当前位置:文档之家› 电力电子装置及系统课程设计说明书单端反激AC-DC-DC电源设计

电力电子装置及系统课程设计说明书单端反激AC-DC-DC电源设计

电力电子装置及系统课程设计说明书单端反激AC-DC-DC电源设计
电力电子装置及系统课程设计说明书单端反激AC-DC-DC电源设计

目录

1设计要求 (2)

2设计原理 (3)

2.1高频开关电源的基本组成 (3)

2.1.1开关电源的输入环节 (3)

2.1.2功率变换电路 (4)

2.1.3 控制及保护电路 (5)

2.2单端反激电源基本原理 (7)

2.2.1共同关系式 (7)

2.2.2连续工作模式 (8)

2.2.3不连续工作模式(含临界工作模式) (8)

3单端反激AC-DC-DC电源的设计 (9)

3.1 整流环节设计 (9)

3.2滤波环节设计 (12)

3.2.1滤波原理 (12)

3.2.2 RC滤波电路 (12)

3.2.3 LC滤波电路 (13)

3.2.4 滤波参数设计 (14)

3.3 主电路设计 (16)

3.3.1单端反激式开关电源电路的设计 (16)

3.3.2反馈环设计 (16)

4 模型仿真 (18)

4.1 AC DC整流滤波电路仿真 (18)

4.2开环系统仿真 (19)

4.3 闭环系统仿真 (22)

5 小结 (25)

参考文献 (26)

单端反激AC-DC-DC电源(20V,10W)

设计

1 设计要求

初始条件:

设计一个AC-DC-DC电源,具体参数如下:三相交流输入220V/50Hz,输出直流电压20V,纹波系数<5%,功率10W。

要求完成的主要任务:

(1)对AC-DC-DC 电源进行主电路设计;

(2)控制方案设计;

(3)给出具体滤波参数的设计过程;

(4)在MATLAB/Simulink搭建闭环系统仿真模型,进行系统仿真;(5)分析仿真结果,验证设计方案的可行性。

2 设计原理

2.1高频开关电源基本组成

高频开关电源主要由输入环节、功率变换电路以及控制驱动保护电路3大部分组成。

2.1.1开关电源的输入环节

1)输入浪涌电流和瞬态电压的抑制

(1)输入浪涌电流抑制

在合闸的瞬间,由于输入滤波电容的充电,在交流电源端会呈现非常低的阻抗,产生大的浪涌电流,为了将浪涌电流控制在安全范围内,根据高频开关电源功率的大小,一般采取以下两种方法:一种是限流电阻加开关,另一种是采用负温度系数热敏电阻的方法。

限流电阻加开关的方法,是将限流电阻串接于交流线路之中或整流桥之后的直流母线上,开关与限流电阻并联,当滤波电容充满电荷后,开关导通,短接电阻,因此可用晶闸管组成无触点开关。

选择具有负温度系数的热敏电阻NTC取代上述电阻,就不需要开关。在合闸的瞬间NTC电阻的阻值很大,流过电流之后,温度上升,阻值迅速变小,既可以限制浪涌电流,又可以保证输入环节在稳态工作时不消耗太大的功率。

对于功率很小的开关电源,可以直接在线路中串接电阻限制浪涌电流。

(2)输入瞬态电压抑制

通常是在交流线路间并联压敏电阻或者瞬态电压抑制二极管来抑制输入瞬态电压。瞬态电压抑制二极管简称TVS器件,当承受一个高能量的瞬时过压脉冲时,其工作阻抗能立即降至很低,允许大电流听过,并将电压钳制到预定水平,它的应用效果相当一个稳压管,但TVS能承受的瞬时脉冲功率可达上千瓦,其钳位响应时间仅为1ps。在脉冲时间10ms条件下,TVS允许的正向浪涌电流可达

50A~200A。双向TVS适用于交流电路,单向TVS用于直流电路

2)线路滤波器

为防止开关电源和电网相互干扰,应该在输入线路上加入滤波器。

3)输入整流滤波

高频开关电源输入不用工频变压器,直接对交流电进行整流滤波。目前国际上交流电网电压等级有两种:100v~115V和230V,频率为50HZ或60HZ。整流滤波电路要适应交流电网电压的状况,现在很多开关电源都能适应通用电网电压的范围,即输入电压为85V~265V。高频开关电源的输入整流电路一般采取桥式整流、电容滤波电路。

2.1.2功率变换电路

功率变换电路是开关电源的核心部分,针对整流以后不同的直流电压功率变换电路有多种拓扑结构,单端反激拓扑电路及主要工作波形如图所示。

图2-1 反激变换器拓扑及工作波形

2.1.3控制及保护电路

开关电源的主要控制方式是PWM。其中电压控制模式和峰值电流控制模式被广泛使用。

1)PWM电压控制模式

电压控制模式的原理如图2-3所示,它只有一个电压反馈环,误差放大器的输出与恒定的三角波相比较,通过脉冲宽度调制,得到要求的输出电压。单一回馈电压环使设计和调试比较容易;但是,当输入电压或负载突变时,要经过主电路的输出电容和电感L延时,以及电压误差放大器的延时,再传至PWM比较器调制脉宽,使输出电压变化,这几个延时是电压控制模式瞬时响应慢的主要因素。改善电压控制模式瞬态响应慢的一种有效方法是采用电压前馈模式控制PWM技术,原理图如图2-5所示。

图2-3 电压模式控制原理图

图2-4 电压前馈模式控制原理图

2)PWM峰值电流控制模式

峰值电流控制模式简称为电流控制模式。主要用于能周期出现电流峰值的电路,电流控制模式原理如图2-5.

