当前位置:文档之家› 分子生物学与基因工程的内容

分子生物学与基因工程的内容

分子生物学与基因工程的内容

分子生物学与基因工程的内容

生物技术123 杨秀易2012013485

分子生物学的含义

从广义来讲,蛋白质及核酸等生物大分子结构和功能的研究都属于分子生物学的范畴,也就是从分子水平阐明生命现象和生物学规律。例如,蛋白质的结构、运动和功能,酶的作用机理和动力学,膜蛋白结构与功能及跨膜运输等都属于分子生物学的研究内容。

从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。当然,也涉及到与这些过程有关的蛋白质和酶的结构与功能的研究

基因工程的含义

基因工程是指将一种或多种生物体(共体) 的基因或基因组提取出来, 或者人工合成的基因, 按照人们的愿望, 进行严密的设计, 经过体外加工重组, 通过一定的方法, 转移到另一种生物体(受体) 的细胞内, 使之能在受体细胞遗传并获得新的遗传性状的技术。

模式生物的基因组测序的提出

由于人类对自身理解的限制,在医学,生物学的研究在很大程度上依赖于对一些模式生物的研究。在研究人类基因组的同时,平行的进行一些微生物,植物等模式生物基因组的研究,对人类基因组的测定有很重要的参考价值。

将从模式生物中得到的数据和资料与人类基因组比较,通过不同生物基因序列的同源性来阐明人类相应基因的功能。

人类基因组计划的提出

人类基因组研究将促进生物学的发展。该计划的实施将极大地促进生命科学领域一系列基础研究的发展,阐明基因的结构与功能关系,细胞的发育、生长、分化的分子机理,疾病发生的机理等。人类基因组的研究将使人们发现许多新的人类基因和蛋白质。迄今为止,人们只知道很少人类的正常基因和疾病基因。人类基因组的作图和测序的成功,将会确定出大量新的基因及其编码的蛋白质。人类基因组的研究特有利于对生物是如何进化的理解。如果我们知道了人类和其他生物基因的全序列,就可以追溯出人类多数基因的起源。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

基因工程、分子生物学和分子遗传学重要名词解释

基因工程、分子生物学和分子遗传学重要名词解释 5’Cap 5’-末端帽:有时简称帽,是在许多真核生物mRNA5`-末端发现的一种由7-甲基-鸟嘌呤核苷-5`-ppp –末端核苷构成的特殊构成的特殊结构。它是在转录后不久经酶催反应加入到TATA (Hogness)序列的附近,具有保护mRNA稳定性的功能。在原核生物的mRNA分子中不存在 5`-末端帽结构。 A protein A蛋白:他参与λDNA插入噬菌体头部和在粘性末端(cos)位点上裂解多联体DNA 的过程。 abortive lysgeny 流产溶原性:温和噬菌体感染敏感的宿主菌后,既不整合进宿主染色体中,也不进行复制,从而使每一个带有噬菌体的宿主菌分裂产生的两个细胞中,只有一个是溶原性的。abortive transduction 流产转导:这是得到不稳定转导子的一类转导,区别于得到稳定转导子的完全转导。在流产转导中,转导子分裂产生两个细胞时,只有其中的一个获得供体基因,另一 个细胞则仍属受体基因型。 Abundance of an mRNA mRNA丰度:是指每个细胞平均拥有的某一种特定mRNA的分子数,跟据丰度的差异可将分为两种不同的等级:其一是富裕型的,每个细胞拥有的平均考贝数为1000——10000,属于此型的mRNA约有100种;其二是稀少型的,每个细胞拥有平均考贝数仅有1——10个上下,属于这一类行的mRNA达10000多种。 Abzymes 抗体酶: 应用单克隆抗体技术生产的兼具抗体及酶催活性的工程蛋白质。也就是说,其行为如同蛋白酶一样,能够催化化学反应的一类新型的抗体。 Acceptor splicing site 受体拼接位点: 间隔子的右端和与其相连的表达子的左端之间的接合点。Acquired immunodeficiency syndrome, AIDS 获得性免疫缺损综合征: 由人类免疫缺损病毒(HIV)引起的一种疾病,他最早于1980年在美国洛杉叽发现。HIV病毒通过血液和精液在人群中传播,感染了这种病毒之后,会使人体出现严重的免疫抑制和淋巴结病(lymphadenopathy),并增加对机会病原体(opportunistic pathogen)的敏感性。这种综合征是由于HIV病毒的感染以及cd4类T细胞功能破坏所致。T细胞表面CD抗原CDS4是HIV病毒的受体。HIV病毒的感染使T细胞发生融合形成大的合胞体(syncytia)并最终裂解。AIDS是致命的,目前尚无法有效治 疗也无有效疫苗可用。 activator 活化物:1,在分子生物学中,活化物是一种蛋质,结合在某个基因上游DNA的一个位置上,激活从该基因开始的转录。2,在酶学中,活化物是一种小分子,与酶相结合从 而提高酶的催化活性。 Activator 激活物: 能够通过与结合在启动子上的RNA聚合酶发生相互作用,从而促使RNA聚合酶起动操纵子进行转录反应的一种正调节蛋白质。 Adaptor 接头:即DNA接头,是一类人工合成的非自我互补单链寡核苷酸短片段,当其同街接物(linker)自行退火时,就会形成具有一个平末端和一个粘性末端的双链的接头/衔接物结构。因此,同平端DNA分子连接之后,无需用核酸内切限制酶切割,就会提供符合预先设计要求的 粘性末端。 Adenovirus 腺病毒:一种具双链DNA的动物病毒,大小约为36kb。次种病毒在分子生物学研究中占有突出的位置,许多重要的分子生物学事件,诸如RNA剪辑,DNA复制及转录等,,都是腺病毒研究中发现的。现在腺病毒以被改造用作分离哺乳动物基因的克隆载体。Affinity chromatography 亲和层析:一种根据配体与特异蛋白质结合作用原理建立的层析技 术,该法主要应用于分离与纯化特异的蛋白质。 Agarose 琼脂糖:是从红色海藻的琼脂中提取的一种线性多糖聚合物,可用于配置核酸电泳凝胶。当琼脂糖溶液加热至沸点后冷确凝固,便会形成一种基质,其密度石油琼脂糖浓度决定的。可以被琼脂糖凝胶电泳分离的DNA片段的大小范围为0.2——50kb。经过化学上修饰的低熔点

