当前位置:文档之家› 半导体激光器驱动电源设计

半导体激光器驱动电源设计

半导体激光器驱动电源设计
半导体激光器驱动电源设计

半导体激光器的驱动电源设计

目录

摘要 .......................................................................................................... 错误!未定义书签。Abstract.......................................................................................................... 错误!未定义书签。1前言 .. (4)

2系统方案论证与及技术路线 (4)

2.1方案论证 (4)

2.2技术路线 (5)

3模拟电路部分的系统方案设计 (6)

3.1电路组成和工作原理 (6)

3.2跟随及放大电路 (7)

3.3取样及放大电路 (10)

3. 3短路保护电路 (14)

3. 4延时软启动 (14)

3.5使能控制 (15)

3.6 限流保护电路 (16)

4数字电路部分的系统方案设计 (18)

4.1单片机系统的硬件设计 (18)

4.2单片机的晶振电路 (22)

4.3复位电路 (22)

4.4按键电路 (23)

4.5 A/D转换电路 (26)

4.6 D/A转换电路 (29)

4.7液晶显示电路 (31)

4.8数字电路部分原理图 (33)

5 系统软件开发 (34)

6 结论 (36)

致谢 (37)

参考文献 (38)

附录 (39)

摘要

半导体激光器(LD)是一种电流注入式电致发光器件, 其工作特性和使用寿命主要取决于驱动电流源的性能优劣。本文作者设计了一种数控半导体激光器驱动电源,该电源采用单片机控制,通过键盘设定工作电流值和限定电流值,并在LCD 屏上显示,同时这些设定值可存储在E2PROM内便于下次调用。系统将模拟电路与数字电路相结合,包括取样放大电路、保护电路以及基于XX的控制电路组成。结合硬件及软件, 实现了激光二极管的可靠保护以及光功率的稳定、准确输出。此外,该电源还具有过流保护、延时软启动,可与PC机通信完成数据自动采集等多种功能,在科研和生产中有很好的应用前景。

关键词:单片机半导体激光器驱动电源

Abstract

Laser diode (LD) is a current injected device whose characteristic and life are greatly dependent on the performance of LD-used current supply. We designed a digital driving source for LD. The driving source is controlled by MCU. The operation current value and current limit value can be set by key board. The values can be displayed on the LCD screen and be stored in E2PROM so that these can be used next time. The system build up by analog current and digital current, include sampling amplifier current、protection current and based on AT89C52 control current. By combining appropriate hardware and software, we have achieved, in our driver, a variety of protection features. Meanwhile, we have also obtained a continuously adjustable optical power output with high accuracy and stability. In addition, it has such functions as limited current protection, soft starting delayed and automatic data acquisition by the computer through the serial port and so on. It will be widely used in the fields of scientific research and production.

Key word: MCU laser diode driving source

1前言

半导体激光器具有单色性好、体积小、重量轻、能耗低、工作寿命长等优点,在科研、工业、军事等领域得到了日益广泛的应用。半导体激光器是一种以电流注入作为激励方式的激光器,其运行与驱动电源有很大的关系, 瞬态的电流或电压尖峰等许多因素都很容易损坏激光器, 电流、温度的起伏会引起光功率的变化, 影响输出的准确、稳定。有关驱动电源的问题因素更加受到人们的重视,目前大多都是纯硬件电路系统。事实上,基于微型计算机的数字化控制能够更有效地解决半导体激光器工作的准确、稳定和可靠性问题。数字化、智能化也是半导体激光器应用的必然发展方向。本文介绍我们研制的一种基于单片机控制的连续运转半导体激光器驱动电源,该系统具有广泛的实际应用前景。

2系统方案论证与及技术路线

2.1方案论证

通过对本系统功能的分析,本文将硬件的实现分为为两大部分,即模拟电路部分与数字电路部分。其中模拟电路包括七部分:第一部分取样及放大电路部分,第二部分短路保护电路部分,第三部分延时软启动电路部分,第四部分使能控制电路,第五部分限流保护电路部分。数字电路部分采用单片机作为系统的控制单元,由晶振电路,复位电路,按键电路,液晶显示电路,数模转换电路,模数转换电路等六部分外围电路组成。

综合分析以上方案,我们的对硬件选择方式也是多种多样。首先根据要求,模拟电路中需要用到多个集成运算放大器来实现电路功能,这里我们选用最为通用的集成运算放大器芯片LM324,该芯片的每个封装中包含有4个运算放大器。

