规则……………………………………………………… 2.3.3 逻辑函数的代数变换与化简法……………………………………………… 2.4 逻辑函数的卡诺图化简法…………………………………………………… 2.4.1 最小项的定义和性质……………………………………………………… 2.4.2 逻辑函数的卡诺图表达法………………………………………………… 2.4.3 利用卡诺图化简逻辑函数………………………………………………… 本章小结……………………………………………………………………………

第二章逻辑代数的基本运算 本章要点: 基本逻辑关系与逻辑运算 逻辑代数基本定律与基本规则 逻辑函数的表示方法 逻辑函数的变换与化简 2.1 逻辑代数 逻辑代数又称布尔代数,其基本思想是19世纪英国数学家乔治.布尔首先提出的。所谓逻辑就是事物因果之间所遵循的规律。为了避免用冗繁的文字来描述逻辑问题,逻辑代数采用逻辑变量和一套运算符组成逻辑函数表达式来描述食物的因果关系。它是用数学的方法来研究、证明、推理放逻辑问题的一种数学工具。逻辑代数虽然和普通代数一样也是用字母表示变量,但是两种代数中的变量含义是完全不同的,逻辑代数中的每个变量(逻辑变量)只有0和1两种取值。0和1不再表示数量的大小,而是表示对立的两种逻辑状态。例如,电灯的亮与灭、电动机的工作与停止。 在数字电路中,输入的信号是“条件”,输出的信号是“结果”,因此输入、输出信号之间存在一定的因果关系,这种因果关系称为逻辑关系。描述逻辑关系可以用语句、逻辑表达式、图形和表格等来描述,描述逻辑关系的表格又称为真值表。表示逻辑运算所用的规定的图形符号称为逻辑符号。逻辑代数中有三种基本运算:“与”运算、“或”运算和“非”运算。下面就分别讨论这三种基本逻辑运算。 2.1.1 与运算 首先,我们来看一个具体的电路试验,电路图如图2-1所示,电源E通过A、B两个串联的开关给电灯Y供电。 图2-1(a)与逻辑的逻辑电路图(b)与逻辑的电路符号

逻辑代数的基本定律及规则

逻辑代数的基本定律及规则 文章来源:互联网作者:佚名发布时间:2012年05月26日浏览次数: 1 次评论:[已关 闭] 功能:打印本文 一、逻辑代数相等: 假定F、G都具有n个相同变量的逻辑函数,对于这n个变量中的任意一组输入,如F和G都有相同的输出值,则称这两个函数相等。在实际中,可以通过列真值表来判断。 二、逻辑代数的基本定律: 在逻辑代数中,三个基本运算符的运算优先级别依次为:非、与、或。由此推出10个基本定律如下: 1.交换律A+B=B+A;A·B=B·A 2.结合律A+(B+C)=(A+B)+C; A·(BC)=(AB)·C 3.分配律A·(B+C)=AB+AC; A+BC=(A+B)·(A+C) 4.0-1律A+0=A;A·1=A A+1=1 ;A·0=0 5.互补律A+=1 ;A·=0 6.重叠律A·A=A;A+A=A 7.对合律=A

8.吸收律A+AB=A;A·(A+B)=A A+B=A+B;A·(+B)=AB AB+B=B;(A+B)·(+B)=B 9.反演律=·;=+ 10.多余项律AB+C+BC=AB+C; (A+B)·(+C)·(B+C)=(A+B)·(+C) 上述的定律都可用真值表加以证明,它们都可以用在后面的代数化简中。 三、逻辑代数的基本规则: 逻辑代数中有三个基本规则:代入规则、反演规则和对偶规则。 1.代入规则: 在任何逻辑代数等式中,如果等式两边所有出现某一变量(如A)的位置都代以一个逻辑函数(如F),则等式仍成立。 利用代入规则可以扩大定理的应用范围。 例:=+,若用F=AC代替A,可得=++ 2.反演规则: 已知函数F,欲求其反函数时,只要将F式中所有的“·”换成“+”,“+”换成“·”;“0”换成“1”,“1”换成“0”时,原变量变成反变量,反变量变成原变量,便得到。 注意:运用反演规则时,要注意运算符号的优先次序及括号的正确使用。