基因工程的应用和蛋白质工程

百度文库 - 好好学习,天天向上
【课 题】专题一——基因工程——第 1.3 基因工程的应用第 1。4 蛋白质工程的崛起
【教学目标】1.举例说出基因工程应用及取得的丰硕成果。 2.关注基因工程的进展。 3.认
同基因工程的应用促进生产力的提高。 4.举例说出蛋白质工程崛起的缘由。 5.简述蛋白质
工程的原理。 6.尝试运用逆向思维分析和解决问题。
【教学流程】
一、知识预习:
1、植物基因工程技术主要用于提高农作物的
(如




等),以及

利用植物生产
等方面。
2、目前防治作物虫害的发展趋势是从某些生物中分离出
,将其导

中,使其具有
。用于杀虫的基因主要是



等。
3、引起植物生病的微生物称为
,主要有


等。抗病转基因植物所采用的基因,使用最多的是

;抗真菌转基因植物中可使用的基因有


4、目前科学家利用一些可以调节
的基因,来提高农作物的抗盐碱和
能力;将鱼的
导入烟草和番茄,提高其耐寒能力;将
导入
作物,使作物抗除草剂。
5、利用转基因技术可以提高生物中的
的含量、延长贮存时间、改变花色等,
从而提高作物品质。
6、动物基因工程可用于




7、基因工程药物包括




等。
8、治疗遗传病的最有效手段是
,这种方法是把
导入病人体
内,使该基因的表达产物发挥功能,从而达到
的目的,可分为

两条途径。
9、基因工程的实质是将一种生物的
转移到另一种生物体内,使后者产生本不能
产生的
,进而表现出
。其缺点是在原则上只能生产
,而天然蛋白质的
符合
的需要,
却不一定完全符合
的需要。
10、蛋白质工程是指以蛋白质分子的
及其与
的关系作为基
础,通过

,对
进行改造,或制造
,以满足
的需求。
11、蛋白质工程的途径是:预测蛋白质功能→设计预期的
→推测应有的
→找到相对应的

12、蛋白质工程具有
的前景,但

-1

(整理)分子生物学与基因工程复习题

一、名词解释 1、分子生物学 2、基因工程 3、DNA的变性与复性 4、细胞学说 5、遗传密码的简并性 6、DNA半保留复制、半不连续复制 7、SD序列 8、开放阅读框(ORF) 9、多顺反子 10、蓝白斑筛选 11、中心法则 12、限制修饰系统 13、断裂基因 14、单链结合蛋白 15、核酶 16、密码子家族 17、TA克隆 18、PCR 19、SNP 20、操纵子学说 21、DNA重组技术 22、减色效应-增色效应 23、可变剪接 24、反转录 25、同尾酶 26、加帽反应 27、蓝白斑筛选 28、表观基因组学 29、DNA的溶解温度 30、DNA的大C值 31、重叠基因 32、引物酶 33、逆转录 34、限制性内切酶 35、载体的选择标记 36、DNA甲基化

37、端粒 38、端粒酶 39、前导链 40、启动子 41、反式作用因子 42、同义密码子 43、多克隆位点(MCS) 44、基因组计划 45、C值悖论 46、顺式作用元件 47、胸腺嘧啶二聚体 48、寄主的限制修饰现象 49、拓扑异构酶 50、DNA的溶解 51、拓扑异构体 52、间隔基因 53、假基因 54、同源异型蛋白 55、翻译 56、多重PCR 57、抗终止作用 58、SD序列 59、空载tRNA 60、cDNA RACE 61、分子杂交 62、cDNA文库 63、载体 64、RT-PCR 65、反义RNA 66、延伸tRNA 67、起始tRNA 68、探针 69、反式剪接 70、增强子 71、动物基因工程 72、基因组 73、限制性内切酶 74、单顺反子