微处理器的选则,目前微处理器也是多种多样,较流行的上档次的产品,一般都采用可嵌入操作系统的CPU如飞利浦的LPC21系列、LPC22系列、三星SC

系列产品。一般较普通的都用单片机来完成,单片机种类也很多,如微芯公司的PIC系列单片机,MCS-51系的单片机等等。比较而言,可嵌入操作系统的处理器,操作难度大,价格一般都较贵,而PIC系列的单片机价格也贵。而MCS-51的89C52单片机就可以完成我们的系统,其价格便易,操作方便,所以选择AT89C52单片机作为整个系统的核心部件。

按键显示器是一个系统的输入与输出窗口,操作人员需要利用按键对系统进行一些参数输入,系统运行中的各种信息也是从显示器上反应出来的。根据需要显示的信息量的大小选择LM016L液晶显示模块。

A/D、D/A转换器,目前市场上有各种型号可供选择,但是有一些精度高的非常昂贵,不适用于一些小型的控制系统中。结合测试精度与经济性,本系统选取了较常使用的TLC549作为A/D转换器,TLC5615作为D/A转换器。TLC549是8位的A/D转换器,不仅具有多种操作方式及数据输出方式,而且价格便宜。TLC5615是10位的D/A转换器,转换精度满足一些基本要求,多种操作方式,适用于各种应用场合,通用性好,价格便宜。

2.2技术路线

针对以上所说明的,系统设计方案框架图如图2-1所示。本系统的总体方案设计将包括如下几个方面。

1、模拟电路

2、单片机的晶振与复位电路

3、AD/DA转换

4、按键与显示

3模拟电路部分的系统方案设计

3.1电路组成和工作原理

如图3-1所示,模拟电路部分由电流设定电路、功率驱动电路、取样及放大电路、短路保护电路、延时软启动、使能电路、限流保护电路部分组成。

该驱动电源电路的工作原理是:以功率器件MOS 管(IRF3205)作为调整管,通过控制MOS 管栅极电压,实现对激光管的电流控制,采样电阻接在MOS 管的源极(低端取样),采样信号(反馈信号经仪表运放放大反馈与设定值作差 ,产生误差信号,通过积分电路,调整MOS 管的栅极电压,达到设定电流为恒流输出的目的。

设DAC1的电压经放大器U1跟随后为1V ,经U2放大后为112*V A V = (1A 为U2上的放大倍数) ,又设经过半导体激光器的电流为I ,则流过采样电阻R6的电流也为I ,即采样电压为I R *6,经采样放大后为)*(*62I R A ,其中2A 为AD620的放大倍数。根据运算放大器的虚短、虚断原则,U3的同相输入端和反相输入端电压相等 ,即in V + = in V - =0 ,则有流经3R 和4R 与流过12R 的电流大小相等,且方向相反,即

1262432)*(*R I R A R R V =+可以得到6

4321211*)(***R R R A R V A I +=当设定好3R 、4R 、12R 、6R 、1A 、2A 这些参数后,流过半导体激光器的电流I 只与1V 有关,即只与DAC1有关。

图3-1 模拟电路原理图

其中3R 、4R 、12R 的电阻值如图中所示6R 的阻值为10K,1A 的大小由2R /1R 决定,2A 的大小由10R 的阻值所决定。

3.2跟随及放大电路

电路设定电路由单片机系统经过D/A 转换输出的电压DAC1提供。输入电压DAC1首先经过由运算放大器U1构成的电压跟随器。

如图3-2所示电压跟随器就是将输出电压直接作为反馈电压,利用虚短的概念得到i P n o V V V V =≈=即电压增益1≈=i

O v V V A ,由此可知输出电压o V 与输入电压i V 大小相等,相位相同,虽然电压跟随器的电压增益等于1,根据分析同相放大电路的方法,可知它的输入电阻∞→i R ,输出电阻0→o R ,所以电压跟随器在电路中常作为阻抗变换器或缓冲器。

图3-2 电压跟随器的典型电路

在图3-3中运算放大器U1构成电压跟随器。根据上述分析电压跟随输入电阻∞→i R ,该电路几乎不从信号源吸取电流使得DAC1全部输入到电路中,而输出电阻0→o R 所以当负载变化时输出电压几乎不变,从而消除了负载变化对输出电压的影响,所以经过放大器U1后输入的电压信号DAC1几乎没有变化U1起到了缓冲器的作用。

图3-3 系统中的电压跟随器

设DAC1的电压经过运算放大器U1跟随后为1V ,送入下一级放大电路U2。U2构成的是一个反相放大电路,并联在输出端与反相输入端的电容与电阻R 构成了积分电路,这个积分电路的作用在这里起到了一个保护作用,利用对电容的充电与放电过程缓慢的将输入电压1V 放大。

如图3-4所示的放大电路所示,由虚短的概念可知同相输入端电压p V 等于反相输入端电压n V ,同时由于同相输入端接地,故反相输入端的电位也接近于地电位即n V =0由虚断的概念(p i =n i =0)可知,p i =n i ,故有

