当前位置:文档之家› 自动控制原理课件:第二章 控制系统动态性能分析

自动控制原理课件:第二章 控制系统动态性能分析

分数阶温度控制系统性能评估课题研究背景及意义

分数阶温度控制系统性能评估课题研究背景及意义 随着科技与技术地不断进步,工业控制系统中的工业过程控制方式逐步地从人工控制,半人工控制,发展到全自动化控制,控制技术的发展极大地促进了生产力的进步,正是由于这些先进的自动控制技术的加持,才有了我们现在所享受的如此丰富多彩的物质生活。现如今,市场竞争压力越来越大,工业界生产商们都在努力提升自己企业的自动化水平,随之而来的就是,控制系统的规模度越来越庞大,控制系统的复杂程度越来越高,控制系统中控制回路、控制器数量越来越多,这些数量庞大的控制回路在最初投产阶段能保持高性能运行状态,但是随着时间的推移,可能会发生改变,这些改变对工业生产势必有影响。所以,评估和监测这些改变是非常有必要的。 其次,在实际的工业控制系统中,高性能的控制器是先进性能控制系统所必需的条件之一,但是据研究表明,在复杂的工业现场环境下,大约50%~60%的工业控制回路中存在着控制器参数设计不合理、控制器结构不合适,过程干扰特性在长时间运行中发生变化,控制系统设备故障(如传感器、执行器失灵等)等现象。即使控制器在最初投产调试时能正常运行,但由于长时间的运行,控制器特性发生变化,但却不进行参数重新调整,其性能也必将出现下降。对于这些控制回路故障,通常这些问题可以通过适当的参数调整来解决,例如控制器参数设计、控制器结构调整以及调整控制系统的运转点等。如果一般的办法解决不了,那就得通过控制工程师对系统软件、硬件参数设计进行重设来解决。总体而言,由于各种原因导致的控制回路性能无法实现预期值,将导致最终产出的产品质量下滑,系统运行成本的增加,控制系统中设备的使用寿命降低,甚至,由于设备问题引发的各种无法预估的严重生产安全问题。所以,非常有必要对回路控制器的性能进行相关的评估研究。 就现在研究现状而言,对于控制器性能评估的研究相对较少,对运行中的控制器性能评估的研究更少。因此,设计合理的控制性能评估技术是过程控制领域研究的一个重要的方向。性能评估就是,针对一般的工业过程控制回路中的运行着的闭环输入输出数据,运用各种性能评价指标和性能评价工具对闭环输入输出数据进行处理、分析,从而判定控制回路的性能(主要指控制器性能)如何,包括性能评估、监测、诊断及其做出改进措施等。针对庞大而复杂且数量巨大的回路控制器,所产生的回路闭环数据也是巨量的,单靠数量有限的工程师及人工经验去分析这些数据是杯水车薪。所以,研发一些强大而高效的自动化控制性能评估技术的需求是迫在眉睫的,运用控制性能评估技术去实时在线评估、监测控制回路控制器,保障回路控制器的高性能运行,保障工业过程控制回路的安全高效运转具有重要的实际意义。