75、密码子 76、转录 77、RNA干扰 78、中心法则 79、回环模型 80、TATA box 81、前导链 82、目的基因 83、RFLP 84、RACE 二、判断 1、大肠杆菌DNA生物合成中,DNA聚合酶I主要起聚合作用。( ) 2、DNA半保留复制时,后随链的总体延伸方向与先导链的延伸方向相反。( ) 3、原核生物DNA的合成是单点起始,真核生物为多点起始。() 4、以一条亲代DNA(3’→ 5’)为模板时,子代链合成方向5’→ 3’,以另一条亲代DNA链 5’→ 3’为模板时,子代链合成方向3’→ 5’。() 5、RNA的生物合成不需要引物。() 6、大肠杆菌RNA聚合酶全酶由4个亚基(α2ββ’)组成。( ) 7、大肠杆菌在多种碳源同时存在的条件下,优先利用乳糖。 ( ) 8、在DNA生物合成中,半保留复制与半不连续复制指相同概念。() 9、逆转录同转录类似,二者均不需要引物。() 10、真核生物染色体核心组蛋白的乙酰化、组蛋白H1的磷酸化,都会使基因得以失活。() 11、在原核细胞中,起始密码子AUG可以在mRNA上的任何位置,但一个mRNA上只有一个起 始位点。( ) 12、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别mRNA上的密码子。( ) 13、表观遗传效应是不可遗传的。( ) 14、cAMP与CAP结合、CAP介导正性调节发生在有葡萄糖及cAMP较高时。( ) 15、DNA甲基化永久关闭了某些基因的活性,这些基因在去甲基化后,仍不能表达。 () 16、RNA聚合酶催化的反应无需引物,也无校对功能。( ) 17、基因是存在于所有生命体中的最小遗传单位 18、人类基因组中大部分DNA不编码蛋白质 19、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别 mRNA上的密码子。 ( )

现代分子生物学作业

现代分子生物学与基因工程作业 姓名________________班级_____________学号________________ 1、绝大多数的真核生物染色体中均含有HI、H2A、H2B、H3和H4五种组蛋白,在不同物种之间它们的保守性表现在() A.H3和H4具有较高的保守性,而H2A和H2B的保守性比较低 B. H2A和H2B具有较高的保守性,而H3和H4的保守性比较低 C. H1和H4具有较高的保守性,而H3和H2B的保守性比较低 D. H1和H3具有较高的保守性,而H4和H2B的保守性比较低 2、下列叙述哪个是正确的() A. C值与生物体的形态学复杂性成正相关 B. C值与生物体的形态学复杂性成负相关 C. 每个门的最小C值与生物体的形态学复杂性是大致相关的 C值指一种生物单倍体基因组DNA的总量。不同物种的C值差异很大,随着生物体的进化 3、真核DNA存在于() A. 线粒体与微粒体内 B. 线粒体与高尔基体内 C. 线粒体与细胞核内 D.细胞核与高尔基体内 E. 细胞核与溶酶体内 4、在核酸分子中核苷酸之间的连接方式是() A. 2‵-3‵磷酸二酯键 B. 2‵-5‵磷酸二酯键 C. 3‵-5‵磷酸二酯键 D.糖苷键 5、所有生物基因组DNA复制的相同之处是() A. 半保留复制 B. 全保留复制 C. 嵌合型复制 D. 偶联型复制 6、复制子是() A. 细胞分离期间复制产物被分离之后的DNA片段 B. 复制的DNA片段和在此过程中所需的酶和蛋白 C. 任何自发复制的DNA序列(它与复制起始点相连) D. 复制起点和复制叉之间的DNA片段 7、在原核生物复制子中,下列哪种酶除去RNA引发体并加入脱氧核糖核酸() A.DNA聚合酶I B.DNA聚合酶II C.DNA聚合酶III D. 连接酶

分子生物学与基因工程原理

分子生物学与基因工程原理复习资料 一、名词解释 1. 分子生物学:是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学;是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 2. 染色体:是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。 3. DNA 多态性:是指DNA 序列中发生变异而导致的个体间核苷酸序列的差异,主要包 括单核苷酸多态性(single nucleotide polymorphism , SNP)和串联重复序列多态性 ( tandem repeats polymorphism )两类。 4. DNA 的半保留复制:DNA 复制过程中,由亲代DNA 生成子代DNA 时,每个新形成的子代DNA 中,一条链来自亲代DNA ,另一条链则是新合成的,这种复制方式称半保留复制。 5. 冈崎片段:在DNA 复制过程中,前导链能连续合成,而滞后链只能是断续的合成5 3 的多个短片段,这些不连续的小片段称为冈崎片段。 6.SNP:single nucleotide polymorphism ,单核苷酸多样性,是基因组DNA 序列中单个核苷酸的突变引起的多态性。 7. “基因”的分子生物学定义:产生一条多肽链或功能RNA 所必需的全部核甘酸序列。 8. 获得性遗传:是有机体在生长发育过程中由于环境的影响而不是基因突变所形成的新的遗传性状。 9. DNA 甲基化:是基因的表观修饰方式之一,指生物体在(DNA methyltransferase ,DNMT)的催化下,以S-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移到特定的碱基上的过程。 10. CDNA文库:以mRNA为模板,经反转录酶催化,体外合成cDNA,与适当的载体 (常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖 扩增。这样包含着细胞全部mRNA 信息的cDNA 克隆集合称为该组织细胞cDNA 文库。11. 基因组:是指一个细胞或者生物体所携带的全部遗传信息。生物个体的所有细胞的基因组是固定的。 12. 蛋白质组学:指在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。 13. 转录组:广义上指某一生理条件或环境下,一个细胞、组织或生物体内所有转录产 物的总和,包括信使RNA、核糖体RNA、转运RNA及非编码RNA ;狭义上指细胞中转录出来的所有mRNA 的总和。 14. 基因定点突变技术:通过改变基因特定位点核苷酸序列来改变所编码的氨基酸序列的一