(完整版)逻辑代数的运算规则

逻辑代数的运算规则 逻辑代数的基本定律 逻辑代数的三个规则 1、代入规则 在任一逻辑等式中,如果将等式两边所有出现的某一变量都代之以一个逻辑函数,则此等式仍然成立,这一规则称之为代入规则。 2、反演规则 已知一逻辑函数F,求其反函数时,只要将原函数F中所有的原变量变为反变量,反变量变为原变量;“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”。这就是逻辑函数的反演规则。 3、对偶规则 已知一逻辑函数F,只要将原函数F中所有的“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”,而变量保持不变、原函数的运算先后顺序保持不变,那么就可以得到一个新函数,这新函数就是对偶函数F'。 其对偶与原函数具有如下特点: 1.原函数与对偶函数互为对偶函数; 2.任两个相等的函数,其对偶函数也相等。这两个特点即是逻辑函数的对偶规则。 逻辑运算的常用公式 逻辑代数的总结 基本逻辑运算: 与(或称“积”)---符号(&、?、无、∧、∩) 或(或称“和”)---符号(| 、+、∨、∪)

非(或称“反”)---符号(! 、) 1 0-1律: 0?A=0 0+A=1 1?A=A 1+A=A 同一律: A?A=A A+A=A 互补律: A?A=0 A+A=0 反演律 A?B =A+B A+B=A? 还原律 A =A √⊕⊙??+A=0 2、常用公式 交换律: A?B=B?A A+B=B+A 结合律: A?(A?B)=(A?B)?C A+(A+B)=(A+B)+C 分配律: A?(A+B)=A?B+A?C A+(A?B)=(A+B)?(A+C) 吸收律: A?(A+B)=AB A+(A?B)=AB A?B+(A?B)=A (A+B)?(A+B)=A

逻辑代数基础习题讲课讲稿

第二章 逻辑代数基础 [题2.1] 选择题 以下表达式中符合逻辑运算法则的是 。 A.C ·C=C 2 B.1+1=10 C.0<1 D.A+1=1 2. 逻辑变量的取值1和0可以表示: 。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n 个变量时,共有 个变量取值组合。 A. n B. 2n C. n 2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5. 在 输入情况下,“与非”运算的结果是逻辑0。 A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 6.在 输入情况下,“或非”运算的结果是逻辑0。 A .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 7. 求一个逻辑函数F 的对偶式,可将F 中的 。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8. 在同一逻辑函数式中,下标号相同的最小项和最大项是 关系。 A .互补 B.相等 C.没有关系 9. F=A +BD+CDE+ D= 。 A. A B. A+D C. D D. A+BD 10.A+BC= 。 A .A+ B B.A+ C C.(A+B )(A+C ) D.B+C 11.逻辑函数F=)(B A A ⊕⊕= 。 A.B B.A C.B A ⊕ D. B A ⊕ [题2.2]判断题(正确打√,错误的打×) 1. 逻辑变量的取值,1比0大。 ( ) 2. 异或函数与同或函数在逻辑上互为反函数。 ( ) 3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。 ( )

《数字逻辑电路(A)》复习题逻辑代数基础

逻辑代数基础 一、选择题(多项选择) 1. 以下表达式中符合逻辑运算法则的是 。 A.C ·C =C 2 B.1+1=10 C.0<1 D.A +1=1 2. 逻辑变量的取值1和0可以表示: 。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n 个变量时,共有 个变量取值组合? A. n B. 2n C. n 2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.F=A B +BD+CDE+A D= 。(加一个盈余项AD ) A.D B A + B.D B A )(+ C.))((D B D A ++ D.))((D B D A ++ 6.逻辑函数F=)(B A A ⊕⊕ = 。 A.B B.A C.B A ⊕ D. B A ⊕ 7.求一个逻辑函数F 的对偶式,可将F 中的 。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8.A+BC= 。 A .A + B B.A + C C.(A +B )(A +C ) D.B +C 9.在何种输入情况下,“与非”运算的结果是逻辑0。 D A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 10.在何种输入情况下,“或非”运算的结果是逻辑0。 A .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 二、判断题(正确打√,错误的打×) 1. 逻辑变量的取值,1比0大。( × )。 2. 异或函数与同或函数在逻辑上互为反函数。( √ )。 3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。( × )。