图2-5电流控制模式原理图

3)开关电源的保护

开关电源保护一般有过压、欠压、过流、过温及短路保护。根据功率和拓扑结构的不同,采用不同的传感器和方法,适时采集电压、电流、温度数据,与设定的给定值进行比较,如有超出,封锁PWM的脉冲输出,关断功率开关管,达到保护开关电源的目的。

2.2单端反激电源基本原理

单端反激电源电路如图2-6所示。

变压器PT既是一个变压器又是一个线性电感,T饱和导通时其等效阻抗近似为零,如果外加电压Ui恒定,流过绕组N1的电流i1线性增长,由于绕组N2和N1是反极性的,二极管D截止,副边没有电流,导通器件的能量储存在初级电感里;当开关管截止时,副边绕组感应电势使二极管导通,通过输出电容和负载释放能量。根据副边绕组放电时间的不同,单端反激电源分为三种工作模式:不连续工作模式、临界工作模式和连续工作模式。

图2-6 单端反激电源

2.2.1 共同关系式

(1)开关管T导通期间,流过饶梓N1的电流i1及磁通 ? 均线性增长,设N1的电感量为L1,则流过N1的电流i1为

Δi1=U i

L i T on=U i

L i

DT(2?1)

式中T为开关周期,D为占空比。

(2)在开关管T截止期间,流过绕组N2的电流i2及磁通?均线性减小,设N2的电感量为L2,电流线性减小的时间是△t,则流过N2的电流i2减量为

Δi2=U0

L2

Δt(2?2)(3)在一个周期内磁通的增量等于磁通的减少量。ΔΦ+=ΔΦ?

(4)开关管截止期间,N1上感应电压与电源电压Ui一起加载开关管T的CE结上,开关管T承受的电压为

U CE=U i+U0N1

N2

(2?3)

2.2.2 连续工作模式

如果电流连续(含临界工作模式),Δt =T off =(1?D )T ,输出电压的表达式为

U 0 U i

=N 2N 1

?D

1?D (2?4)

I 1(max )=U 0I 0U i D

+U

12L 1

DT (2?5)

2.2.3 不连续工作模式(含临界工作模式)

由于在T 导通期间储存的能量W i =L 1I 1(max )

2/2 ,因此电源输入功率P i 为 P i =

W j T =12T

L 1I 1(max)2

(2?6) 如果电流不连续(含临界工作模式),T 导通的起始电流为0,则I 1(max )=

U 1L 1

T on ,假设电路没有损耗、转换效率η=1 ,输入功率P i 应与输出功率P 0 相等,

设输出负载电阻为R L ,则有

P 0=U i 2T on 22L 1T =U 0

2R L

(2?7)

从而可以得到不连续工作模式和临界工作模式输出电压的表达式为 U 0=U i T on √R

L 2L 1

T (2?8)

从上式可以看出,在不连续工作模式和临界工作模式工作时,输出电压与输入电压和导通时间成正比;与负载电阻的平方根成正比,负载电阻越大,输出电压越高。

3 单端反激AC DC DC电源的设计

3.1整流环节设计

在电容滤波的三相不可控整流电路中,最常用的是三相桥式结构,电路及其理想波形如图3-1(a)和3-1(b)所示。

图3-1 三相桥式整流电路结构及波形

该电路中,当某一对二极管导通时,输出直流电压等于交流侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。当没有二极管导通时,由电容向负载放电,ud按指数规律下降。

设二极管在距线电压过零点δ角处开始导通,并以二极管VD6和VD1开始导通的时刻为时间零点,则线电压为

U ab=U2sin(ωt+δ)(3?1)而相电压为

U a=U2sin(ωt+δ?π

2

) (3?2)

在ωt=0时,二极管VD6和VD1开始同时导通,直流侧电压等于Uab;下一次同时导通的一对管子是VD1和VD2,直流侧电压等于Uac。这两段导通过程

之间的交替有两种情况,一种是在VD1和VD2同时导通之前VD6和VD1是关断的,交流侧向直流侧的充电电流id是断续的,如图1所示,另一种是VD1一直导通,交替时由VD6导通换相至VD2导通,id是连续的。介于二者之间的临界情况是,VD6和VD1同时导通的阶段与VD1和VD2在ωt=π/3 恰好衔接了起来,id恰好连续。由前面所述“电压下降速度相等”的原则,可以确定临界条件。假设在ωt+δ=2π/3 恰的时刻“速度相等”恰好发生 ,可得

ωRC>√3

这就是临界条件。ωRC > 和ωRC≤分别是电流id 断续和连续的条件。图中给出了ωRC等于和小于时的电流波形。对一个确定的装置来讲,通常只有R 是可变的,它的大小反映了负载的轻重。因此可以说,在轻载时直流侧获得的充电电流是断续的,重载时是连续的,分界点就是R= /(ωC)。

ωRC > 时,交流侧电流和电压波形如图1所示,其中δ和θ的求取可仿照单相电路的方法。δ和θ确定之后,即可推导出交流侧线电流 ia 的表达式,在此基础上可对交流侧电流进行谐波分析。。