基因工程与分子生物学

基因工程与分子生物学重点 1.限制性核酸内切酶:凡是识别切割双链的DNA分子内特定核苷酸序列的酶称为限制性核酸内切酶,简称为限制性酶。 2.限制性核酸内切酶的一般性质:37℃,pH为7.2~7.6,用Tris—HCl,Gly—NaOH两种缓冲液,Mg2+Buffer,5mM,盐浓度,巯基试剂:β-ME,DTT,BSA(牛血清白蛋白,稳定酶的作用);决定生产的特定的DNA片段的大小,识别顺序具有180°的旋转对称,识别顺序一般是4~6个碱基,也有6个以上的,但是没有4个以下的,产生三种不同的切口:形成平头末端(SmalⅠ):连接困难,效率较低;形成5’粘性末端(EcoRⅠ):相对而言,5’突出尾,3’凹末端;形成3’粘性末端(PstⅠ)相对而言,3’突出尾,5’凹末端。 3.星活性:在非标准条件下(低盐和高pH,高甘油浓度>5%),限制酶识别顺序与切割顺序发生改变的现象。 4.大肠杆菌DNA聚合酶I大片段(Klenow片段):将Pol1切下一个小片段失去5’到3’外切酶活性。补平限制酶切割DNA产生3’凹槽(5’到3’合成),用[32p]dNTP补平3’凹端,对DNA片段进行末端标记,对带3’突出端的DNA进行末端标记(利用置换活性),在cDNA 克隆中,用对和陈那个cDNA的第二条链,在体外诱变中用于从单链模版合成双链DNA,应用Sanger双脱氧末端终止法进行DNA测序,消化限制酶产生的3’突出端,应用于PCR 技术。 5.基因工程的工具酶:T7噬菌体DNA聚合酶,修饰的T7噬菌体DNA聚合酶,TaqDNA 聚合酶(没有校正功能),大肠杆菌DNA聚合酶Ⅰ,大肠杆菌DNA聚合酶Ⅰ大片段,T4噬菌体DNA聚合酶。 6.末端转移酶:将相同的核苷酸依次连接到3’末端,然后两条DNA通过同源多聚尾巴连接在一起,在表达前将ploy(G)切除,否则影响蛋白质的生物活性。 7.T4噬菌体多核苷酸激酶:使DNA的5’端磷酸化,也可以使DNA的5’端去磷酸化。可以发生正向反应,也可发生交换反应。正向反应:5’CTGCAG在酶和ATP(ATP具有α,β,γ磷酸基团,其中γ可给出)的作用下,生成5’pCTGCAG;交换反应:5’pCTGACG在酶和ADP的共同作用下,去磷酸化,将DNA链上的磷酸基团给出,生成5’CTGCAG和ATP,在酶和被标记的A TP作用下使得DNA再次被磷酸化同时被标记,生成ADP和5’*pCTGCAG。 8.基因工程载体种类:质粒,噬菌体的衍生物,科斯质粒或粘粒,噬菌体质粒,单链DNA 噬菌体M13,真核病毒载体,酵母质粒载体,杆状病毒。 9.质粒:在细菌细胞内作为与宿主染色体有别的复制子而进行复制,并且在细胞分裂时能恒定传递给子代细胞的独立遗传因子。 10.质粒作为基因工程载体所必备的条件:1)具有较小的分子量和松弛的复制子,2)基因组上有1~2个筛选标记,便于在平板中区分重组体和非重组体,3)DNA链上有1到几个限制酶的单一识别与切割位点,便于外源DNA的插入,4)具有插入失活(或是插入表达)的筛选标记,便于从平板中直接筛选阳性重组体。 11.Ti质粒:引起植物形成肿瘤—冠瘿瘤的质粒称为诱导肿瘤的质粒。 12.Ti质粒的优点:宿主范围广泛,Ti质粒能过转化所有的双子叶植物,并将外源基因导入植物细胞;整合到宿主细胞ch—DNA上的T—DNA成了染色体的正常遗传成分,永远居留,代代相传;T—DNA上的Opine合成酶基因有一个强大的启动子,能启动外源基因在植物细胞中高效表达。 13.分子杂交(杂交,hybrdization):核酸研究中一项最基本的实验技术,它是指在一定条件下互补核酸链复性形成双链的过程。 14.分子杂交的原理:(一)DNA的变性:指分子有稳定的双螺旋结构松解为无规则线性结

