当前位置:文档之家› 近世代数,第一章,基本概念,练习题

近世代数,第一章,基本概念,练习题

近世代数,第一章,基本概念,练习题
近世代数,第一章,基本概念,练习题

第一章 基本概念 练习题

一、填空:

1、若A 中有个m 元素,B 中有个n 元素,则A ×B 中有 个元素.

2、设}2,1{=A ,}4,3{=B .那么=?B A .

3、D B A 到?的映射叫做D B A 到?的一个 .

4、 若A A A 到是? 的代数运算,则称 是A 的 ,也称A 对 是封闭的.

5、设 是A 的代数运算.若对任意A c b a ∈,,,有)()(c b a c b a =,则称 适合 .

6、A 到A 的映射φ叫做A 的一个 .

7、建立实数集R 到正实数集R +的映射,:2x

x σ ,R 的运算为数的加法,R +的运算为数的乘法,该映射 (是或不是)R 到正实数集R +的一个同态映射.

8、建立正实数集R +到实数集R 的映射,:ln x x σ ,R +的运算为数的乘法,R 的运算为数的加法,该映射________(是或不是)R +到R 的一个同态映射.

9、若存在映射φ是A 到A 的一个 时,则对于 , 来说,称A 与A 同态.

10、集合上满足反身性、对称性和 的一个关系叫做等价关系.

二、判断题

1、A={所有不等于零的实数}, 是普通除法,则这个代数运算 不适合结合律.( )

2、A={所有实数},定义代数运算 :2a b a b =+ ,则这个代数运算不适合结合律.( )

3、设,Z A =“ ”是整的减法,则“ ”在Z 中不满足结合律. ( )

4、设,Z A =“ ”规定如下:3a b b = ,则该代数运算不满足结合律. ( )

5、设,Z A =“ ”规定如下:2a b b = ,则该代数运算不满足结合律. ( )

6、一个有限集与它的真子集之间不可能有一一映射。 ( )

7、当A 与A 是无限集时,它们之间可能存在一一映射。 ( ) 8、设 , 分别是集合A A ,的代数运算,

A A →:φ是一个映射。若A b a ∈?,,有 )()()(b a b a φφφ =,则称φ是A 到A 的一个同构映射。 ( )

9、实数域R 上全体n 阶可逆方阵组成的集合为()n M R ,建立映射::A A σ 。可知该映射是关于矩阵乘法和数的乘法的()n M R 到R 的同态映射,但非满射。 ( )

10、设对于代数运算 , 来说,A 与A 同态,若 适合结合律,则 未必也适合结合律( )

11、 设对于代数运算 , 来说,A 与A 同态,若 适合交换律,则 也适合交换律( )

12、A={所有实数},A 的元素间的关系≥不是等价关系 ( )

13、集合A 的一个分类决定A 的一个等价关系,但A 的一个等价关系未必决定A 的一个分类( )

14、设 是集合A 的一个等价关系,则元素a 所在的等价类为[]{}a x A x a =∈ ( )

三、选择题

1、=A {所有整数},令τ:A A →,2a a ,当a 是偶数;12

a a + ,当a 是奇数.则τ为 ( ) (A) 单变换 (B) 满变换 (C) 一一变换 (D) 不是变换

2、设A =B =R(实数集),如果A 到B 的映射:?:2x x + ,?x ∈R ,则?是从A 到B 的( )

(A)满射而非单射 (B)单射而非满射 (C)一一映射 (D)既非单射也非满射

3、设A=R (实数集), B=R +(正实数集),φ:10a a ,?a ∈A ,则φ是从A 到B 的( )。

(A)满射而非单射 (B)单射而非满射 (C)一一映射 (D)既非单射也非满射

4、下列是代数运算(即二元运算)的是( )

(A)在整数集Z 上,ab b a b a += ; (B)在有理数集Q 上,a b =

(C)在正实数集+R 上,b a b a ln = ; (D)在集合{}

0≥∈n Z n 上,b a b a -= 。

5、设=A {所有实数},A 的代数运算是普通乘法,则以下映射做成A 到A 的子集的同态满射的是 ( )

(A) x x 10→ (B) x x 2→ (C) x x → (D) x x -→ (E)10x x 四、解答题

1、设A 是数域K 上n 阶矩阵全体构成的集合。证明矩阵的相似是A 上的一个等价关系。

2、 设~是整数集Z 上的模7同余关系,试证明~是Z 上的等价关系,并求所有等价类。

3、(1)设1{}01x M x R ??=∈ ???