以上分析的是理想的情况,未考虑实际电路中存在的交流侧电感以及为抑制冲击电流而串联的电感。当考虑上述电感时,电路的工作情况发生变化,将电流波形与不考虑电感时的波形比较可知,有电感时电流波形的前沿平缓了许多,有利于电路的正常工作。随着负载的加重,电流波形与电阻负载时的交流侧电流波形逐渐接近。

2.主要数量关系

(1)输出电压平均值空载时,输出电压平均值最大,为U d=2.45U2

。随着负载加重,输出电压平均值减小,至ωRC=√3进入id连续情况后,输出电压波形成为线电压的包络线,其平均值为U d=2.34U2。可见,Ud在

2.34U2~2.45U2之间变化。

与电容滤波的单相桥式不可控整流电路相比,Ud的变化范围小得多,当负载加重到一定程度后,Ud就稳定在2.34U2不变了。

(2) 电流平均值输出电流平均值IR为:

I R=U d

(3?3)

R

与单相电路情况一样,电容电流iC平均值为零,因此: Id=IR 在一个电源周期中,id有6个波头,流过每一个二极管的是其中的两个波头,因此二极管电流平均值为Id的1/3,即:IVD=Id/3=IR/3

(3) 二极管承受的电压二极管承受的最大反向电压为线电压的峰值,为√6U2

3.2滤波环节设计

3.2.1滤波原理

整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。

常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。

脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量

半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动

系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。)

3.2.2 RC滤波电路

RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。

由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由

C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就

是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合.

3.2.3 LC滤波电路

根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C 并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。而当输入电压降低时,电容两端电压以指数规律放电,就可以把存储的能量释放出来。经过滤波电路向负载放电,负载上得到的输出电压就比较平滑,起到了平波作用。若采用电感滤波,当输入电压增高时,与负载串联的电感L中的电流增加,因此电感L将存储部分磁场能量,当电流减小时,又将能量释放出来,使负载电流变得平滑,因此,电感L也有平波作用。

图3-2 LC电感滤波电路

利用储能元件电感器L的电流不能突变的特点,在整流电路的负载回路中串联一个电感,使输出电流波形较为平滑。因为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高.

电感滤波的波形图如图3-3所示。根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。

图3-3 电感滤波波形图

3.2.4滤波参数设计

(1)滤波参数设计

整流电路采用三相桥式不控整流,交流电源为220V,50HZ。

输出平均整流电压

U d=2.34U2=2.34×220=514.8 V(3?4)不考虑换相重叠角及直流电流连续情况下,不可控整流电路输出的直流电压采用傅立叶级数形式可表示为:

u d=U d∑√2

n=6k

U n cos nωt (k=1,2,3,…)

=1.35U2l(1+2cos6ωt

5×7?2cos12ωt

11×13

+2cos18ωt

17×19

??) (3?5)

式中U2l为交流侧线电压有效值

直流侧电流id可采用直流电压表达式与LCR电路的阻抗计算获得:

i d=U d

R +∑√2U n cosnωt

Z n

n=6k

(3?6)

式中Zn为LCR电路的n次谐波阻抗

考虑滤波电容C对6次及6次以上频率谐波的阻抗远小于R,Zn仅与LC 的阻抗相关,即Zn=j(X Ln?X Cn),则:

i d=U d

R

+∑

√2U n sin nωt

nωL?1/nωC

n=6k

(3?7)

由式(1)、(2)可以看出整流电压ud中的谐波电压Un随着频率的增加而迅速减小,而滤波电路的阻抗Zn迅速增加,因而id中的主要谐波成份为6次谐波,12次谐波仅为6次谐波的12%以下,18次谐波仅为6次谐波的3.6%。因此可以忽略12次及12次以上的谐波分量,同时令X6=6ωL?1/6ωC,这样式(2)可简化为

i d=U d

R

+∑

√2U6sin6ωt

6ωL?1/6ωC

n=6k

=(1.35

R +7.71×10?2sin6ωt

X6

)U2l(3?8)

由此可得电感电流峰值为:

I dm=(1.35

R +7.71×10?2

X6

)U2l (3?9)

电容电流有效值为:

I c=5.45×10?2

X6

U2l (3?10)

由直流侧电流最小值为零可确定直流侧电流连续条件为:

X6

R

≥5.71×10?2 (3?11)并且要满足

ωRC>√3

可取R=15.5Ω,C=0.0047uF,L=1mH

(2)二极管的选择

二极管承受的最大反向电压为√2U2=220√2 V=311.1 V

流过每个二极管的电流的有效值为

I vt=d

√2

=10A(3?12)故晶闸管的额定电压为

U N=(2~3)×311.1=622.2~933.3 V(3?13)晶闸管的额定电流为

I N=(1.5~2)×10

1.57

=9.6~12.7 A(3?14)

3.3主电路设计

3.3.1单端反激式开关电源电路的设计

电源框图如图3-4所示,三相交流输入先经过二极管的不控整流,再经过单端反激电源斩波得到20V直流电。

图3-4 单端反激电源框图

3.3.2反馈环设计

单端反激电源及其PWM控制电路构成闭环系统,其原理框图如图3-5所示。该PWM控制用的是电压控制模式。它只有一个电压反馈环,误差放大器的输出与恒定频率的三角波相比较,通过脉冲宽度调制,得到要求的输出电压。