逻辑代数的运算规则

逻辑代数的三个规则 1、代入规则 在任一逻辑等式中,如果将等式两边所有出现的某一变量都代之以一个逻辑函数,则此等式仍然成立,这一规则称之为代入规则。 2、反演规则 已知一逻辑函数F,求其反函数时,只要将原函数F中所有的原变量变为反变量,反变量变为原变量;“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”。这就是逻辑函数的反演规则。 3、对偶规则 已知一逻辑函数F,只要将原函数F中所有的“+”变为“·”,“·”变为“+”;“0”变为“1”;“1”变为“0”,而变量保持不变、原函数的运算先后顺序保持不变,那么就可以得到一个新函数,这新函数就是对偶函数F'。 其对偶与原函数具有如下特点: 1.原函数与对偶函数互为对偶函数; 2.任两个相等的函数,其对偶函数也相等。这两个特点即是逻辑函数的对偶规则。 逻辑运算的常用公式 逻辑代数的总结 基本逻辑运算: 与(或称“积”)---符号(&、?、无、∧、∩) 或(或称“和”)---符号(| 、+、∨、∪) 非(或称“反”)---符号(! 、) 1 0-1律: 0?A=0 0+A=1 1?A=A 1+A=A 同一律: A?A=A A+A=A 互补律: A?A=0 A+A=0 反演律 A?B =A+B B=A?B

还原律 A =A √⊕⊙??+A=0 2、常用公式 交换律: A?B=B?A A+B=B+A 结合律: A?(A?B)=(A?B)?C A+(A+B)=(A+B)+C 分配律: A?(A+B)=A?B+A?C A+(A?B)=(A+B)?(A+C)吸收律: A?(A+B)=AB A+(A?B)=AB A?B+(A?B)=A (A+B)?(A+B)=A

逻辑代数基础

1 逻辑代数基础
教学目的与要求: 本章是数字电子技术的重要基础。首先在了解数字信号与数字电路、数制与码制、算术运算 与逻辑运算等概念基础上,要求学生深刻理解逻辑代数中的与、或、非三种基本运算,熟悉 由它们导出的其它逻辑运算,掌握逻辑代数中的基本公式、常用公式和基本定理;其次要求 学生理解逻辑函数概念, 掌握逻辑函数的各种表示方法与转换, 最小项与最大项的性质特点 及逻辑函数的范式; 本章最后介绍逻辑函数的公式与卡诺图化简方法, 要求学生对这些方法 与技巧做到熟练掌握、灵活运用。 教学重点与难点: 1、基本逻辑运算与复合逻辑运算; 2、逻辑代数的基本公式、基本定理; 3、逻辑函数的表示及其公式与卡诺图化简方法与技巧。 教学时数:共计 8 学时 (其中理论课 8 学时,实验课 学时,习题课 学时,讨论课 学时) 教学内容与方法: 结合典型例题,运用启发式、课堂练习、课后思考与作业等多种教学方法与手段,详细分析 讲解数制与码制、基本逻辑运算与复合逻辑运算方法、逻辑代数基本公式与基本定理、逻辑 函数的表示与转换方法、逻辑函数的公式化简与卡诺图化简方法与技巧等重要教学内容。
1.1 概述
一、数字信号与模拟信号
1、模拟信号与模拟电路: 在数值大小和时间上都连续的物理量为模拟量。 对模拟信号进行传输和处理的电子电路为模 拟电路。 2、数字信号与数字电路: 在数值大小和时间上都不连续即离散(每次以某最小单位的整数倍变化)的物理量为数字量。 对数字信号进行传输和处理的电子电路为数字电路。 3、数字电路的类型与特点 ①数字电路的分类: 按电路结构分:分立、集成;按器件制作工艺分:双极型与 MOS 型;按工作原理分:组合 逻辑电路和时序逻辑电路;按集成度分:SSI、MSI、LSI、VLSI。 ②数字电路的优点:易集成、高可靠、通用成本低、易保密
二、数制与码制
1、数制 1)数制的概念及要素: 数制的定义:多位数码中各数位的构成方法及运算时的进位规则称为数制。 数制的要素:任意数位上的可用数码、可用数码的个数(基数,实质为进位规则)、权(与各数 位对应的固定数值)。 一般地,设 (an 1an 2
(an 1an 2
a1a0 .a1a2 a m ) N 为一个 N 进制数,则该数对应的数值大小为: a1a0 .a1a2 a m ) N = ∑ in=1 m ai N i (按权展开式)。
2)常见数制: ①10 进制:

逻辑代数的基本定律和常用公式教学文稿

逻辑代数的基本定律和常用公式

逻辑代数的基本定律和常用公式 1、基本定律 逻辑代数是一门完整的科学。与普通代数一样,也有一些用于运算的基本定律。基本定律反映了逻辑运算的基本规律,是化简逻辑函数、分析和设计逻辑电路的基本方法。 (1)交换律 (2)结合律 (3)分配律 (4)反演律(德·摩根定律) 2、基本公式 (1)常量与常量 (2)常量与变量

(3)变量与变量 3、常用公式 除上述基本公式外,还有一些常用公式,这些常用公式可以利用基本公式和基本定律推导出来,直接利用这些导出公式可以方便、有效地化简逻辑函数。 (1) 证明: 上式说明当两个乘积项相加时,若其中一项(长项:A·B)以另一项(短项:A)为因子,则该项(长项)是多余项,可以删掉。该公式可用一个口诀帮助记忆:“长中含短,留下短”。 (2) 证明: 上式说明当两个乘积项相加时,若他们分别包含互为逻辑反的因子(B和),而其他因子相同,则两项定能合并,可将互为逻辑反的两个因子(B和)消掉。 (3) 证明:

上式说明当两项相加时,若其中一项(长项:·B)包含另一项(短项:A)的逻辑反()作为乘积因子,则可将该项(长项)中的该乘积因子()消掉。该公式可用一个口诀帮助记忆:“长中含反,去掉反”。 例如: (4) 证明: 上式说明当3项相加时,若其中两项(AB和C)含有互为逻辑反的因子(A和),则该两项中去掉互为逻辑反的因子后剩余部分的乘积(BC)称为冗余因子。若第三项中包含前两项的冗余因子,则可将第三项消掉,该项也称为前两项的冗余项。该公式可用一个口诀帮助记忆:“正负相对,余(余项)全完”。 例:

数字逻辑逻辑代数基础习题

《逻辑代数基础》练习题及答案 [1.1]将下列二进制数转为等值的十六进制数的等值的十进制数。 (1)(10010111)2 ;(2)(1101101)2 ;(3)(0.01011111)2 ;(4)(11.001)2 。 [解] (1)(10010111)2 = (97)16 = (151)10,(2)(11011101)2 = (6D)16 = (109)10(3)(0.01011111)2 = (0.5F)16 = (0.37109375)10,(4)(11.001)2 = (3.2)16 = (3.125)10 [1.2]将下列十六进制数化为等值的二进制数和等值的十进制数。 (1)(8C)16 ;(2)(3D.BE)16;(3)(8F.FF)16 ;(4)(10.00)16 [解] (1)(8C)16 = (10001100)2 = (140)10 (2)(3D·BE)16 = (111101.1011111)2 = (61.7421875)10 (3)(8F·FF)16 = (10001111.11111111)2 = (143.99609375)10 (4)(10.00)16 = (10000.00000000)2 = (16.00000000)10 [1.3]将下列十进制数转换成等效的二进制数和等效的十进制数。要求二进制数保留小数点以后4位有效数字。 (1)(17)10 ;(2)(127 )10 ;(3)(0.39)10 ;(4)(25.7)10 [解] (1)(17)10 =(10001)2 =(11)16 ;(2)(127)10 = (1111111)2 = (7F)16 (3)(0.39)10 = (0.0110)2 = (0.6)16;(4)(25.7)10 = (11001.1011)2 = (19.B)16 [1.4]写出下列二进制数的原码和补码。 (1)(+1011)2 ;(2)(+00110)2 ;(3)(-1101)2 ;(4)(-00101)2 。 [解] (1)(+1011)2的原码和补码都是01011(最高位的0是符号位)。 (2)(+00110)2的原码和补码都是000110(最高位的0是符号位)。 (3)(-1101)2的原码是11101(最高位的1是符号位),补码是10011。 (4)(-00101)2的原码是100101(最高位的1是符号位),补码是111011。 [1.5]试总结并说出 (1)从真值表写逻辑函数式的方法;(2)从函数式列真值表的方法; (3)从逻辑图写逻辑函数式的方法;(4)从逻辑函数式画逻辑图的方法。 [解] (1)首先找出真值表中所有使函数值等于1的那些输入变量组合。然后写出每一组变量组合对应的一个乘积项,取值为1的在乘积项中写为原变量,取值为0的在乘积项中写为反变量。最后,将这些乘积项相加,就得到所求的逻辑函数式。 (2)将输入变量取值的所有状态组合逐一代入逻辑函数式,求出相应的函数值。然后把输入变量取值与函数值对应地列成表,就得到了函数的真值表。 (3)将逻辑图中每个逻辑图形符号所代表逻辑运算式按信号传输方向逐级写出,即可得到所求的逻辑函数式。 (4)用逻辑图形符号代替函数式中的所有逻辑运算符号,就可得到由逻辑图形符号连接成的逻辑图了。

逻辑代数的基本定律和规则

逻辑代数的基本定律和规则 一、逻辑代数的基本公式 (一)、逻辑常量运算公式 (二)、逻辑变量、常量运算公式 变量A的取值只能为0或为1,分别代入验证。 二、逻辑代数的基本定律 逻辑代数的基本定律是分析、设计逻辑电路,化简和变换逻辑函数式的重要工具。这些定律和普通代数相似,有其独特性。 (一)、与普通代数相似的定律 交换律、结合律、分配律

(二)、吸收律 与学生一同验证以上四式。 第④式的推广: 由表4可知,利用吸收律化简逻辑函数时,某些项或因子在化简中被吸收掉,使逻辑函数式变得更简单。 (三)、摩根定律 三、逻辑代数的三个重要规则 (一)、代入规则 对于任一个含有变量A的逻辑等式,可以将等式两边的所有变量A用同一个逻辑函数替代,替代后等式仍然成立。这个规则称为代入规则。代入规则的正确性是由逻辑变量和逻辑函数值的二值性保证的。

例题: (二)、 (三)、 若两函数相等,其对偶式也相等。(可用于变换推导公式)。讨论三个规则的正确性。

逻辑涵数的公式化简法 一、化简的意义与标准 1、化简逻辑函数的意义 根据逻辑问题归纳出来的逻辑函数式往往不是最简逻辑函数式,对逻辑函数进行化简和变换,可以得到最简的逻辑函数式和所需要的形式,设计出最简洁的逻辑电路。这对于节省元器件,优化生产工艺,降低成本和提高系统的可靠性,提高产品在市场的竞争力是非常重要的。 2、逻辑函数式的几种常见形式和变换 3、逻辑函数的最简与-或式 对与或式而言:

最简: 二、逻辑函数的代数化简法 1、并项法

三、代数化简法举例 在实际化简逻辑函数时,需要灵活运用上述几种方法,才能得到最简与-或式. 四、作业:

相关主题
文本预览
相关文档 最新文档