,其代数运算为矩阵乘法,R 为实数集,其代数运算为数的加法,证明 M R ?。

(2)设{1

}A a Q a =∈>,其代数运算为数的乘法,{01}B b Q b =∈<<,其代数运算为数的乘法,证明A B ?。

4、设 是集合A 的一个等价关系,,a b A ∈,证明:[][]a b =当且仅当a b 。

近世代数期末考试试卷及答案Word版

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ= (1324),则 3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得

多所高校近世代数期末考试题库[]

多所高校近世代数题库 一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( ) 二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( )

近世代数第四章 环与域题解讲解

第四章环与域 §1 环的定义 一、主要内容 1.环与子环的定义和例子。在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环. 2.环中元素的运算规则和环的非空子集S作成子环的充要条件: 二、释疑解难 1.设R是一个关于 代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即 就是说,在环的定义里要留意两个代数运算的顺序. 2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).

1. 2.

3. 4. 5.

6. 7. 8.证明:循环环必是交换环,并且其子环也是循环环. §4.2 环的零因子和特征 一、主要内容 1.环的左、右零因子和特征的定义与例子. 2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数. 这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶. 3.整环(无零因子的交换环)的定义和例子. 二、释疑解难 1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然. 但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素??? ? ??0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵 ),(00Q y x y x ∈???? ? ??

[精华版]近世代数期末考试试卷及答案

[精华版]近世代数期末考试试卷及答案 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a是生成元,则G的子集( )是子群。 33,,,,aa,e,,e,a,,e,a,aA、 B、 C、 D、 2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的,( ) A、a*b=a-b,,,B、 a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| ,,,,,,3322114、设、、是三个置换,其中=(12)(23)(13),=(24)(14),= ,3(1324),则=( ) 22,,,,,,122121A、 B、 C、 D、 5、任意一个具有2个或以上元的半群,它( )。 A、不可能是群,,,B、不一定是群 C、一定是群 D、是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 4Gaa3、已知群中的元素的阶等于50,则的阶等于------。 4、a的阶若是一个有限整数n,那么G与-------同构。 5、A={1.2.3} B={2.5.6} 那么A?B=-----。 6、若映射既是单射又是满射,则称为-----------------。,,

近世代数期末考试题库

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出得四个备选项中只有一个就就是符合题目要求得,请将其代码填写在题后得括号内。错选、多选或未选均无分。 1、设A=B=R(实数集),如果A到B得映射:x→x+2,x∈R,则就就是从A到B得( )A、满射而非单射?B、单射而非满射 C、一一映射??? D、既非单射也非满射 2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B得积集合A×B中含有( )个元素。 A、2 ??? B、5 C、7????D、10 3、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解就就是( )乘法来说 A、不就就是唯一 B、唯一得 C、不一定唯一得D、相同得(两方程解一样) 4、当G为有限群,子群H所含元得个数与任一左陪集aH所含元得个数( ) A、不相等B、0 C、相等 D、不一定相等。 5、n阶有限群G得子群H得阶必须就就是n得( ) A、倍数 B、次数C、约数 D、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题得空格中填上正确答案。错填、不填均无分。 1、设集合;,则有---------。 2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R得--------。 3、环得乘法一般不交换。如果环R得乘法交换,则称R就就是一个------。 4、偶数环就就是---------得子环。 5、一个集合A得若干个--变换得乘法作成得群叫做A得一个--------。 6、每一个有限群都有与一个置换群--------。 7、全体不等于0得有理数对于普通乘法来说作成一个群,则这个群得单位元就就是---,元a得逆元就就是-------。 8、设与就就是环得理想且,如果就就是得最大理想,那么---------。 9、一个除环得中心就就是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换与分别为:,,判断与得奇偶性,并把与写成对换得乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之与。 3、设集合,定义中运算“”为ab=(a+b)(modm),则(,)就就是不就就是群,为什么? 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、设就就是群。证明:如果对任意得,有,则就就是交换群。 2、假定R就就是一个有两个以上得元得环,F就就是一个包含R得域,那么F包含R得一个商域。 近世代数模拟试题二 一、单项选择题 二、1、设G有6个元素得循环群,a就就是生成元,则G得子集( )就就是子群。 A、 B、 C、 D、 2、下面得代数系统(G,*)中,( )不就就是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法