图3-5 反馈环设计框图

设定参考电压为20V,与输出电压比较后得到比较值,再通过增益放大。最终得到可以控制的PWM波。

由于单端反激电源开始工作初始时,输出无电压。因此,设定一个反馈初始

时间,在初始时间前采用方波脉冲控制开关管,初试时间后切换为反馈控制开关管。反馈环设计图如下图所示:

图3-6 反馈环设计图

4 模型仿真

4.1AC DC整流滤波电路的仿真

整流滤波电路设计如下图:

图4-1 整流滤波电路设计图

参数如下:

三相电源: 380V;滤波电容:0.0047F;滤波电感:0.0001H;电阻:100Ω。

整流输出波形如下:

图4-2三相整流滤波输出波形图

可见输出电压在514.8V附近上下波动,基本满足滤波要求。

00.010.020.030.040.050.060.070.080.090.1

100

200

300

400

500

600

t/s

U

/

V

4.2 开环系统的仿真

开环系统MATLAB仿真模型如下图所示:

图4-3 单端反激电源开环系统仿真图

其中参数设置如下: 三相交流电源: 220V ,50HZ 滤波电容C1:0.0047 F 滤波电感L1:1mH 电阻R1:100Ω

单端反激电源变压器:fn=10000HZ ,变比:510/20 ;Rm(pu)=500,Lm(pu)=500 单端反激电源部分负载 R2:40Ω,

C2:0.0002F

开环系统输出电压波形如图4-4:

图4-4 单端反激电源开环系统输出电压波形图

0.010.020.030.040.05

0.060.070.080.090.1

051015

20

25

t/s

单端反激电源开环系统输出电压波形图

U /

V

电力电子技术课程设计题目

设计任务书1 舞台灯光控制电路的设计与分析√ 一、设计任务 设计一个舞台灯光控制系统,通过给定电位器可以实现灯光亮度的连续可调。灯泡为白炽灯,可视为纯电阻性负载,灯光亮度与灯泡两端电压(交流有效值或直流平均值)的平方成正比。 二、设计条件与指标 1.单相交流电源,额定电压220V; 2.灯泡:额定功率2kW,额定电压220V; 3.灯光亮度调节范围(10~100)%; 4.尽量提高功率因数,并减小谐波污染; 三、设计要求 1.分析题目要求,提出2~3种实现方案,比较并确定主电 路结构和控制方案; 2.设计主电路原理图和触发电路的原理框图; 3.参数计算,选择主电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.典型工况下的谐波分析与功率因数计算; 6.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.陈国呈译,《电力电子电路》,日本电气学会编,科学出 版社。

设计任务书2 永磁直流伺服电机调速系统的设计√ 一、设计任务 设计一个永磁直流伺服电机的调速控制系统,通过电位器可以调节电机的转速和转向。电机为反电势负载,在恒转矩的稳态情况下,电机转速基本与电枢电压成正比,电机的转向与电枢电压的极性有关。电机的电枢绕组可视为反电势与电枢电阻及电感的串联。 二、设计条件与指标 1.单相交流电源,额定电压220V; 2.电机:额定功率500W,额定电压220V dc,额定转速 1000rpm,Ra=2,La=10mH; 3.电机速度调节范围(10~100)%; 4.尽量减小电机的电磁转矩脉动; 三、设计要求 1.分析题目要求,提出2~3种实现方案,比较确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要 的保护电路; 3.参数计算,选择主电路元件参数分析主电路工作原理; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.陈国呈译,《电力电子电路》,日本电气学会编,科学出 版社;

电力电子课设(参考版)

一总体方案设计级总体框图 1、1总体方案设计 根据任务湖中的,本次设计的是dcdc降压变换器。DC-DC变换 器有两类:一类由两级电路组成DC-AC-DC变换,第一级为逆变,实现DC-AC变换,第二级为整流,实现AC-DC变换。另一类变 换器由晶体管和二极管开关组合成PWM开关,将输入直流电 压斩波后,再经滤波后输出。由于第一类比较复杂,方针起来 比较麻烦。第二类简单方便,比较贴合课本中的知识。第二类 dcdc降压电路有以下几种: BUCK PWM变换器在CCM下的工作原理(如图2-2):一个开 关周期内,开关晶体管的开,关过程将直流输入电压斩波,形 成脉宽为onT的方波脉冲(onT为开关管导通时间)。当开关晶 体管导通时,二极管关断,输入端直流电流电源Vi将功率传送 到负载,并使用电感储能(电感电流上升):当开关晶体管关断 时,二极管导通,续流,电感储能向负载释放(电感电流下降)。 一个开关周期内,电感电流的平均值等于负载电流OI(忽略滤 波电容C的ESR)。根据原理和电路拓扑可以推导出工作在CCM 下的DC-DC PWM变换器的输出-输入电压变换比: DVi Vo (2-1)