2211R V V R V V n n -=-由此得12121R R V V A -==

。 所以设经过U2放大后的电压为2V ,故112*V A V =,其中1A 为运算放大器U2的放大倍数,根据上式该放大倍数由1R 与2R 的比值决定,又因为1R 为定值电阻,所以U2的放大倍数由电位器2R 来决定,调节2R 可以得到不同的放大倍数。

图3-4 U2所构成的反相放大电路

被运算放大器U2放大后的电压2V 送入下一级运算放大器U3。U3与外围的电阻、电容构成了一个积分电路。如图3-5所示,积分电路由运算放大器、电容和电阻构成。电容跨接在反相输入端和输出端之间,电阻接在反相输入端。利用虚断和虚短的概念可得0=n V ,0=i i 因此有i i i ==21,电容器C 以电流R V i i i /=进行充电。假设电容C 的初始电压为0,则??==

-dt R V C dt i C V V i n 1110即?-=dt V C R V i 1

0,该式表明,输出电压0V 为输入电压i V 对时间的积分,符号表示它们在相位上是相反的。当输入信号i V 为阶跃电压时,在它的作用下,电容将以近似恒流的方式进行充电,输出电压0V 与时间t 成近似线性关系,因此式中τ=RC 为世间积分常数。当t=τ时,i O V V =-当t>τ,VO 增大,直到om V V +=-0,即运放输出电压的最大值om V 受直流电源电压的限制,致使运算放大器进入饱和状态,O V 保持不变,而停止积分。

图3-5 典型的积分电路

根据上述分析如图3-6所示,由 U3与电阻4R 、电容3C 构成的积分电路,上电后即先对电容3C 进行充电,输出电压为对时间的积分,输出电压达到最大值后受直流电源电压的限制,致使运算放大器进入饱和状态,输出电压保持不变,而停止积分。通过该积分电路,调整 MOS 管的栅极电压,达到设定电流为恒流输出的目的。

图3-6 系统中的积分电路

3.3取样及放大电路

电路中以功率器件MOS 管(IRF3205)作为调整管,通过控制 MOS 管栅极电压,实现对激光管的电流控制, 采样电阻接在MOS 管的源极(低端取样) 。

在电流源电路中,取样电阻的精密程度直接影响了电流输出的稳定性 ,在这

里使用了低温漂、额定功率10W 、0.1欧的功率电阻(6R )。由于0.1欧电阻上的电压过小,故需要放大 ,我们采用仪表放大器AD620对其放大。

这里使用仪表放大器是因为在一般信号放大的应用中通常只要透过差动放大电路即可满足需求,然而基本的差动放大电路精密度较差,且差动放大电路变更放大增益时,必须调整两个电阻,影响整个信号放大精确度的变因就更加复杂。仪表放大电路则无上述的缺点,只需调整一个电阻的阻值即可改变电路的放大增益。

如图3-7所示的仪表放大电路是由三个放大器所共同组成,其中运算放大器A1、A2按同相输入接法组成第一级差分放大电路,运算放大器A3组成第二级差分放大电路。在第一级电路中,V1,V2分别加到A1和A2的同相端,1R 和两个2R 组成的反馈网络,引入了负反馈,两个运算放大器A1、A2的两输入端形成虚短和虚断,因而有211V V V R -=和)2/()(/124311R R V V R V R +-=,故得到 ))(21(2211

2111243V V R R V R R R V V R -+=+=- (3-1) 根据求差电路关系,可得

))(21()(211

23443340V V R R R R V V R R V -+-=--= (3-2) 于是电路的电压增益为

)21(1

234210R R R R V V V A v +-=-= (3-3) 在仪用放大器中,通常2R 、3R 和4R 为给定值,1R 用可变电阻代替,调节1R 的值,即可改变电压增益v A 。由于输入信号V1和V2都是从A1、A2的同相端输入,电路出现虚短和虚断现象,因而流入电路的电流等于0,所以输入电阻∞→i R 。

图3-7 仪表放大器的原理图

仪表放大器AD620的基本特点为精确度高、使用简单、低噪声,此仪表放大器有高输入阻抗:10GΩ||2pF、高共模具斥比高:100dB、低输入抵补电压( Input offset Voltage):50uV,低输入偏移电流(Input bias current):1.0nA,低消耗功率:1.3mA,以及过电压保护等特性,应用十分广泛。

表3-1是AD620的规格特性总览表。然而会选用它,是因它价格合理、增益值大、漂移电位低等,正好符合成本合理及有效放大采样电阻上输出的电压的微

小变化讯号。

表3-1 AD620的规格特性总览表

图3-8为AD620内部方框图

AD620内部结构如图3-8所示。图3-9为所选用的仪表放大器AD620引脚示意图,其中的1、8接脚要跨接一个电阻来调整放大倍率,7、4管脚分别接正负电源。2管脚为反相输入端,3管脚为同相输入端,5管脚接地6管脚为输出端。