“基因工程与蛋白质工程”知识归纳及试题例析

“基因工程与蛋白质工程”知识归纳及试题例析 一、知识归纳 1.与DNA分子相关的酶 名称作用参与的生理过程应用限制性核酸内切 酶 切割某种特定的脱氧核苷酸序列基因工程DNA连接酶连接两个DNA片段基因工程 DNA聚合酶在脱氧核苷酸链上添加单个脱氧 酸 DNA复制 RNA聚合酶在核苷酸链上添加单个核糖核苷 酸 转录 解旋酶使碱基间氢键断裂DNA复制及转录 逆转录酶以RNA为模板合成DNA逆转录及基因工程 特别注意: (1)限制性核酸内切酶的来源:多数来自原核生物;作用特点:主要切割外源DNA,对自身的DNA不起作用从而达到保护自身的目的;作用结果:形成DNA片断末端。 (2)各种酶都具有专一性,特别是限制酶只能识别特定的脱氧核苷酸序列,并在特定的碱基之间切开。 2.基因工程的基本操作程序 (1)获取目的基因 ①基因文库:是将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中通过 克隆而储存,各个受体菌分别含有这种生物的不同基因。 ②基因组文库:基因文库中含有一种生物所有的基因就叫做基因组文库。 ③部分基因文库:含有一种生物的部分基因,就叫做部分基因文库,如cDNA文库。 PCR技术与DNA复制的比较 比较项目PCR技术DNA复制 相 同 点 原理DNA双链复制((碱基互补配对) 原料四种游离的脱氧核苷酸 条件模板、ATP、酶等 不 同 解旋方式DNA在高温下变性解旋解旋酶催化 场所体外复制主要在细胞核内

点 酶 热稳定的DNA聚合酶(Taq 酶) 细胞内含有的DNA聚合酶结果 在短时间内形成大量的DNA 片段 形成整个DNA分子 (2)基因表达载体的构建(基因工程的核心) ①构建目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目 的基因能够表达和发挥作用。 ②一个基因表达载体的组成:目的基因、启动子、终止子、标记基因等。 ③构建方法 生物 种类 植物细胞动物细胞微生物细胞常用 方法 农杆菌转化法显微注射技术Ca2+处理法受体 细胞 体细胞受精卵原核细胞 转化 过程 将目的基因插入Ti质粒 的TDNA上→农杆菌→导 入植物细胞→整合到受体细 胞的DNA→表达 将含有目的基因的表达 载体提纯→取卵(受精卵) →显微注射→受精卵发育→ 获得具有新性状的动物 Ca2+处理细胞→感受态 细胞→重组表达载体与感受 态细胞混合→感受态细胞吸 收DNA分子特别注意:受体细胞中常用植物受精卵或体细胞(经组织培养)、动物受精卵(一般不用体细胞)、微生物──大肠杆菌、酵母菌等,但要合成糖蛋白、有生物活性的胰岛素则必 需用真核生物酵母菌──需内质网、高尔基体的加工、分泌。一般不用支原体,原因是它营 寄生生活;一定不能用哺乳动物成熟红细胞,原因是它无细胞核和众多的细胞器,不能合成 蛋白质。

分子生物学与基因工程结课论文-Real-TimePCR在分子生物学中的应用讲义

《分子生物学与基因工程》 结课论文 Real-Time PCR在分子生物学中的应用 姓名: 学号: 院系: 班级: 任课教师: 二零一二年十二月

Real-Time PCR在分子生物学中的应用 东北农业大学生命科学学院黑龙江哈尔滨150030 摘要:聚合酶链式反应(polymerase chain reaction,PCR)可对特定基因进行扩增,因此被广泛应用于分子生物学领域中获取特定基因或基因片段。定量PCR已经从基于凝胶的低通量分析发展到高通量的荧光分析技术,即实时定量PCR(real-time quantitative PCR)。该技术实现了PCR从定性到定量的飞跃,且与常规PCR相比,它具有特异性强、灵敏度高、重复性好、定量准确、速度快、全封闭反应等特点,目前实时定量PCR作为一个极有效的实验方法,已被广泛地应用于分子生物学研究的各个领域,成为了分子生物学研究中的重要工具。 关键词:实时定量PCR;基因扩增;分子生物学 1971年Khorana等最早提出PCR理论:―DNA变性解链后与相应引物杂交,用DNA聚合酶延伸引物,重复该过程便可克隆tRNA 基因‖。因当时基因序列分析方法尚未成熟、热稳定DNA聚合酶还未发现及寡聚核苷酸引物合成仍处于手工和半自动阶段,核酸体外扩增设想似乎不切实际,且Smith等已发现了DNA限制性内切酶,使体外克隆基因成为可能,Khorana 等的早期设想被忽视。1985年Mullis等用大肠杆菌DNA聚合酶ⅠKlenow片段体外扩增哺乳动物单拷贝基因成功以及1988年Saiki等将耐热DNA聚合酶(Taq酶)引入PCR ,使扩增反应的特异性和效率大大提高,并简化了操作程序,最终实现了DNA扩增的自动化,迅速推动了PCR的应用和普及。 自从PCR技术问世便很快成为科研、临床诊断的热点技术。但是传统PCR技术在应用中一是不能准确定量,二是容易交叉污染,产生假阳性。直到1996年由美国Applied Biosystems公司推出的实时荧光定量PCR技术,上述问题才得到较好的解决[1]。实时荧光定量PCR(real-time fluoro-genetic quantitative PCR,FQ-PCR)是通过对PCR扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量PCR反应中,引入了一种荧光化学物质,随着PCR反应的进行,PCR反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图。该技术不仅实现了对DNA模板的定量,而且具有灵敏度高、特异性和可靠性强、能实现多重反应、自动化程度高、无污染性、具实时性和准确性等特点,目前已广泛应用于分子生物学研究和医学研究等领域[2]。