抽象代数 孟道骥版 习题解答 第四章

Chapter4 4.1 ? 1. G 4. G 4 Klein K4 . ? ?4 S4 . . (i)G 4 ? G 4 . (ii)G 4 ? ?a∈G,a2=e.? ?a,b∈G,(ab)2= e,, ab=(ab)?1=b?1a?1=ba, G Abel ? G~=K4. 2. G 6. G 6 S3 . G с 3 ? ? 2 ? с Abel ? a=b∈G, a=e,b=e, a,b 4 ? . G с 2 ? ? 3 ? |G| ? . G 2 a, 3 b. 1):a,b ? ab 6 ?? G= ab 6 . 2):a,b? ? G 6 . G k 3 ?j 2 ? 2k+j+1=6, (k,j)=(2,1) (1,3). k=2, G 3 {x,x?1,y,y?1}. xy? 3 ? xy 2 ? yx ? xy=yx, x,y 9 ? . (k,j)=(1,3). ? G S6 ? ?,? ?(b)= (1,2,3), ?(a)=σ. G 3 ? σ(1,2,3)σ?1= (σ(1),σ(2),σ(3)), {σ(1),σ(2),σ(3)}={1,2,3}. σ (1,2,3)? ? ? σ(1)=1,σ(2)=2,σ(3)=3,? σ(1)=1,σ(2)= 3,σ(3)=2. α= 456 σ(4)σ(5)σ(6) σ=(2,3)α, σ2=e, α2=e. σ,(1,2,3) ={(1,2,3),(1,3,2),e,(2,3)α,(1,2)α,(3,1)α} S3 64

65 G ~=S 3. 3. G r =st ?H G t . H ={g s |g ∈G }={h ∈G |h =e }. G = g 0 , {g s |g ∈G }={g s 0,g 2s 0,···,g ts 0},{h ∈G |h t =e }={g s 0,g 2s 0,···,g ts 0}, {g s 0,g 2s 0,···,g ts 0} G t ? G t . G ={g s |g ∈G }={h ∈G |h t =e } 4. G ?a,b ∈G.?[a,b ]=aba ?1b ?1 a,b . {aba ?1b ?1|a,b ∈G } ? G (1)? G . :1) α∈Aut G , α(G (1))=G (1);2) H G. G/H Abel ? H ?G (1). 1)α(G (1))=α( {aba ?1b ?1|a,b ∈G } )= {σ(a )σ(b )σ(a )?1σ(b )?1|a,b ∈G } =G (1).2)G/H Abel ?(G/H )(1)={e }?G (1)?H . 5. S G ? ? ?,ψ G H ? ?(x )=ψ(x ),?x ∈S. ?=ψ. ?a ∈G , G = S , a =y 1y 2···y n , y i ∈S y ?1i ∈S . ?(x )=ψ(x ),?x ∈S , ?(x ?1)=ψ(x ?1),?x ∈S ,? ?(y i )=ψ(y i ),?1≤i ≤n , ?(a )=ψ(a ), ?=ψ. 6. H G ? H =G . G = G ?H . H =G ?a ∈G , GH , aH ∩H =?, aH ?H , G ?H ?H ∪(G ?H )=G , G = G ?H . 7. G ? G с 2 . G k m ?m >1?? m k?(m ) ? ? . m ? ?(m ) ? ? . |G | ? с ?? ? 2 . 8. α∈S 3 ? . α= 1234567836548271 α= 1234567836548271 =(1358)(26).

近世代数第一章练习题

近世代数试题 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填 在题干的括号内。每小题3分,共15分) 1.设A=R(实数域),B=R+(正实数域) φ:a→10a?a∈A 则φ是从A到B的( )。 A.满射而非单射 B.单射而非满射 C.一一映射 D.既非单射也非满射 2.设A={所有实数x},A的代数运算是普通乘法,则以下映射作成A到A的一个子集A的同态满射的是( )。 A.x→10x B.x→2x C.x→|x| D.x→-x 3.设S3={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S中与元(1 2 3)不能交换的元的个数是( )。 A.1 B.2 C.3 D.4 4.整数环Z中,可逆元的个数是( )。 A.1个 B.2个 C.4个 D.无限个 5.剩余类加群Z18的子群有( )。 A.3个 B.6个 C.9个 D.12个 二、填空题(每空3分,共27分) 1.设A是n元集,B是m元集,那么A到B的映射共有____________个. 2.n次对称群S n的阶是____________. 3.一个有限非可换群至少含有____________个元素. 4.设G是p阶群,(p是素数),则G的生成元有____________个. 5.除环的理想共有____________个. 6.剩余类环Z6的子环S={[0],[2],[4]},则S的单位元是____________. 7.设I是唯一分解环,则I[x]与唯一分解环的关系是____________. 8.在2, i+3, π2, e-3中,____________是有理数域Q上的代数元. 9.2+ 3在Q上的极小多项式是____________. 三、解答题(第1、2小题各12分,第3小题10分,共34分) 1.设G是6阶循环群,找出G的全部生成元,并找出G的所有子群. 2.求剩余类环Z6的所有子环,这些子环是不是Z6的理想? 3.设Z是整数环,则(2)∩(3)、(2,3)是Z的怎样一个理想?(2)∪(3)是Z的理想吗?为什么?