占空比D总是小于1的,所以BUCK变换器是一种降压变换器。 升降压型BUCK-BOOST技术 图2-4 升降压反极性(BUCK-BOOST)变换器电路拓扑 如图2-4所示,极性反转型(BUCK-BOOST)变换器主电路如用 元器件与BUCK,BOOST变换器相同,由开关管,储能电感,整 流二极管及滤波电容等元器件组成。这种电路具有BUCK变换 器降压和BOOST变换器升压的双重作用。升压还是降压取决与 PWM驱动脉冲的占空比D。虽然输入与输出共用一个连接端,但输出电压的极性与输入电压是相反的,故称为降压反极性变 换器。,根据我们的设计要求,是要求把12-18V的直流电压转 换到5V的直流电压,那么分析后可得降压型BUCK转换技术最 适合这次设计。 1、2总体框图设计

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

电力电子课程设计.doc

姓名: 李渺 学号: 1002160112 系(院): 邮电与信息工程学院专业: 电气自动化 班级: 01班 授课老师: 胡为兵 总成绩:

变频技术简介 设计说明,含设计题目,作用,设计依据(技术要求) 正文 小结 参考资料 一、变频技术简介 随着科学的发展,变频器的使用也越来越广泛,不管是工业设备上还是家用电器上都会使用到变频器,可以说,只要有三相异步电动机的地方,就有变频器的存在,要熟练地使用变频器,还必须掌握三相异步电动机的特性,因为变频器与三相异步电动机有着密切的联系。 1、变频调速基本原理 交流变频调速器(简称变频器)是建立在微处理器、电力电子学、电机学、现代控制理论基础之上的现代机电一体化高新技术产品。其工作原理是将三相工频交流电整流成直流电,再由直流电转换成交流电(交-直-交)。根据要求,可以从0~50Hz(或更高频率)之间输出任意频率。因此,通过对变频器输出频率的控制,实现交流电动机的调速,最终达到对传动负载的精确定量控制。:是应用当今国际最新变频技术产品——交流变频调速器,对交流电机进行无级调速控制的高新技术。变频调速控制系统主要由电控设备、变频器、交流电动机、传动机械及传感器等部分组成。变频控制系统可进行开环控制,也可进行闭环控制。开环系统的控制是通过设定值的改变,来实现对被控制对象输出值的直接控制。闭环控制系统是通过被控制对象反馈系统与设定值的动态比较,自动调节被控电机的转速,从而实现对被控制对象输出的控制。 2、变频调速的特点 变频调速的主要特点是通过变频器改变输出频率及输出电压,实现交流电机转速或被控对象输出的控制。此外,还具有以下优点: ①.由于变频器在启动过程中,输出频率由0Hz平滑地逐渐上升,电压从0V按比例上升到额定电压,电机无任何启动冲击,避免了由于电机启动产生的大电流对电机、电网、电气元件及所拖动机械设备的冲击和损坏。变频器在停止过程中,输出频率由运行频率平滑地逐渐下降到0Hz,电压从运行电压按比例逐渐到0V,实现了电动机软停止。 ②.变频启动可防止运输机械类载重物体受冲击和翻滚,提高传动设备的使用寿命。

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

电力电子装置课程设计AC-DC-DC电源

学号: 课程设计 题目AC-DC-DC电源(36V,300W)设计 学院自动化学院 专业电气工程及其自动化 班级电气 班 姓名 指导教师许湘莲 2013 年 6 月18 日

课程设计任务书 学生姓名:专业班级: 指导教师:许湘莲工作单位:武汉理工大学 题目: AC-DC-DC电源(36V,300W)设计 初始条件: 设计一个AC-DC-DC电源,具体参数如下:单相交流输入220V/50Hz,输出直流电压36V,纹波系数<5%,功率300W。 要求完成的主要任务: (1)对AC-DC-DC 电源进行主电路设计; (2)控制方案设计; (3)给出具体滤波参数的设计过程; (4)在MATLAB/Simulink搭建闭环系统仿真模型,进行系统仿真;(5)分析仿真结果,验证设计方案的可行性。 时间安排: 2013年6月8日至2013年6月18日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 (1) AC-DC-DC电源(36V,300W)设计 (2) 1 设计任务及要求 (2) 1.1.技术要求 (2) 1.2.设计内容 (2) 2电路总体方案及原理 (2) 2.1 开关电源的简介 (2) 2.2设计方案 (2) 3主电路设计及参数计算 (3) 3.1整流电路的设计 (3) 3.2降压斩波电路设计 (4) 3.3控制方案的设计 (6) 3.4主电路参数的计算 (7) 3.4.1主电路参数计算 (7) 3.4.2 滤波参数的计算 (8) 4 系统建模与仿真 (8) 4.1开环系统的仿真 (8) 4.2闭环系统的仿真 (11) 5结果分析 (12) 6总结与体会 (13) 参考文献 (14)

江苏大学电力电子课程设计

电力电子课程设计 学院:电气信息工程学院 专业: 学号: 姓名:

一. 设计要求 (1)根据给定的参数范围,设计BOOST 电路的参数; (2)根据给定的参数范围,设计CUK 电路的参数; (3)利用MATLAB 对上述电路图仿真实验得出波形; (4)在实验室平台上试验,观测数据与波形,并与仿真图形进行比对; (5)撰写实验报告; 二. 电路设计 1.电路工作原理 (1)Boost 电路 Boost 电路原理图 基本原理 假设L ,C 值很大。当可控开关V 处于通态的时候,电源E 向电感L 充电,充电的电流基本恒定不变I 1,同时电容C 向负载R 放电。因为C 很大,基本保持输出电压U 0不变。当可控开关处于断态的时候,E 和电感L 上积蓄的能量共同向电容C 充电并向负载R 提供能量。当电路工作处于稳态时,一个周期T 中电感L 积蓄的 能量与释放的能量相等,即: 化简得: ()off o on t I E U t EI 11-=E t T E t t t U off off off on o =+=