分子生物学与基因工程试题库(19)

分子生物学与基因工程试题库(19) 一、选择题(单选或多选)(每题2分,共计20分) 1.核糖体肽链的合成因( )终止 (a)可读框内编码C末端氨基酸的密码子 (b)可读框内存在不对应氨酰tRNA的密码子 (c)浓度太低或缺少特定的氨酰tRNA (d)释放因子(RF)的GTP依赖性作用,防止A位点中终止密码子与氨酰tRNA的错配结合 (e)末端氨酰转移酶的活性,这个酶蛋白通过将一个赖氨酸或精氨酸残基加到新生多肽 C 末端将肽酰tRNA脱乙酰化 2. 因研究λ噬菌体的限制与修饰现象的本质而获得诺贝尔奖的科学家是:( ) (a)J.Lederberg (b)W.Arber (c)H.Smith (d)F.Sanger 3. EDTA是一种螯合剂,可以抑制大多数酶的活性,但在下列酶中,( )不受它的 影响 (a)外切酶Ⅲ (b)EcoRI (c)Bal31核酸酶 (d)Pstl 4. 关于质粒的相容性,下面哪一种说法不正确? ( ) (a)不同相容群的质粒能够共存于同一个细胞 (b)质粒可以分成若干个不相容群,但不能分成若干个相容群 (c)如果a、b两种质粒不相容,说明它们的复制机制相同 (d)属于同一个不相容群中的质粒,不仅复制机制相同,而且拷贝数和分子量也相同 5. 用SDS-酚来抽提DNA时,SDS的浓度是十分重要的,当SDS的浓度为0.1%时,( ) (a)只能将DNA抽提到水相 (b)只能将RNA抽提到水相 (c)可将DNA、RNA一起抽提到水相 (d)DNA和RNA都不能进入水相 6. 在下列表型中,( )是基因工程上理想的受体菌表型 (a)r+m+rec’ (b)r-m-rec- (C)r-m-rec+ (d)r+m+rec- 7. 微细胞是一种大肠杆菌突变体,( ) (a)它不带任何DNA (b)它的体积为正常细胞的1/10 (c)它带有染色体DNA,但不能表达 (d)它带有质粒DNA,可以表达 8. DNA在中期染色体中压缩多少倍?( ) (a)6倍 (b)10倍 (c)40倍 (d)240倍 (e)1000倍 10000倍 9. 在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸?( ) (a)DNA聚合酶Ⅲ (b)DNA聚合酶Ⅱ (c)DNA聚合酶I (d)外切核酸酶MFl (e)DNA连接酶

高中生物选修3基因工程的应用和蛋白质工程知识点

高中生物选修3基因工程的应用和蛋白质工程知识点 1.基因工程培育转基因生物的优点: (1)打破了常规育种难以突破的物种之间的界限(生殖隔离) (2)定向改变了生物的遗传性状。 2.基因工程的应用: (1)用于提高动植物生长速度。 (2)用于改善畜产品的品质。 (3)用转基因动物生产药物。 (4)用转基因动物作器官移植的供体。 3.膀胱生物反应器:将外源基因导入到受精卵膀胱上皮细胞进行表达。优点: 雌雄个体都能生产。 4.乳腺生物反应器或乳房生物反应器缺点:只有雌性个体才能生产药物。 5.干扰素:干扰素是动物或人体细胞受到病毒侵染后产生的一种糖蛋白,干扰 素几乎能够抵抗所有病毒引起的感染。 6.基因治疗:是把正常基因导入病人体内,使该基因的表达产物发挥功能,从 而达到治疗疾病的目的,这是治疗遗传病的最有效的手段。 7.基因治疗不能替代原有基因,它替代的是缺陷基因的功能。 8.大肠杆菌是原核生物,生产出来的干扰素没有活性,原核细胞内没有内质网 和高尔基体,只有核糖体,只能合成相应的蛋白质,无法添加糖基,要使干扰素具有活性,还必须经过人工处理,加上糖基。 9.基因诊断:也称DNA诊断或基因探针技术,即在DNA水平分析检测某一基 因,从而对特定的疾病进行诊断。 10.基因工程在原则上只能生产自然界已存在的蛋白质。 11.蛋白质工程的目标:根据人们对蛋白质的特定需求,对蛋白质进行分子设计。 12.天然蛋白质的合成过程:按照中心法则进行的,基因→表达(转录和翻译) →形成氨基酸序列的多肽链→形成具有高级结构的蛋白质→行使生物功能。 13.蛋白质工程合成蛋白质的过程:从预期的蛋白质功能出发→设计预期的蛋白 质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列。 14.蛋白质工程中进行基因操作的原因: (1)改造过的蛋白质可以遗传。 (2)对基因的改造比对蛋白质直接改造容易操作,难度少的多。 15.蛋白质工程:蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关 系作为基础,通过基因修饰或基因合成,对现有的蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。原理是改造基因,实质是对编码蛋白质的基因进行改造。