图3-9 仪表放大器AD620引脚示意图

14.49+Ω=G

R k G (3-4) 1

4.49-Ω=G k R G (3-5) 式3-4与式3-5为AD620的增益与可调电阻的关系式,由此二式我们即可推算出各种增益所要使用的电阻值GR 值。图3-10为本文中的取样及放大电路

图3-10 本系统中的取样及放大电路

3. 3短路保护电路

激光二极管平时不使用时如果裸露在空气中,易受雷电或静电破坏,因此在不使用时,将一个接触电阻很小的开关J 2与LD 并联在一起即实现短路保护。当LD 不工作时,将S2闭合,使LD 的P 极和N 极短接,起到保护LD 的作用;在LD 开始工作之前,必须先将开关S2断开,电流才能流过LD 。短路保护电路如图3-11所示。

3. 4延时软启动

为防止电流或电压的波动对激光器的破坏 ,因此使用时将电流缓慢地加在激光器两端 ,同时为防止开机瞬间电压突变 ,激光二极管两端并联一只电容C2 ,

为防止供电电压极性接反,在激光二极管端反向并联一只二极管D4。延时软起动电路如图3-11所示。

图3-11 短路保护电路与延时软起动电路

3.5使能控制

如图3-12所示,当单刀双掷开关S1与 + 12V 连接时,D1、D2导通,R3的右端电压被钳位到0 , MOS管的栅极电压低于阈值电压, MOS管无漏极电流, 激光二极管无电流流入 ,这样可以避开开机时的波动电流或电压。当单刀双掷开关S1与- 12V连接时D1、 D2不导通,使能控制电路不影响主回路。

图3-12 系统的使能控制电路

3.6 限流保护电路

限流保护电路由U5、U6和U7组成的电压跟随电路和单门限电压比较器构成,如图3-13所示。其中U5、U6为电压跟随器,对输入的采样放大后的电压Va和DAC2起到缓冲作用。U7为单门限电压比较器。

电压比较器它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压比较器,窗口(双限)电压比较器。电压比较器可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。可以作为模拟电路和数字电路的接口电路。具有比集成运放的开环增益低,失调电压大,共模抑制比小等特点;但其响应速度快,传输延迟时间短,而且不需外加限幅电路就可直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力很强,还可直接驱动继电器和指示灯。

采样电压放大后(Va)与DAC2比较,当Va>DAC2,二极管D5导通,形成一个负反

馈环,使流经半导体激光器的电流I减小,从而使Va减小,直到Va=DAC2。由此可见流过半导体激光器的最大电流是一个与DAC2有关的固定电流值,只要设定好DAC2 的值(即限流值) ,可保护激光二极管不会因过流而毁坏当Va<DAC2时 ,二极管D5不导通,此电路不影响主回路。

图3-13 限流保护电路

4数字电路部分的系统方案设计

数字电路部分采用单片机作为系统的控制单元,由晶振电路,复位电路,按键电路,数模转换电路,模数转换电路,液晶显示电路,与PC机通讯接口电路等七部分外围电路组成。

4.1单片机系统的硬件设计

单片机系统是整个驱动电源的控制核心部分。具有要实现接受数据,数据处理,显示,与PC机通信等功能。

单片机的全称为单片微型计算机(Single Chip Microcomputer),它是把组成微型计算机的各功能部件,如中央处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)I/O接口电路、定时/计数器,以及串行通信接口等部件制作在一块集成芯片中,构成一个完整的微型计算机。

单片机具有小巧灵活、成本低、研发周期短易于产品化,可靠性高,使用温度范围宽,易扩展,控制能力强,指令系统相对简单等优点。

单片机硬件设计包括两大部分内容。一是单片机系统的扩展部分设计,它包括存储器扩展和接口扩展。二是各功能模块的设计、如信号测量功能模块、信号控制模块、人机对话功能模块、通信功能模块等,根据系统功能要求配置相应的A/D、D/A、键盘、显示器、打印机等外围设备。

单片机的种类很多,在实际应用中要根据具体情况来选择单片机的类型。

1.对不同的单片机的性能进行比较

单片机的种类繁杂,性能各异,应根据应用系统的具体要求来进行比较、选择。首先要选择合适的存储器。单片机内部有两种存储器:程序存储器和数据存储器。两者严格区分开,对于不同厂家和型号的单片机,这两种存储器的容量也不一致。可以选择片内无程序存储器的单片机,通过对片外扩展组成单片机扩展系统。这种系统使用灵活,改写程序方便,是目前我国使用较多的一种凡是。设计扩展系统时,要分别估计程序的长短和随机数据的多少从而确定片外扩展上的数据存储器和成程序存储器容量的大小。