近世代数期末考试试卷

近世代数模拟试题二 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

近世代数复习试题2010级

《近世代数》复习试题 一 填空题 1.12,,n A A A 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A 为A 的一个分类. 2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射. 3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________. 4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______. 5. 在3S 中,)23()12)(123(1-= . 6. 模6的剩余类环6Z 的所有可逆元: . 7. 模6的剩余类环6Z 的所有零因子: . 8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a . 9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________. 10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________. 二 解答、证明题 1.设Z 是全体整数的集合,在Z 中规定: .,,2Z b a b a b a ∈?-+= 证明:),( Z 是一个交换群. 2.证明:群G 不能表示成两个真子群的并. 3.证明:r-循环为偶置换的充要条件是r 为奇数. 4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群. 5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =?≤. 6.设H G ≤,N G ,证明:HN G ≤. 7.设H G ≤,且2]:[=H G ,证明:.G H 8.证明:每个素数阶的群都是循环群. 9.设N 是群G 的子群,N 的阶是r (1)证明1()gNg g G -∈也是G 的一个子群.

近世代数课后习题参考答案(张禾瑞)-1(新)

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( c )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、{} 3 ,,a a e 2、下面的代数系统(G ,*)中,( D )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、1 2σ B 、1σ2σ C 、2 2 σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( A )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子-交换环----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于----25--。 4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。 6、若映射?既是单射又是满射,则称?为----双射-------------。

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整 数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

(完整版)《实变函数》考试说明解读

《实变函数》考试说明 近世代数是广播电视大学数学专业(本科)的一门重要的专业基础课,本期近世代数期末考试内容是教材《实变函数》的内容。试题有填空题、证明题,试题的难易程度和教材《实变函数》的习题相当。希望同学们在期末复习时,做好教材《实变函数》中的每章的习题。 第一章集合 一提要 第一节集合及其运算。 第二节映射及其基数。 第三节可列集 第四节不可列集 二教学要求 1)理解集的概念,分清集的元与集的归属关系,集与集之间的包含关系的区别。 2)掌握集之间的交、差、余运算。 3)掌握集列的上、下限集的概念及其交并表示。 4)理解集列的收敛、单调集列的概念。 5)掌握――映射,两集合对等及集合基数等概念。 6)理解伯恩斯坦定理(不要求掌握证明),能利用定义及伯恩斯坦定理证明两集合对等。 7)理解可数集,不可数集的意义,掌握可数集、基数为C的集合的性质, 理解不存在最大基数的定理的意义。

第二章点集 一.提要 第一节聚点、内点、界点等概念 第二节开集、闭集、完备集。 第三节直线上的开集、闭集及完备集的构造。 第四节点集间的距离 第五节康托集及其性质 二.基本要求 1)明了n维欧氏空间中极限概念主要依赖于距离这个概念,从而了解邻域概念在极限理论中的作用。 2)理解聚点,孤立点、内点、外点、界点的意义,掌握有关性质。 3)理解开集、闭集、完备集的意义,掌握其性质。 4)理解直线上开集、闭集、完备集的构造。 5)理解康托集的构造、特性。 第三章勒贝格测度论 一.提要 第一节勒贝格外测度及其内测度。 第二节勒贝格可测集及其性质。 第三节勒贝格可测集的构造。