基因工程的基本操作程序》教案

专题一基因工程的基本操作程序 一、教材分析 《基因工程的基本操作程序》是专题1《基因工程》的第二节,也是《基因工程》的核心,上承《DNA重组技术的基本工具》,下接《基因工程的应用》。本节课主要介绍了基因工程的基本操作程序的四个步骤,教学内容多,难点多,最好化整为零、各个击破。 二、教学目标 1.知识目标: 简述基因工程原理及基本操作程序。 2.能力目标: 尝试设计某一转基因生物的研制过程。 3.情感、态度和价值观目标: (1)关注基因工程的发展。 (2)认同基因工程的诞生和发展离不开理论研究和技术创新。 三、教学重点和难点 1、教学重点 基因工程基本操作程序的四个步骤。 2、教学难点 (1)从基因文库中获取目的基因 (2)利用PCR技术扩增目的基因 四、学情分析

本节课内容较多,难点较多,学生学习起来有一定困难,所以之前应该要求学生做好预习,尽量采用化整为零、各个击破的教学策略。 五、教学方法 1、学案导学:见学案。 2、新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习《基因工程的基本操作程序》,初步把握基因工程原理及基本操作程序。 2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:2课时 八、教学过程 (一)预习检查、总结疑惑 检查学生落实预习的情况并了解学生的疑惑,使教学具有针对性。 (二)情境导入、展示目标 教师首先提问: (1)什么是基因工程(基因工程的概念) (2)DNA重组技术的基本工具有哪些(限制酶、DNA连接酶、载体)

基因工程知识点超全

基因工程 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在 二、基因工程的基本工具 1、限制性核酸内切酶-----“分子手术刀” 2、DNA连接酶-----“分子缝合针” 3、基因进入受体细胞的载体-----“分子运输车” 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)存在:主要存在于原核生物中。 (2)特性:特异性,一种限制酶只能 识别一种特定的核苷酸序列,并且能在 特定的切点上切割DNA分子。 (3)切割部位:磷酸二酯键 (4)作用:能够识别双链DNA分子的 某种特定核苷酸序列,并且使每一条链 中特定部位的两个核苷酸之间的磷酸 二酯键断开。

(5)识别序列的特点: (6)切割后末端的种类:DNA 分子经限制酶切割产生的DNA 片段末端通常有两种形式——黏性末端和平末端。当限制酶在它识别序列的中轴线两侧将DNA 的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。

2.“分子缝合针”——DNA连接酶 (1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。 (2)类型 相同点:都连接磷酸二酯键 3.“分子运输车”——载体 (1)载体具备的条件: ①能在受体细胞中复制并稳定保存。 ②具有一个至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。 (3)其他载体:λ噬菌体的衍生物、动植物病毒。 (4)载体的作用: ①作为运载工具,将目的基因送入受体细胞。 ②在受体细胞内对目的基因进行大量复制。 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。 (4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (7)基因工程中的载体与细胞膜上物质运输的载体不同。基因工程中的载体是DNA分子,能将目的

分子生物学与基因工程复习提纲

分子生物学与基因工程复习提纲 第一章绪论 1、分子生物学简史 理论上的三大发现 生物的遗传物质是DNA DNA双螺旋模型 遗传信息的传递方式 技术上的三大发现 基因操作的工具酶的发现 载体的应用 逆转录酶的发现 2、证明遗传物质是DNA的三大经典实验 肺炎双球菌转化实验 噬菌体感染实验 病毒重建实验 3、1953年,Watson/Crick 提出了DNA双螺旋结构模型。 4、遗传信息的传递方式的发现 1961 年Monod 和Jacob 提出了操纵子学说; 1964 年Nirenberg 等提出了“三联体密码说”; Crick 提出了遗传信息流向和表达的中心法则。 5、限制性核酸内切酶的定义、特点以及在基因工程中的意义;DNA连接酶 6、克隆载体和表达载体 第二章染色体与DNA 1、核酸、核苷酸、核苷、碱基、嘌呤、嘧啶、DNA、RNA、磷酸二酯键 2、染色体、核小体、组蛋白、非组蛋白 3、基因组大小与C值矛盾、重复序列 4、真核基因组结构的特点;与原核基因组的差异 5、DNA双螺旋结构的要点、氢键、碱基堆集力、A、B、Z型结构 6、超螺旋结构、正/负超螺旋 7、DNA复制、半保留复制、半不连续复制、冈崎片段、拓扑异构酶、Klenow片段 8、真核生物DNA复制的特点 9、转座、转座子、转座子的分类和共同特点、转座的遗传效应 第三章RNA合成 1、转录、转录泡、有义链、反义链、RNA聚合酶 2、启动子、终止子、增强子、依赖ρ因子的终止、不依赖ρ因子的终止 3、原核生物转录的过程 4、真核生物mRNA转录后的加工 5、真核生物成熟mRNA的结构特点 第四章蛋白质的合成 1、遗传密码、密码子、反密码子、密码子偏好性、简并性