基本数值计算: 输出电压U 0与输入电压E 关系: 01 1 1U E E βα==- 输出电流I0与输入电流I1的关系: 01021U I I E E β== 输出电流I0与输出电压U0的关系: 001U E I R R β== (2)Cuk 电路 Cuk 电路原理图 基本原理 当可控开关V 处于通态的时候,E-L1-V 回路和R-L2-C-V 回路分别流过电流。当V 处于断态的时候,E-L1-C-VD 回路和R-L1-VD 回路分别流过电流。输出电压的极性与电源电压极性相反。

电子电力课程设计报告

一、设计课题:DC/DC PWM控制电路的设计 二、设计要求: 1、设计基于PWM芯片的控制电路,包括外围电路。按照单路输出方案进行设计,开关频率设计为10KHZ;具有软启动功能、保护封锁脉冲功能,以及限流控制功能。电路设计设计方案应尽可能简单、可靠。 2、实验室提供面包板和器件,在面包板或通用板上搭建设计的控制电路。 3、设计并搭建能验证你的设计的外围实验电路,并通过调试验证设计的正确性。 4、扩展性设计:增加驱动电路部分的设计内容。 5、Buck电路图如下图: Buck电路图 三、设计方案 本次课程设计基于PWM芯片TL494进行设计,通过查阅该芯片的相关资料,了解其各引脚功能,结合设计要求进行电路设计。首先建立最基本的电路,然后在其上面进行改进,得到进一步满足条件与

实际应用的电路,根据原理图在实验板上搭建电路进行试验,得出结果进行分析验证,最后得出DC/DC PWM控制电路。 四、设计原理图 如图所示为设计原理图,通过调节电位器Rp进行控制输出,从Vo端得到输出驱动电压的波形。 设计原理图 五、TL494各引脚功能 TL494的个引脚功能图如下表 TL494引脚功能表 引脚号功能引脚号功能 1 误差放大器1的同相输入端9 末极输出三极管发射极端 2 误差放大器1的反相输入端10 末极输出三极管发射极端

3 输出波形控制端11 末极输出三极管集电极端 4 死区控制信号输入端12 电源供电端 5 振荡器外接震荡电容连接端13 输出控制端 6 振荡器外接震荡电阻连接端14 基准电压输出端 7 接地端15 误差放大器2的反相输入端 8 末极输出三极管集电极端16 误差放大器2的同相输入端 六、各部分功能及工作原理 首先设计其振荡电路,根据振荡公式f=1.1/(R3XC2)=10Khz,取R3=1KΩ,则电容C2=0.1uF;然后,将同样大小的电容电阻串联并加以电压接地后,在电容电阻中间引出一根信号线作为第四脚的输入端,作为死区控制信号的输入。 接着,通过示波器测量振荡电路的波形如图所示: 震荡电路波形图 根据实验所测得的波形图及TL494芯片的内部结构, 可得振荡电路的峰值为2.88V,若要对其输出波形进行控制,则在第三脚接入的电压需小于 2.88-0.7=2.18V,即第三脚输入电压变化范围约为0-2.2V。如原理图所示,将1KΩ电阻与1-10KΩ电位器按照如原理图

电力电子课程设计模板

电气工程学院 电力电子课程设计 设计题目:MOSFET降压斩波电路设计专业班级:电气0907 学号:09291210 姓名:李岳 同组人:刘遥(09291212 ) 指导教师: 设计时间:2012年6月25日-29日 设计地点:电气学院实验中心

电力电子课程设计成绩评定表 指导教师签字: 年月日

电力电子课程设计任务书 学生姓名:李岳,刘遥专业班级电气0907 指导教师: 一、课程设计题目: MOSFET降压斩波电路设计(纯电阻负载) 设计条件:1、输入直流电压:U d=100V 2、输出功率:300W 3、开关频率5KHz 4、占空比10%~90% 5、输出电压脉率:小于10% 二、课程设计要求 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真; 3. 完成预习报告,报告中要有设计方案,还要有仿真结果; 4. 进实验室进行电路调试,边调试边修正方案; 5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。 三、进度安排

2.执行要求 电力电子课程设计共6个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告雷同,甚至完全一样。 四、课程设计参考资料 [1]王兆安,黄俊.电力电子技术(第四版).北京:机械工业出版社,2001 [2]王文郁.电力电子技术应用电路.北京:机械工业出版社,2001 [3]李宏.电力电子设备用器件与集成电路应用指南.北京:机械工业出版社,2001 [4] 石玉、栗书贤、王文郁.电力电子技术题例与电路设计指导. 北京:机械工业出版社,1999 [5] 赵同贺等.新型开关电源典型电路设计与应用.北京:机械工业出版社,2010 摘要 关键词:整流、无源逆变、晶闸管

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子课程设计开关电源设计

电力电子课程设计开关 电源设计 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

西安石油大学 课程设计 电子工程学院自动化专业1101班 题目开关电源设计 学生 指导老师 二○一四年五月 《电力电子》课程设计任务书

目录 任务书 1.课题任务 (4) 参数指标 (4) 设计要求 (4) 2.设计内容与方案 (4) 基本结构 (4)