控制系统的性能分析

一、实验名称:控制系统的性能分析 二、实验目的:熟悉控制系统性能分析常用的几个CAD函数,绘制二阶系统在不同阻尼比取值下的单位阶跃响应曲线,绘制根轨迹图、Bode图和Nyquist图,并对其进行稳定性的分析。 三、实验原理: 二阶系统的阶跃响应及阶跃响应指标: 假设系统的开环模型G0(s)=w n2/s(s+2*ζ*w n),并假设由单位负反馈构造出这个闭环控制系统模型,则定义ζ为系统的阻尼比,w n为系统的自然震荡频率,这时闭环系统模型可以写成G(s)=w n2/(s2+2*ζ*w n*s+w n2),并利用matlab绘制出起阶跃响应曲线。线性系统的阶跃响应可以通过step()函数直接求取。 根轨迹图的绘制: 假设单变量系统的开环传递函数为G(s),并且控制器为增益K,整个系统是由单位负反馈构成的闭环系统,这样就可以求出闭环系统的数学模型Gc(s)=KG(s)/(1+KG(s)),可见,闭环系统的特征根可以由下面的方程求出 1+KG(s)=0 并可以化成多项式方程求根的问题。对K的不同取值,则坑能绘制出每个特征根变化的曲线,这样的曲线称为根轨迹。在matlab中提供了rlocus()函数,可直接用于系统的根轨迹的绘制,根轨迹函数的调用方法也很直观,用rlocus()就可以直接绘制出来。 Matlab中对线性系统的频域分析可以利用bode()和nyquist()函数绘制bode图和nyquist 图进行分析,bode图可以同时分析系统的幅值、相位与频率之间的关系。 四、实验内容: 1、时域分析 绘制二阶系统在不同阻尼比取值下的单位阶跃响应曲线,并说明阻尼比对系统性能的影响。 (1)绘制二阶系统在不同阻尼比取值下的单位阶跃响应图可有两种方式 程序一 for zet=1:6;den=[1,zet*.2,1]; sys(zet)=tf(1,den);end step(sys(1),sys(2),sys(3),sys(4),sys(5),sys(6),14),grid 程序二 sys1=tf(1,[1,.2,1]); sys2=tf(1,[1,.4,1]); sys3=tf(1,[1,.6,1]); sys4=tf(1,[1,.8,1]); sys5=tf(1,[1,1,1]); Sys6=tf(1,[1,1.2,1]); step(sys1,sys2,sys3,sys4,sys5,sys6,14),grid 绘制出的图形如下图

控制系统性能指标

第五章线性系统的频域分析法 一、频率特性四、稳定裕度 二、开环系统的典型环节分解 五、闭环系统的频域性能指标 和开环频率特性曲线的绘制 三、频率域稳定判据 本章主要内容: 1 控制系统的频带宽度 2 系统带宽的选择 3 确定闭环频率特性的图解方法 4 闭环系统频域指标和时域指标的转换 五、闭环系统的频域性能指标

1 控制系统的频带宽度 1 频带宽度 当闭环幅频特性下降到频率为零时的分贝值以下3分贝时,对应的频率称为带宽频率,记为ωb。即当ω>ωb 而频率范围(0,ωb)称为系统带宽。 根据带宽定义,对高于带宽频率的正弦输入信号,系统输出将呈现较大的衰减,因此选取适当的带宽,可以抑制高频噪声的影响。但带宽过窄又会影响系统正弦输入信号的能力,降低瞬态响应的速度。因此在设计系统时,对于频率宽度的确定必须兼顾到系统的响应速度和抗高频干扰的要求。 2、I型和II型系统的带宽 2、系统带宽的选择 由于系统会受多种非线性因素的影响,系统的输入和输出端不可避免的存在确定性扰动和随机噪声,因此控制系统的带宽的选择需综合考虑各种输入信号的频率范围及其对系统性能的影响,即应使系统对输入信号具有良好的跟踪能力和对扰动信号具有较强的抑制能力。 总而言之,系统的分析应区分输入信号的性质、位置,根据其频谱或谱密度以及相应的传递函数选择合适带宽,而系统设计主要是围绕带宽来进行的。 3、确定闭环频率特性的图解方法

1、尼科尔斯图线 设开环和闭环频率特性为 4、闭环系统频域指标和时域指标的转换 工程中常用根据相角裕度γ和截止频率ω估算时域指标的两种方法。 相角裕度γ表明系统的稳定程度,而系统的稳定程度直接影响时域指标σ%、ts。 1、系统闭环和开环频域指标的关系 系统开环指标截止频率ωc与闭环带宽ωb有着密切的关系。对于两个稳定程度相仿的系统,ωc大的系统,ωb也大;ωc小的系统,ωb也小。 因此ωc和系统响应速度存在正比关系,ωc可用来衡量系统的响应速度。又由于闭环振荡性指标谐振Mr和开环指标相角裕度γ都能表征系统的稳定程度。 系统开环相频特性可表示为