“基因工程与蛋白质工程”知识归纳及试题例析讲解学习

“基因工程与蛋白质工程”知识归纳及试题例析一、知识归纳 名称作用参与的生理过程应用 限制性核酸内切酶切割某种特定的脱氧核苷酸序列基因工程 DNA连接酶连接两个DNA片段基因工程 DNA聚合酶在脱氧核苷酸链上添加单个脱氧酸DNA复制 RNA聚合酶在核苷酸链上添加单个核糖核苷酸转录 解旋酶使碱基间氢键断裂DNA复制及转录 逆转录酶以RNA为模板合成DNA 逆转录及基因工程特别注意: (1)限制性核酸内切酶的来源:多数来自原核生物;作用特点:主要切割外源DNA,对自身的DNA不起作用从而达到保护自身的目的;作用结果:形成DNA片断末端。 (2)各种酶都具有专一性,特别是限制酶只能识别特定的脱氧核苷酸序列,并在特定的碱基之间切开。 2.基因工程的基本操作程序 (1)获取目的基因 ①基因文库:是将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中通过克 隆而储存,各个受体菌分别含有这种生物的不同基因。 ②基因组文库:基因文库中含有一种生物所有的基因就叫做基因组文库。 ③部分基因文库:含有一种生物的部分基因,就叫做部分基因文库,如cDNA文库。 比较项目PCR技术DNA复制 相 同 点 原理DNA双链复制((碱基互补配对) 原料四种游离的脱氧核苷酸 条件模板、ATP、酶等 不 同 点 解旋方式DNA在高温下变性解旋解旋酶催化 场所体外复制主要在细胞核内 酶热稳定的DNA聚合酶(Taq酶)细胞内含有的DNA聚合酶 结果在短时间内形成大量的DNA片段形成整个DNA分子 (2)基因表达载体的构建(基因工程的核心) ①构建目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目 的基因能够表达和发挥作用。 ②一个基因表达载体的组成:目的基因、启动子、终止子、标记基因等。 ③构建方法

基因工程主要内容及流程

基因工程制药 姓名:惠霞 学号:2011506024 班级:2011级生技1 班

基因工程制药 一.基因工程制药常用的工具酶: 基因工程的重要特点之—是在体外实行DNA分子的切割和重新连接。例如要取得所需药物之目的基因并要将此特定目的基因与载体DNA连接在—起,在很大程度上要依赖于某些工具酶。 (一) 限制酶(Restriction enzymes) 限制酶即限制性核酸切酶的简称,是一类专一性很强的核酸切酶。与一般的DNA水解酶不同之处在于它们对碱基作用的专一性上及对磷酸二酯键的断裂方式上具有一些特殊的性质。限制酶的种类 Ⅰ型酶:早期提取的酶类,是一类复杂的多功能酶,在基因工程上的应用价值不大。 Ⅱ型酶:相对分子质量较小,为20000~100000,是简单的单功能酶,作用时无需辅助因子或只需Mg2+。能识别双链DNA上特异的核苷酸序列,底物作用的专一性强,而且其识别序列与切断序列相一致。这类酶对基因工程中的生化操作特别重要。 (二) DNA聚合酶(DNA polymerase) DNA聚合酶是能够催化DNA复制和修复DNA分子损伤的一类酶,这类酶作用时大多数需要DNA模板并且优先作用于DNA模板,也可作用于RNA模板,但效率较低。 1.大肠杆菌DNA聚合酶Ⅰ 2. 大肠杆菌DNA聚合酶Ⅰ大片断Klenow 片断 3. T4噬菌体DNA聚合酶 4. 经修饰的T7噬菌体DNA聚合酶(测序酶) 5. T aqDNA聚合酶及AmpiTaqTMDNA聚合酶 6. 反转录酶

(三)DNA连接酶(DNA ligase):能将两段DNA拼接起来的酶。 1. T4噬菌体DNA连接酶:催化DNA的5'羟基之间形成磷酸二酯键。 2. 大肠杆菌DNA连接酶:用途较窄,不常用。 (四)基因工程中常用的其他酶 1. 末端脱氧核苷酸转移酶(末端转移酶或TDT酶) 2. T4噬菌体多核苷酸酶 3. 核酸酶(Nuclease) 4. 碱性磷酸酯酶(Alkaline phosphodiesterase):能催化去除单链或双链DNA和RNA 分子中的5' 磷酸基(脱磷酸作用)。分为细菌碱性磷酸酯酶(BAP),牛小肠碱性磷酸酯酶(CIP)。 二.基因工程制药中常用的克隆载体 载体:能在细胞进行自我复制的DNA分子就是外源DNA片段(基因)的运载体(Vector),又可称为分子载体或无性繁殖载体。基因工程制药中常用的目的基因克隆载体主要有:质粒、λ噬菌体、M13噬菌体和粘粒。 (一)质粒 1.质粒(Plasmid)是一些存在于微生物细胞染色体外的闭合环状双链的小型DNA分子,是能进行独立复制并保持恒定遗传的辅助性遗传单位。 2 常用的几种质粒载体 (1)pBR322及其衍生载体 pBR322 最早构建成功的较理想载体,分子质量2.6×106u,4.36kb,属松弛型复制,含有两个抗性基因(Tetr和Ampr),已确定32个限制酶切割位点的相对位置。BamH I

相关主题
文本预览
相关文档 最新文档