选择单片机还应注意扩展部件的方便程度、接口能力、指令系统、寻址方式、功耗及成本,单片机的基本参数例如速度、I/O引脚数量;工作温度范围,工业级还是商业机,如果设计户外产品,必须选用工业级;工作电压范围;抗干扰性

能好;和其他外设芯片放在一起的综合考虑等问题。

2.必须具备配套的开发系统

单片机的应用系统一般比较小巧、紧凑,不像其他一般微型计算机有较多的外设,多数单片机不具备软件调试功能,即不具备自开发能力。因此,在自行设计组装单片机时,必须有相应的开发工具。这种开发工具叫单片机开发系统。尽管单片机有许多优点,但如果没有开发系统,就无法开展单片机的应用开发工作。有的单片机性能很好,但如果找不到合适、方便的开发系统。就不宜采用。

3.选择市场上的主流产品

目前,Intel公司的MCS-51系列单片机或其兼容机在8位单片机市场上占有50%以上,配套的开发系统完备、可靠。由于其有较高的性能价格比,自1980年推出以来,直到现在,其在市场上仍很坚挺,已是我国在工业检测、控制领域的优选机型。

根据单片机的选用原则以及计步器的功能需要。选择AT89C52单片机作为计步器的核心控制部分。

AT89C52是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含8Kbytes的可编程的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片中,低价位AT89C52单片机可灵活应用于各种领域。

AT89C52提供以下标准功能:8K字节Flash闪速存储器,256字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,三个16位可编程定时/计数器中断,两个串行中断,两个全双工串行通信口,两个外部中断源,共6个中断源两个读写中断口线,三级加密位,低功耗空闲和掉电模式,软件设置睡眠和唤醒功能,片内振荡器及时钟电路。AT89C52可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作到下一个硬件复位。AT89C52的主要性能参数见表4-1。

表4-1 AT89C52的主要性能参数

图4-1是课题中所选用的AT89C52的封装管脚图,现在对引脚功能进行简要说明:

V

:电源电压

CC

GND:地

P0口:P0口是一组8位漏极开路型双向I/O口,当使用片外存储器(ROM 或RAM)时,作地址/数据总线分时复用。在程序校验期间,输出指令字节(这时需要加外部上拉电阻)。P0口(作为总线时)能驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用

P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

图4-1 40引脚双列直插(DIP)封装图

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

LED驱动电源PCB设计规范

LED驱动电源PCB设计规范 在任何电源设计中,PCB板的物理设计都是最后一个环节,其设计方法决定了电磁干扰和电源稳定,我们来具体的分析一下这些环节:一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出。二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil.。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。 四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。 五、检查布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方。注意:有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次。 六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等。

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

LED灯具驱动电源的设计经验总结

LED灯具驱动电源的设计经验总结 ?浏览: 634 ?| ?更新: 2012-05-09 14:01 ?| ?标签:灯具 5 简介 目前led照明驱动电源的五大市场需求趋势可归结为:高效率、高可靠性、对调光与非调光广泛的应用兼容性、体积越来越小、无光耦。LED灯具要普及,不但需要大幅度降低成本,更需要解决能效和可靠性的难题,如何解决这些难题,PowerIntegrations市场营销副总裁DougBailey分享了高效高可靠LED灯具设计的五点忠告。 步骤/方法 1.不要使用双极型功率器件 由于双极型功率器件比MOSFET便宜,一般是2美分左右一个,所以一些设计师为了降低LED驱动成本而使用双极型功率器件,这样会严重影响电路的可靠性,因为随着LED驱动电路板温度的提升,双极型器件的有效工作范围会迅速缩小,这样会导致器件在温度上升时故障从而影响LED灯具的可靠性,正确的做法是要选用MOSFET 器件,MOSFET器件的使用寿命要远远长于双极型器件。 2.MOSFET的耐压不要低于700V 耐压600V的MOSFET比较便宜,很多认为LED灯具的输入电压一般是220V,所以耐压600V足够了,但是很多时候电路电压会到340V,在有浪涌的时候,600V的MOSFE T很容易被击穿,从而影响了LED灯具的寿命,实际上选用600VMOSFET可能节省了一些成本但是付出的却是整个电路板的代价,所以,“不要选用600V耐压的MOSFE T,最好选用耐压超过700V的MOSFET.”他强调。 3.尽量不要使用电解电容 LED驱动电路中到底要不要使用电解电容?目前有支持者也有反对者,支持者认为如果可以将电路板温度控制好,依次达成延长电解电容寿命的目的,例如选用105