机械自动化控制系统分析

机械自动化控制系统分 析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

机械自动化控制系统分析机械自动化设计、制造依靠电子技术为主体,同时实现不同学科内容的相互渗透、结合,在发展的过程中得到逐渐完善,涉及产品结构规划、功能追加、生产方式完善等都需要配合专有控制体系进行调整,是工业生产活动慢慢朝向自动化形态转变的必然趋势。这种依照微电子、计算机管理系统实施搭建的群体编程技术,根据业务伸展和组织结构目标细化原则,在高质量、稳定性能和低能耗素质上实现完整功能定义,推动整个优化系统的全面改观。本文就是针对其中一些流程进行拆解,确保后期开发空间的拓展,促进我国机械自动化应用实力的增长。 工程机械设备在整个经济社会空间中良性地位突出,包括工程推土机和装卸机等,都是需要在及其恶劣的环境中落实工作内容,这也从某一方面加重操作人员的劳动强度。为了确保既定目标的落实,装置的调节活动必不可少,而人员作业效率和管制质量的提升更是相当重要,从整体角度观察,要做到尽善尽美可以说难度较大。针对挖掘机来说,其装置形态由各类自由系统构建而成,提升和回转程序也要相互交替,所以如何在这一环节发挥控制系统的协调功能就是整个研究课题的最终方向,这将直接决定创新控制系统的改造事宜走向,只要处理完好,就会减轻人员工作强度,同时提高作业管控质量,减少安全事故的发生。 机械自动化控制系统原理的阐述

所谓自动化控制就是利用控制器设备进行生产工作状态的远程管理,令其维持预定变化规律的节奏趋势,这类系统需要借助一些机电部件完成结构搭建,进而汲取更多连续组合的相关元素,促成阶段整改效益的提升。在机械调整空间范围中,控制系统的存在意义就是调整机械布局模式,现代机械设施与自动控制系统已经密不可分,这是机电一体化改造活动的总体局势。其中,检测系统会对工作输出量进行梳理,确定报告无误后反馈给上级,保证控制流程运算的合理性,这样的系统称为闭环式管控结构。在控制系统中包含丰富的信号类型,可以考虑全部予以时间连续函数处理和离散规划两种途径,过程中如果系统的输入和输出变量都是单个的,就自然过渡到单变量控制系统形态。 系统控制的稳定性能研究 2.1.阻碍系统稳定运行的因素整理 工程机械在作业环节中,由于外部环境的恶劣,机身震动现象比较常见,但设备使用性能也会大大减分。在机械系统周边的部件中,尤其是动力源部位,液压装置运转的机械震动极为剧烈,加上运动触碰激起的冲击负荷,都会令后期使用效能大幅下降,所以,系统抗震性能的设计尤为重要。另外,恶劣环境下进行机械作业活动,周边的噪声影响也会十分强烈,这就令控制系统必须做好抗干扰元素追加工作,随时抵御外

计算机控制系统性能分析

南京邮电大学自动化学院 实验报告 课程名称:计算机控制系统 实验名称:计算机控制系统性能分析所在专业:自动化 学生姓名:王站 班级学号:B11050107 任课教师: 程艳云

2013 /2014 学年第二学期

实验一:计算机控制系统性能分析 一、 实验目的: 1.建立计算机控制系统的数学模型; 2.掌握判别计算机控制系统稳定性的一般方法 3.观察控制系统的时域响应,记录其时域性能指标; 4.掌握计算机控制系统时间响应分析的一般方法; 5.掌握计算机控制系统频率响应曲线的一般绘制方法。 二、 实验内容: 考虑如图1所示的计算机控制系统 图1 计算机控制系统 1. 系统稳定性分析 (1) 首先分析该计算机控制系统的稳定性,讨论令系统稳定的K 的取值范围; 解: G1=tf([1],[1 1 0]); G=c2d(G1,0.01,'zoh');//求系统脉冲传递函数 rlocus(G);//绘制系统根轨迹 Root Locus Real Axis I m a g i n a r y A x i s -7 -6-5-4-3-2-1012 -2.5-2-1.5-1-0.500.51 1.5 22.5 将图片放大得到

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 -0.15 -0.1 -0.05 0.05 0.1 0.15 Root Locus Real Axis I m a g i n a r y A x i s Z 平面的临界放大系数由根轨迹与单位圆的交点求得。 放大图片分析: [k,poles]=rlocfind(G) Select a point in the graphics window selected_point = 0.9905 + 0.1385i k = 193.6417 poles = 0.9902 + 0.1385i 0.9902 - 0.1385i 得到0

差错控制系统的性能分析

课程设计报告 课程名称 : 移动通信 设计题目名称:差错控制系统的性能分析 学院:信息工程学院 学生姓名: 班级: 学号: 成绩: 指导教师: 开课时间: 2015~2016 学年第二学期