二.基本要求 1)理解测度的意义。 2)理解外测度的意义,掌握其有关性质。 3)理解可测集的定义,掌握可测集的性质。 4)了解并掌握不可测集的存在性这一结论。 第四章勒贝格可测函数 一.提要 第一节点集上和函数。 第二节勒贝格右测函数。 3)可测函数列的收敛性。 4)可测函数的构造。 二.基本要求 1)掌握可测函数的定义及等价定义。 2)掌握可测函数的有关性质。 3)理解简单函数的定义,掌握可测函数与简单函数的关系。 4)掌握可测函数列的收敛点集和发散点集的表示方法。 5)掌握叶果洛夫定理,鲁津定理。 6)理解依测度收敛的意义,掌握依测度收敛与a·e收敛的联系与区别。

近世代数1

第一章 §1.1集合 §1.2映射与变换 教学内容:集合,子集,集合相等的概念 集合关系及运算的定义和性质 映射,单射,满射,双射,逆映射的定义及例子 变换,置换等的定义及例子 映射的象及逆象的定义,映射的乘法 教学重点:集合的关系及运算,映射变换的定义,映射的乘法在很多课程中都学过有关集合的知识,一些基本的概念和结论不再重复,这里,只复习一下不太熟悉的知识,并在符号上做一个统一的规定。 1、用Z表示整集合,Z*表示非零整数集,用ψ表示有理数集,ψ*表示非零有理数数集等。 Z+ ,ψ+…R,C… 2、AB表示A是B的子集,A=B或AB AB表示A是B的真子集,即B中有不存在A的元素 AB表示A不是B的子集 AB表示A不是B的真子集 A=BAB且BA 3、如果集合A含有无穷多个元素,则记为=,如果A含有n个元素,则记为=n。(A的阶),有+=+ 4、称集合A-B={aaA, aB}为集合A与B的差集。易知有A-B=A 5、集合A有很多子集,将A的所有子集放在一起(包括空集)也组成一个集合,称为A的幂集,记作P(A)。=(=n) 映射是函数的推广,函数的定义中要求有两个数集,而映射中,是一般的集合 6、定义:设A,B是两个集合,如果有一个法则,他对于A中每个元素,在B中都有一个唯一确定的元素y与它对应,则称为从A到B的映射。这种关系常表示为 :AB 或:xy 或y=(x) xy 且称y为x在之下的像,称x为y在之下的原像或逆像。 由定义可知,映射必须满足三个条件: ①A中每个元素都有像,②A中元素的像是唯一的,③A中元素的像在B里。 例:P6例1-6

例1.不是映射,不满足①例2.不是映射,不满足②例3.不是映射,不满足③ 例4.是映射,不单不满例4.是映射,不单,满例6.是映射, 单不满 7、映射是函数概念的推广,是对应法则,A是定义域,B包含值域,根据B是否与值域相等,可将映射区分为是否是满射。A中不同元 素的像可能相同,也可能不同,据此可区分映射是否为单射。 定义:设为A到B的一个映射,如果B中每个元素在A中都有逆 像,则称为A到B的一个满射。如果A 中不同的元素在B中的像也不同,则称是从A到B的一个单射。如果既是满射又是单射,则称是从A到B的一个双射,或一一映射。 例:P7,例 4-8 例7,双射,例8,满射,不单。 8、设有映射:AB,A,B.用()表示中所有元素在之下的像的全体组成的集合,称为在之下的像,()B。用()表示中所有元素在之下的逆像全体组成的集合,称为在之下的逆像,()A。 易知:是满射(A)=B. 9、设:AB是双射,(思考,为什么?),则:BA 也是一个映射,且为双射(为什么?), xy=(x) yx 称为的逆映射。 注意:双射才有逆映射。 定理:设A,B是两个有限集合,且=,是A到B的一个映射,则是单射是满射是双射 证明:略。 10、设б与都是A到B的映射,如果xA,都有б(x)=(x),则称б与相等,记作б= 11、设:AB б:C 则AC x(x) y(y), x(x)((x)) 是一个A到C的映射,记为,即:AC 并称为与的合成或乘积。 x((x)) 12、集合A 到自身的映射,叫做集合A的一个变换,类似可定义单变换,满变换,双射变换(一一变换)等。 将集合A每个元素映为自身的变换,称为A的恒等变换,:AB 它是一个一一变换。 xx,

近世代数习题解答

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? 解? d d c = , a c d = a b c a a b c b b c a c c a b