半导体激光器驱动电源的控制系统

半导体激光器驱动电源的控制系统 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。这些外设部件的高度集成为设计小体积、低功耗、高可靠性、高性能的单片机应用系统提供了方便,也大大降低了系统的成本。光功率及温度采样模拟信号经放大后由单片机内部A/D 转换为数字信号,进行运算处理,反馈控制信号经内部D/A转换后再分别送往激光器电流源电路和温控电路,形成光功率和温度的闭环控制。光功率设定从键盘输入,并由LED数码管显示激光功率和电流等数据。 2 半导体激光器电源控制系统设计 目前,凡是高精密的恒流源,大多数都使用了集成运算放大器。其基本原理是通过负反作用,使加到比较放大器两个输入端的电压相等,从而保持输出电流恒定。并且影响恒流源输出电流稳定性的因素可归纳为两部分:一是构成恒流源的内部因素,包括:基准电压、采样电阻、放大器增益(包括调整环节)、零点漂移和噪声电压;二是恒流源所处的外部因素,包括:输入电源电压、负载电阻和环境温度的变化。 2.1 慢启动电路 半导体激光器往往会因为接在同一电网上的多种电器的突然开启或者关闭而受到损坏,这主要是由于开关的闭合和开启的瞬间会产生一个很大的冲击电流,就是该电流致使半导体激光器损坏,介于这种情况,必须加以克服。因此,驱动电源的输入应该设计成慢启动电路,以防损坏,:左边输入端接稳压后的直流电压,右边为输出端。整个电路的结构可看作是在射级输出器上添加了两个Ⅱ型滤波网络,分别由L1,C1,C2和L2,C6,C7组成。电容C5构成的C型滤波网络及一个时间延迟网络。慢启动输入电压V在开关和闭合的瞬间产生大量的高频成分,经过图中的两个Ⅱ型网络滤出大部分的高频分量,直流以及低频分量则可以顺利地经过。到达电阻R和C组成的时间延迟网络,C2和C4并联是为了减少电解电容对高频分量的电感效应。 2.2 恒流源电路的设计 为了使半导体激光器稳定工作,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定恒流源驱动,具体电路。 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。

电源设计与驱动电路设计

3.1.1 智能车电源设计要点 电源是整个系统稳定工作的前提,因此必须有一个合理的电源设计,对于小车来说电源设计应注意两点: 1. 与一般的稳压电源不同,小车的电池电压一般在6-8V 左右,还要考虑在电池损耗的情况下电压的降低,因此常用的78 系列稳压芯片不再能够满足要求,因此必须采用低压差的稳压芯片,在本文中以较为常见的LM2940-5.0 为例。 2.单片机必须与大电流器件分开供电,避免大电流器件对单片机造成干扰,影响单片机的稳定运行。现在各种新型的电源芯片层出不穷,各位读者可以根据自己的需求自行选择电源芯片,对于本设计应该主要注意稳压压差和最大输出电流两个指标能否满足设计要求。 3.3.1.2 低压差稳压芯片LM2940 简介 LM2940 系列是输出电压固定的低压差三端端稳压器;输出电压有5V、8V、10V 多种;最大输出电流1A;输出电流1A 时,最小输入输出电压差小于0.8V;最大输入电压26V;工作温度-40~+125℃;内含静态电流降低电路、电流限制、过热保护、电池反接和反插入保护电路。同时LM2940 价格适中而且较容易购买,非常适合在本设计中使用。 LM2940-5.0 封装和实物图如图3.1 所示。 图3.1 LM2940 封装和实物图 从封装可以看出LM2940-5.0 与78 系列完全相同,实际应用中电路也大同小异。图3.2 为参考电路图。

图 3.2 LM2940 参考电路图 如图3.2 所示,采用两路供电,这样可以使用其中一路单独为单片机,指示灯等供电。另外一路提供L298N、光电管、舵机的工作电压,L298N 的驱动电压由电池不经任何处理直接给出。舵机可以用6V 供电,也可以直接用5V 供电。 3pi小车电源电路设计 The power management subsystem built into the 3pi is shown in this block diagram: The voltage of 4 x AAA cells can vary between 3.5 –5.5 V (and even to 6 V if alkalines are used). This means it’s not possible simply to regulate the voltage up or