目录 1、课程设计目的 (4) 2、设计任务书 (4) 3、进度安排 (8) 4、具体要求 (8) 5、基本原理 (9) 5.1 卷积码编码与译码原理 (9) 5.1.1 卷积码的编码原理 (9) 5.1.2 卷积码的译码原理 (10) 5.2 分组码(循环码)编码与译码原理 (13) 5.2.1 循环码编码原理 (14) 5.2.2循环码的译码原理 (14) 6、 Simulink单元模块设计 (18) 6.1 卷积码的差错控制系统仿真模型 (18) 6.1.1 总体设计框图 (18) 6.1.2 信源子系统 (18) 6.1.3 信道 (20) 6.1.4 信宿子系统 (21) 6.1.5 卷积码的差错控制系统M文件 (26) 6.1.6 运行结果 (28) 6.2 分组码的差错控制系统仿真模型 (29) 6.2.1 总体设计框图 (29) 6.2.2 信源子系统 (29) 6.2.3 信道 (31) 6.2.4 信宿子系统 (32) 6.2.5 分组码的差错控制系统M文件 (35) 6.2.6运行结果 (35) 7、运行程序过程中产生的问题及采取的措施 (36) 8、心得体会 (36) 9、参考文献 (37)

1、课程设计目的 移动通信也是一门实践性非常强的课程,实验教学在整个课程的教学中占据了非常重要的地位。在学生学习了现代通信原理、数字信号处理(DSP技术)等课程后,学生已经具有了一定的理论基础和实验技能,在此基础上本实验课程开设的主要作用和目的在于: 1.帮助学生更好地理解移动通信系统,掌握各种移动通信系统的模型2.帮助学生熟悉常用的通信系统仿真平台,学习仿真模型的设计,掌握通信系统的仿真方法,学会利用仿真软件对系统性能进行评价; 2、设计任务书

控制系统性能评估1

对于一个控制系统来说,系统稳定是前提,在这个前提下,控制系统性能评估主要关心控制系统的动态性能和稳态性能。动态性能指标反映给定输入信号快速平稳的跟踪能力,或者扰动下恢复正常工作的能力。稳态性能指标反映控制性能的最终控制精度。动态性能和稳态性能的性能指标对评估一个控制系统有较重要的作用。 对于控制系统的分析主要有三种方法:时域分析法,频域分析法,根轨迹法。不同的分析方法有不同的稳态和动态性能指标,下面是我的具体介绍。 一、时域:评估一个具体控制系统,我们要得到它的性能指标,在此我给控制系统输入一个阶跃信号,由控制系统输出响应曲线来求出性能指标,仿真可在MATLAB或Simulink进行。 1、一阶系统:数学模型: 阶跃响应曲线: 图一 性能指标:过渡时间ts=4T(98%),上升时间tr=0.13T。上升时间和过渡时间越小,说明其稳态性能和动态性能越好。 2、二阶系统: 数学模型:

单位阶跃响应(衰减振荡形式): 图二 (1)衰减比:n=B/B1,B表示第一个波振幅,B1表示第二个波振幅,n是恒大于1的,n越大稳定性越高,实际操作将n控制在4:1到10:1范围内,则控制性能较好。 (2)超调量δ%:超过目标值的最大偏差量与目标值之比,用百分比表示。阻尼比越小,超调量越大,与自然频率无关。在实际系统中阻尼比一般在0.5-0.8之间。 超调量越大说明稳定性越差,而快速性越好,它们是相互制约的、矛盾的。 (3)调节时间ts:从开始上升到不断调整后进入到稳定的误差范围内的时间。正是这段时间也可以称作动态过程,之后的时间称为稳态。通常所指的动态性能指标包括稳定性和快速性,稳态性能指标就是准确性。稳定性和稳态是不能混为一谈的,一定要分清。 (4)振荡次数N:从开始上升到反复穿越目标值的次数。理想状态下希望N=0.5次。这是考虑到三项指标的综合性。 (5)上升时间tr:从开始上升时间到第一次到达目标值的时间。阻尼比不变时,Wn越大,上升时间越小;自然频率不变,阻尼比越小,上升时间越小。理想状态下希望越短越好,在实际的自动控制系统中是不可能的。 (6)稳态误差ess,反映控制系统的稳态精度,越小越好。 对于一些高阶,复杂的系统,可以在一定范围内简化为典型的系统,便于对控制系统进行分析。 3、高阶系统的性能分析:

控制系统的频率特性分析

1.已知系统传递函数为:1 2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输 出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即 可得到系统的幅相频率特性。 F=10时 输入: 输出: F=50时 输入: 输出:

(2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。提示:a)函数bode()用来绘制系统的bode图,调用格式为: bode(sys) 其中sys为系统开环传递函数模型。 参考程序: s=tf(‘s’); %用符号表示法表示s G=1/*s+1); %定义系统开环传递函数 bode(G) %绘制系统开环对数频率特性曲线(bode图)

实验七连续系统串联校正 一.实验目的 1.加深理解串联校正装置对系统动态性能的校正作用。 2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。二.实验内容 1.串联超前校正 系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间 num=10; 1)figure(1) 2)hold on 3)figure(1) 4)den1=[1 1 0]; 5)Gs1=tf(num,den1); 6)G1=feedback(Gs1,1,-1); 7)Step(G1) 8) 9)k=10; 10)figure(2) 11)GO=tf([10],[1,1,0]); 12)Gc=tf([,1],[1,00114]); 13)G=series(G0,Gc); 14)G1=feedback(G,1); 15)step(G1);grid

分数阶温度控制系统性能评估文献综述

分数阶温度控制系统性能评估文献综述 控制性能评估技术的研究现状 控制性能评估是控制理论研究领域的重要分支,并且对于这一方面的研究成果而言,也是颇为丰硕的。文献[1-2]提出了性能评估领域的重要理论,即最小方差控制理论,为之后的性能评估研究奠定了基石。1978年,DeVries[3]等利用多元时间序列技术分析了造纸机定量控制的有效性,通过比较观察到的输出变化和从自回归滑动平均向量时间序列模型得到的理论最小变化的估计来衡量系统的性能,这种研究方法极大地激发了后续控制性能评估领域的课题研究。Harris[4]针对具有扰动输入的线性传递函数描述的过程使用了最小方差控制器实现了均方意义下的最优控制,引出了最小方差评估评估基准。1993年,Stanfelj等[5]提出了一种基于典型运行过程数据的单回路控制系统性能监测与诊断的分层方法,进一步推展了最小方差基准的性能评估研究。文献[6]提出了一种综合控制方案性能评价指标,通过使用常规闭环数据和最小二乘回归法得到单变量前馈/反馈系统的方差估计,从而实现前馈/反馈回路的性能评估。文献[7]讨论了利用闭环运行数据评估控制系统性能恶化的问题,提出了一种以闭环传递函数冲激响应系数为约束来表示可接受性能的评估方案,利用似然方法,提出了一种假设检验方法来确定控制性能是否发生了劣化。Harris等[8]将MIMO最小方差控制器的预测性能作为评估当前性能的下限,研究了基于最小方差基准的MIMO系统性能评估问题。文献[9-10]针对以最小方差控制为基准的多变量控制性能评估需要一个交互矩阵来过滤闭环输出,研究了不需要交互矩阵的方法,使用两种基于数据驱动子空间算法,用于性能指标的计算。Kamrunnahar等[11-12]将ARMarkov最小二乘法推广到多变量控制系统,使用由过程输入输出数据和标准最小二乘(LS)算法得到的马尔可夫参数直接用于模型预测控制器的设计和控制性能的评估。1999年,Huang[13,14]提出了一种更实用的控制性能评估方法—LQG基准,即从输出性能和输入变化两个方面来综合评估控制回路的性能,并计算出相应的回路实际可达性能以曲线的形式呈现出来。文献[15]讨论了Harris指数评估指标能否稳定地用于评估多变量动态矩阵控制器的性能。Ko等[16]针对受约束影响的模型预测控制系统,提出了一种基于滚动优化方法的约束最小方差控制器作为其性能评估基准。文献[17-18]推导证明了在最小方差控制下的串级控制回路中主输出变量是反馈不变的,通过使用测量数据进行多变量时序建模,得到了串级控制回路中最小可实现方差的估计,从而实现将最小方差基准应用到串级控制过程性能评估中的目的。Ko等[19]研究了基于最小方差基准的多变量控制系统的性能评估。Grimble[20]研究了一种基于改进型H2最优控制的性能评估基准,控制器结构被