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

高等代数第四章整环里的因子分解

第四章整环里的因子分解 §1、素元、唯一分解 一、整除、单位、相伴元 定义在整环I中,若a=bc,则称a能被b整除,也说b整除a,记为b|a。b不能整除a记作b|a。 定义整环I的一个元ε叫做I的一个单位,假如ε是一个有逆元的元。元b叫做元a的相伴元(a与b相伴),假若b是a 和一个单位ε的乘积:b=εa。 单位元必是单位,反之不然。 例1在整数环Z中,单位即是1和-1,b是a的相伴元?b=±a。在数域F的多项式环F[x]中,单位即是零次多项式c∈F*,g(x)是f(x)的相伴元?g(x)=cf(x)。

定理1 两个单位ε1和ε2的乘积ε1ε2也是单位。单位ε的逆元ε-1也是一个单位。 推论整环I中全体单位的集U关于乘法作成群。 二、素元 定义单位以及元a的相伴元叫做a平凡因子。其余的a的因子,假如还有的话,叫做a的真因子。 定义整环I的一个元p叫做一个素元(注:应是不可约元),假如p0 ≠,p不是单位,并且p只有平凡因子。 例2 在例1的Z中,素元就是素数。在F[x]中,素元就是不可约多项式。 定理2 单位ε同素元p的乘积εp也是一个素元。 定理3整环I的一个非零元a有真因子?a=bc,b和c都不是单位。

推论假定a≠0,并且a有真因子b:a=bc。那么c也是a的真因子。 三、唯一分解 定义一个整环I的一个元a说是在I 里有唯一分解,假如以下条件能被满足:(i)a=p1p2…p r(p i是I的素元) (ii)若同时 a=q1q2…q s(q i是I的素元) 那么r=s 并且我们可以把q i的次序掉换一下,使得 q i=εi p i (εi是 I的单位) 零元和单位都不能唯一分解。 例3 在整环I={}Z +, 3中: a∈ - b a b (1)ε是单位1 = ?。 ? ε = 1 ε2± (2)若4 α2=,则α是素元。 (3)4∈I有两种不同的分解(不相伴分解): ()()3 + - = - ? = 1 1 3 2 2 4-

近世代数第一章基本概念自测练习答案

自测练习参考答案 一、判断题 1.(× ) 2. (√ ) 3.(× )解释:同时还要适合结合律 4. (√ ) 5. (√ ) 6. (√ ) 7.(× ): 二、选择题 1. (D ) 2. (D ) 3. (C ) 4. (B )解释:和第9节课后习题1完全类似,但也是大家作业中出现问题最多的一道题。详细答案如下:(按解答题格式写) 解:首先,A 的一一变换有3!=6个,具体为 :,,?→→→1112233 :,,?→→→2122331 :,,?→→→3133221 :,,?→→→4122133 :,,?→→→5112332 :,,?→→→6132231 其次,如果是的自同构,则必保持运算即.A ??,,()()(),x y A x y x y ???∈= 也即(这是是自同构的必要条件) ().??=11.可见,只有和??15满足此条件. 说明和??15可能为的自同构.A 经验证,和的确是的自同构.A ??15 5. (C ) 三、简答题 1.105,84,63;42;21:1→→→→→Φ 105,84,63,42,01:2→→→→→Φ则1Φ,2Φ是X 到Y 的两个单射。

2. A a a a a a a ∈→Φ212121,},,min{),(:,就是一个A A ?到A 的一个满射。 3. 设Z 为整数集,2Z 为偶数集,x x 2:1→Φ, )1(2:2+→Φx x ,其中Z x ∈,则1Φ,2Φ就是Z 到2Z 的两个不同的映射。 4. (1) ()2,f x x x Z =?∈;(2),2(),21k x k f x k x k =?=?=+? (3) ()1,f x x x Z =+?∈ 5. 解:1R 不是等价关系,因为1),(R c c ?,即不具有反身性,尽管具有对称性、传递性; 2R 是等价关系,因为具有反身性、对称性、传递性; 3R 不是等价关系,因为3),(R c a ?,即不具有传递性,尽管具有反身性、对称性; 4R 不是等价关系,因为4),(R b c ?,即不具有对称性,尽管具有反身性、传递性.

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题您认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都就是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都就是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 就是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶就是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 就是循环群,那么G 也就是循环群。 ( ) 6、群G 的子群H 就是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征就是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 就是整数环,()p 就是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ与D 都就是非空集合,而f 就是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算就是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο就是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),那么ο在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。 4、设()ο,G 为群,其中G 就是实数集,而乘法k b a b a ++=οο:,这里k 为G 中固定

相关主题
文本预览
相关文档 最新文档