LED驱动电源设计开发知识大全

:LED驱动设计知识 驱动设计知识 LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。 根据电网的用电规则和LED驱动电源的特性要求,在选择和设计LED驱动电源时要考虑到以下几点: 1.高可靠性 特别像LED路灯的驱动电源,装在高空,维修不方便,维修的花费也大。 2.高效率 LED是节能产品,驱动电源的效率要高。对于电源安装LED驱动电源在灯具内的结构,尤为重要。因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升。对延缓LED的光衰有利。 3.高功率因素 功率因素是电网对负载的要求。一般70瓦以下的用电器,没有强制性指标。虽然功率不大的单个用电器功率因素低一点对电网的影响不大,但晚上大家点灯,同类负载太集中,会对电网产生较严重的污染。对于30瓦~40瓦的LED驱动电源,据说不久的将来,也许会对功率因素方面有一定的指标要求。 4.驱动方式 现在通行的有两种:其一是一个恒压源供多个恒流源,每个恒流源单独给每路LED供电。这种方式,组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要解决某个LED故障,不影响其他LED 运行的问题。这两种形式,在一段时间内并存。多路恒流输出供电方式,在成本和性能方面会较好。也许是以后的主流方向。 5.浪涌保护 LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。有些LED灯装在户外,如LED路灯。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源要有抑制浪涌的侵入,保护LED不被损坏的能力。 6.保护功能 电源除了常规的保护功能外,最好在恒流输出中增加LED温度负反馈,防止LED温度过高。 7.防护方面 灯具外安装型,电源结构要防水、防潮,外壳要耐晒。 8.驱动电源的寿命要与LED的寿命相适配。

半导体激光器驱动电路

查阅相关文献资料,设计半导体激光器驱动电路,说明设计思路和电路模块的功能 图1 在半导体激光器的设计中,为了便于对光功率进行自动控制,通常激光器内部是将LD 和背向光检测器PD集成在一起的,见图1。其中LD有两个输出面,主光输出面输出的光供用户使用,次光输出面输出的光被光电二极管PD接收,所产生的电流用于监控LD的工作状态。背光检测器对LD的功率具有可探测性,可设计适当的外围电路完成对LD的自动光功率控制。激光器电路的设计框图如图所示,将电源加在一个恒压电路上,得到恒定的电压,再通过一个恒流电路得到恒定的电流以驱动LD工作. 其中恒压电路如图2,由器件XC9226以及一个电感和两个电容组成。XC9226是同步整流型降压DC/DC转换器,工作时的消耗电流为15mA,典型工作效率高达92%,只需单个线圈和两个外部连接电容即可实现稳定的电源和高达500IllA的输出电流。其输出纹波为10mV,固定输出电压在0.9v到4.0V范围内,以loomv的步阶内部编程设定。该电路中,输出的恒定电压设定为2.6v。 图2 恒流电路如图3,主要由LMV358、三极管以及一些电阻和电容共同组成.LMv358是一个低电压低功耗满幅度输出的低电压运放,工作电压在2.7v到5.5v之间。从恒压电路输出的2.6V电压经过Rl、RZ分压后,在LMv35s的同相输入端得到恒定电压Up,Up加在一个电压串联负反馈电路上,得到一个输出电压Uo。Uo再通过一个电阻和电容组成的LR滤波

电路上,得到恒定的直流电压uol,将uol作用在由三极管8050组成的共射级放大电路上,得到恒定的集电极电流Ic,k又通过一个滤波电容得到恒定的直流工作电压。 图3

开关电源中MOSFET的驱动电路设计

???⑤Ё026)(7???????????????? ??026)(7????????????????????????????⑤????????????026)(7???????-? ??026)(7???????????????????????П??????????????????????9JV WK??026)(7????????????????????/??????????????????????????&HL???????????????????????????026)(7??????&LVV?????????&HL???????????????????????????, &?GY GW? ?┉??&HL ???&LVV ?????/???026)(7???????????4J?????? 4J ?026)(7???????????????? 4J 4JV 4JG 4RG ?Ё? 4J ?????? 4JV ?? ⑤??? 4JG ?? ?????0LOOHU? ???026)(7???? ?? ? ??026)(7???????????????????026)(7??????&JV ???9JV ??Q????????&JV г??9WK ??????┨?9JV ??&HL?????┨?????????????????????????? ???????? 4J ?&HL??9JV? ,J 4J W ?? ?Ё? 4J ???????Н??? &HL ?????? 9JV ? ⑤????

,J?026)(7???????????????? ???6036???Ё??▊????????????????????????????????????????? $??????????└????????????????????? ╓????ā???ā?⑤???????????????????????6036??????????????????&026????????? 9?▊??026)(7???????????????????77/?????026)(7??????7& $??????????????9LO 9?9LK 9?????????????⑤??????? 9???????????? ???????-??????????026)(7?????????????????????????7& $?026)(7????????????? $??????????????????? ??????????L?????????????????E6036??????????????????????????????┑????????????????????????026)(7???????????????????⑤??П???????????????┑??⑤?????????026)(7???????????????L? 026)(7?????????????┑???/???????????7& $??????? S)?????????????W5??┑??W)?? Q V????????????????????-???????? ? ??????????/???????E?????????????????026)(7??????????????????7& $????????????┑????????? Q V??? ????-???????????????0L F UR&KL S ???????-???????:?????????-?????? ??▊??6036??Ё?????-????ˊ???