PID控制参数对系统性能影响的分析

〈〈计算机控制技术》课程三级项目某二阶系统的PID控制器设计及参数整定 报告人:刘宝 指导教师:刘思远 燕山大学机械工程学院机电控制系 2012年9月23日

目录 〈〈计算机控制技术》课程三级项目 (1) 1.1 PID控制的应用现状 (3) 1.2 PID控制器各个参数对系统系能的影响 (3) 1.2.1比例系数K P对系统性能的影响 (3) 1.2.2积分系数K1对系统性能的影响 (4) 1.2.3微分系数K2对系统性能的影响 (5) 1.3对给定的系统进行PID控制调节 (6) 1.4收获与感想 (8)

1.1 PID控制的应用现状 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,乂称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之0从理论角度而言,PID控制是20世纪40年代开始的调节原理的一种典型代表。PID控制再世纪控制工程中应用最广,据不完全统计,在工业过程控制、航空航天控制等领域中,PID孔的应用占80%以上。尽管PID控制已经写入经典教科书,然而由于PID控制的简单与良好的应用效果,人们仍在不断研究PID控制器各种设计方法(包括各种自适应调节、最优化方法) 和未来潜力。 由于液压控制系统大功率、高控制精度、技术成熟等特点,在要求精度高的重型机械机构中得到了广泛应用。在现实工业中比例伺服阀与PID控制器的结合,使得液压控制对于位移、速度、压力等的控制获得更加良好的效果。 1.2 PID控制器各个参数对系统系能的影响 1.2.1比例系数心对系统性能的影响 (1)对系统的动态性能影响:K P加大,将使系统响应速度加快,K P偏 大时,系统振荡次数增多,调节时间加长;心太小乂会使系统的响应速度 缓慢。K P的选择以输出响应产生4:1衰减过程为宜。 (2)对系统的稳态性能影响:在系统稳定的前提下,加大K P可以减少稳态误差,但不能消除稳态误差。因此K P的整定主要依据系统的动态性能。

PID控制器参数对系统性能的影响分析

PID控制器参数对系统性能的影响分析 1、比例系数K p对系统性能的影响 (1)对系统的动态性能影响:Kp加大,将使系统响应速度加快,K p偏大时,系统振荡次数增多,调节时间加长;;K p太小又会使系统的响应速度缓慢。K p的选择以输出响应产生4:1衰减过程为宜。 (2)对系统的稳态性能影响: 在系统稳定的前提下,加大K p可以减少稳态误差,但不能消除稳态误差。因此K p的整定主要依据系统的动态性能。 2、积分时间T I对系统性能的影响 积分控制通常和比例控制或比例微分控制联合作用,构成PI控制或PID控制。 (1)对系统的动态性能影响: 积分控制通常影响系统的稳定性。T I太小,系统可能不稳定,且振荡次数较多;T I太大,对系统的影响将削弱;当T I较适合时,系统的过渡过程特性比较理想。 (2)对系统的稳态性能影响:

积分控制有助于消除系统稳态误差,提高系统的控制精度,但若T I太大,积分作用太弱,则不能减少余差。 3、微分时间T D对系统性能的影响 积分控制通常和比例控制或比例积分控制联合作用,构成PD控制或PID控制。 (1)对系统的动态性能影响: 微分时间T D的增加即微分作用的增加可以改善系统的动态特性,如减少超调量,缩短调节时间等。适当加大比例控制,可以减少稳态误差,提高控制精度。但T D值偏大或偏小都会适得其反。另外微分作用有可能放大系统的噪声,降低系统的抗干扰能力。 (2)对系统的稳态性能影响: 微分环节的加入,可以在误差出现或变化瞬间,按偏差变化的趋向进行控制。它引进一个早期的修正作用,有助于增加系统的稳定性。 PID控制器的参数必须根据工程问题的具体要求来考虑。在工业过程控制中,通常要保证闭环系统稳定,对给定量的变化能迅速跟踪,超调量小。在不同干扰下输出应能保持在给定值附近,控制量尽可能地小,在系统和环境参数发生变化时控制应保持稳定。一般来说,要同时满足这些要求是很难做到的,必须根据系统的具体情况,满足主要的性能指标,同时兼顾其它方面的要求。 在选择采样周期T时,通常都选择T远远小于系统的时间常数。因此,PID 参数的整定可以按模拟控制器的方法来进行。

相关主题
文本预览
相关文档 最新文档