输入整流电路设计 (4) (4) (5) (5) DC变换器设计 (5) 变换器总体概述 (5) 半桥式DC/DC典型电路 (6) 输出滤波整流电路设计 (6) (6) 整流输出二极管计算 (7) 主电路原理图 (7) 3.主电路元器件清单 (8) 4控制和保护电路结构框图 (8) (8) 控制变换原理 (9) 的封装图 (9) 保护电路 (10) 5设计总结 (10) 6参考文献 (10) 1.课题任务 参数指标: 设计0~24V开关电源,原始数据及主要技术指标: (1)输入交流电压范围:175~245V,50Hz;

(2)输出直流电压范围:0~24V; (3)输出最大功率:500W; (4)开关工作频率:20KHz; (5)输出电压稳定度:﹤%; (6)电源效率:h>85% 设计要求: (1)主电路的选型; (2)主电路元器件参数的确定; (3)控制和保护电路结构框图的设计; (4)整理设计结果,提交设计报告. 2.设计内容与方案 输入整流电路设计 单相桥式输入整流电路设计 整流是将交流电变成脉动直流电的过程。电源变压器输出的交流电经整流电路得到一个大小变化但方向不变的脉动直流电。整流电路是由具有单向导电性的元件例如二极管、晶间管等整流元件组成的。 设计要求主电路为桥式二极管整流,单相桥式整流电路分为单相桥式半控整流电路和单相桥式全波整流电路两种,半控整流电路为了防止失控现象,必须加续流二极管,而单相桥式全控整流电路此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,也不存在变压器直流磁化问题,变压器的利用率高,基于

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

电力电子技术课程设计完整

课程设计名称:.... 电力电子技术题目: 专业:自动化 班级:自动化12-2班 姓名:王军 学号:1205010219 精品文本

课程设计任务书

间:2014年12月30日

辽宁工程技术大学课程设计成绩评定表

第一章主要技术数据和可控整流电路的选择 1.1主要技术数据 输入交流电源:三相380V 10%、f=50Hz、直流输出电流连续的最小值为5A。 电动机额定参数:额定功率P N =10kw、磁极对数P=2、额定转速n N=1000r/min,额 定电压U MN=220V、额定电流I MN=54.8A、过载倍数15 1.2可控整流电路的选择 晶闸管可控整流电路型式较多,各种整流电路的技术性能和经济性能个不相同。单 相可控整流电路电压脉动大、脉动频率低、影响电网三相平衡运行。 三相半波可控整流电路虽然对影响电网三相平衡运行没有影响,但其脉动仍然较 大。此外,整流变压器有直流分量磁势,利用率低。当整流电压相同时,晶闸管元件的反峰压比三相桥式整流电路高,晶闸管价格高三相半波可控整流电路晶闸管数量比三相桥式可控整流电路少,投资比三相桥式可控整流电路少。 三相桥式可控整流电路它的脉动系数比三相半波可控整流电路少一半。整流变压器没有直流分量磁势,变压器利用率高,晶闸管反峰压低。这种可控整流电路晶闸管数量是三相半波可控整流电路的两倍。总投资比三相半波可控整流电路多。 从上面几种可控整流电路比较中可以看到:三相桥式可控整流电路从技术性能和经 济性能两项指标综合考虑比其它可控整流电路优越,故本设计确定选择三相桥式可控整 流电路。如 图(1-1)所示

电力电子专业技术课程设计任务大全

电力电子技术课程设计任务大全

————————————————————————————————作者:————————————————————————————————日期:

《电力电子技术》课程设计任务书(一) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求; 4、电网供电电压:三相380V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 7.5 220 40.8 1500 4.42 二、设计内容及要求 1、方案论证及选择; 2、主电路设计(包括整流变压器电压及容量计算,晶闸管元件选择,电 抗器容量等计算); 3、控制电路设计(触发电路的选择与设计); 4、保护电路设计(包括过流和过压保护等); 5、总结及心得体会; 6、参考文献设计; 7、完成电路原理图1份。 《电力电子技术》课程设计任务书(二) 小功率晶闸管整流电路设计 一、设计的技术数据及要求 1、电路输出的直流电压和电流应满足负载要求; 2、电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力; 3、触发电路满足要求。 4、电网供电电压:单相220V,电动机负载,工作于电动状态。 直流电机参数: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 (mH) Z3-52 3 220 17.4 750 17.69

电力电子技术课程设计-240w半桥型开关稳压电源设计讲解

辽宁工业大学 电力电子技术课程设计(论文)题目:240W半桥型开关稳压电源设计 院(系):电气工程学院 专业班级:电气102 学号:100303044 学生姓名:邹伟龙 指导教师:(签字) 起止时间:2012-12-31至2012-1-11

课程设计(论文)任务及评语 院(系):电气工程学院教研室:电气教研室Array 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 开关电源在效率、体积和重量等方面都远远优于线性电源,因此已经基本取代了线性电源,成为电子热备供电的主要形式, 受到人们的青睐.随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用,人们对其需求量日益增长。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。本次设计采用反激式开关电源,以UC3842作为控制核心器件,运用脉宽调制的基本原理。同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障。 关键词:整流电路;逆变电路;驱动电路

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计内容 (2) 第2章开关稳压电源电路设计 (3) 2.1半桥型开关稳压电源总体设计方案 (3) 2.2具体电路设计 (5) 2.2.1主电路设计 (5) 2.2.2整流电路设计 (6) 2.2.3逆变电路设计 (7) 2.2.4驱动电路设计 (8) 2.2.5 整体电路设计 (10) 2.3元器件型号选择 (12) 第3章课程设计总结 (15) 参考文献 (16)

电力电子课程设计总结

电力电子课程设计总结1 在这次电子电路课程设计实验中,我们选的课题都是与生活息息相关的,把生活中常见的一些现象模拟到实验室中,体现了学习与实际生活相结合的理念。霓虹灯是我们生活中十分常见的,五颜六色的彩灯遍及在我们的生活中,而我们设计的这个彩灯控制器,使我们觉得这个课程设计十分有意义。 接到题目后我们小组的人去图书馆借了一些书籍、参照网络上的一些资料,再加上老师的悉心指导,设计出了一个与生活中密切相关的彩灯,通过了本学期对数字电路和模拟电路的学习,我们感到现在设计这样的一个节拍速度渐变彩灯控制器是非常有必要的,因为这能够考察我们对书本上的知识是否已掌握好,并对所学知识进行巩固和加深。但是第一次做实物,所以觉得还有有不小的压力。做实物比在软件里面仿真难度大了不少,因为,稍不细心就可能会使哪个芯片烧坏或者哪条线路没有接牢固,这都会使得在实验中没法得到正确的结果,因而会有一些挑战与难度。这次设计用到了一些在实验中比较常用的电子器件,从设计总体上来说,与我们来说,只要认真的去做的话,我们能在规定的时间内做出来。但是还是需要我们组里几位成员互相合作,相互帮助,才能更好的完成任务的,这样极大的培养了我们的团队合作的精神。通过本次课程设计的锻炼,我学到了很多有关节拍速度渐变的彩灯控制器的设计方法与工作原理。期间也碰到不少问题,但只要仔细的揣摩也能找到解决的方法。慢工出细活,过程是很重要的,只有认真努力细心坚持的去做,才能取得满意的结果。 虽然实验之前的仿真我们做得很好,并且设计了好几种实验方案,也都具体地画出了电路图,但是在具体地实验过程中还是遇到了不小的困难。在仿真中,我们所有的的元件都是知道其参数的,在实验中,我们知道的只是元件的理论上的参数,实际上因为元件经过多次使用,其性能会有所变化,与理论值有点出入,但我们在仿真时又是要求十分精确的,这就导致了实验中的结果出现差错时,我们需要改动的地方就很多。以我们的实验情况为例,我们在发现彩灯的频率与理论不符合时,就检测了一下我们实验中用的电阻和电容,结果发现100Ω的电阻实际阻值只有80Ω左右,47μF的电容实际只有20μF左右,这么大的误差使得我们的结果与理论相差很多,于是我们只好修改线路,使得接入电路中的有效数值与理论相差不大。这个问题解决后,我对理论与实践相结合有了更深层次的理

电力电子课程设计定稿版

电力电子课程设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

本科课程设计专用封面 设计题目: Cuk 变换器的设计与仿真 所修课程名称: 电力电子技术课程设计 修课程时间: 2013 年 06 月 17 日至 6 月 23 日 完成设计日期: 2013 年 06 月 23 日 评阅成绩: 评阅意见: 评阅教师签名: 年 月 日 ________学院____专业 姓名_____ 学号_____ ………………………………(密)………………………………(封)………………………………(线)………………………………

Cuk 变换器的设计与仿真 一.设计要求 1)完成Cuk 变换器的设计、仿真; 2)设计要求: 输入:DC100V ; 输出:DC50~150V 二.题目分析 Cuk 电路是一种可升降压的直流变换器电路,它基本可看成是升压电路和降压电路相结合产生的一种开关电路,其电原理图如图1所示 图1 Cuk 主电路图 基本工作原理为: 当控制开关VT 处于通态时,E —L 1—V 回路和R —L 2—C —V 回路分别流过电流。 当控制开关VT 处于断态 时,E —L 1—C —VD 回路和R —L 2—VD 回路分别流过电流。 输出电压的极性与电源电压极性相反。 稳态时电容C 的电流在一周期内的平均值应为零,也就是其对时间的积分为零,即 在书P127页的等效电路中,开关S 合向B 点时间即V 处于通态的时间t on ,则电容电流和时间的乘积为I 2t on 。开关S 合向A 点的时间为V 处于断态的时间t off ,则电容电流和时间的乘积为I 1 t off 。由此可得 off 1on 2t I t I

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

电力电子技术课程设计分析解析

摘要 高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。 关键词:稳压电源;buck变换器

Abstract Has been widely used in the DC power supply, AC power supply, industry power supply of high frequency switching power supply, communication power supply, communication power supply, inverter power supply, computer power supply etc.. It can provide high power and coarse grid electricity, it is an important system of modern electronic equipment "the blood flow to the heart". BUCK converter is a switch for power supply the basic topology of BUCK converter, also called buck converter, a DC chopper for buck to input and output voltage, the output voltage is less than the input voltage, because of its variable function superior, therefore, it can be directly used for the need for direct step-down place. Keyword:regulated power supply;BUCK converter

相关主题
文本预览
相关文档 最新文档