直流PWM驱动电源设计(DOC)

南京工程学院 课程设计说明书 成绩题目直流电动机脉宽调速系统设计课程名称电力电子技术 院(系、部、中心)电力工程学院 专业建筑电气与智能化 班级建筑电气091 学生姓名陈曦 学号206091034 设计时间2011.12.12~12.24 设计地点电力工程实践中心8-319 指导教师陈刚廖德利 2011 年12 月南京

1.课程设计应达到的目的 电源和驱)驱动电源及控制用小功率开关电源。其目的是通过对实际电力电子装置的设计、制作和调试,深化和拓展课程所学知识,提高工程实践能力。动是电力电子技术的两大主要应用领域。课程设计的主要任务是设训一和实现一个直流电动机的脉宽调速(直流PWM) 2.课程设计题目及要求 设计题目:直流PWM驱动电源的设计 设计要求:课程设计的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。DC-DC变换器采用H桥形式,控制方式为单极性。 被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。驱动系统的调速范围:大于1:100,电机能够可逆运行。驱动系统应具有软启动功能,软启动时间约为2s。 主要设计要求如下: 1.阅读相关资料,设计主电路和控制电路,用PROTEL绘制的主电路和控制电路的原 理图。 2.采购器件,装焊控制电路板。 3.在实验室进行装置调试。 4.设计成果验收。 5.整理设计文件,撰写设计说明书。 6.设计的成果应包括:用PROTEL绘制的主电路和控制电路的原理图,电路设计过程的 详细说明书及焊装和调试完毕的控制电路板。

3.课程设计任务及工作量的要求〔包括课程设计计算说明书、图纸、实物样品等要求〕课程设计任务 1)主电路的设计,器件的选型。包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。 2)PWM控制电路的设计(指以SG3525为核心的脉宽调制电路和用门电路实现的脉冲分配电路)。 3)IPM接口电路设计(包括上下桥臂元件的开通延迟,及上桥臂驱动电源的自举电路)。 4)DC15V 控制电源的设计(采用LM2575系列开关稳压集成电路,直接从主电路的直流母线电压经稳压获得)。 2人组成1个设计小组,通过合理的分工和协作共同完成上述设计任务。设计的成果应包括:用PROTEL绘制的主电路和控制电路的原理图,电路设计过程的详细说明书及焊装和调试通过的控制电路板。 4.主要参考文献 1)秦继荣编著,现代直流伺服控制技术及其系统设计。 2)电力电子实验台(直流脉宽调速部分)使用说明书。 3)IPM 模块PS21564 使用说明书及参考资料。 4)SG3525 使用说明书及参考资料。 5)LM2575 使用说明书及参考资料。 6)74LS04,74LS00 说明书。 7)二极管IN4148,IN5819 说明书 8)主电路原理图。 9)DIP- IPM 内部功能图 10)SG3525 内部功能图 11)LM2575 内部功能图 12)74LS04,74LS00 内部功能图

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

半导体激光器的恒流源

半导体激光器的恒流源 摘要本文主要介绍恒流源,并分析一种半导体激光器较高稳定度恒流源驱动系统的电路。恒流源驱动器的电路主要是由电压基准电路,电压电流转换电路和调整电路组成的。它的整体设计思路是利用高性能斩波稳零运算放大器,运用负反馈原理,使整个闭环反馈系统处于动态的平衡中,从而达到稳定输出电流的目的。 关键字半导体激光器;恒流源;高稳定度;闭环负反馈 Abstract: This paper focuses on the analysis of a semiconductor laser to a higher stability constant current source driver circuit. The constant current source drive circuit is mainly composed of the voltage reference circuit, the voltage-current converter circuit and adjust the circuit. It's overall design concept of high-performance chopper-stabilized op amps, the use of the principle of negative feedback, so that the whole closed-loop feedback system is in dynamic equilibrium, so as to achieve stable output current. Keywords:semiconductor laser;constant current source;with high stability;closed-loopnegative feedback 1、引言 半导体激光器是以直接带隙半导体材料构成的 PN 结为工作物质的一种小型化激光器,是依靠载流子注入而工作的,注入的电流的稳定性对半导体激光器的输出有直接且明显的影响。在正常条件下使用的半导体激光器有很长的工作寿命。但是,不适当的工作条件会造成半导体激光器性能的急剧恶化乃至失效(就是PN 结被击穿或用作谐振腔面的解理面遭到破坏,视其击穿或破坏程度而表现为输出光功率减小或无光功率输出)。它是有极高量子效率的器件,但是对电冲击的承受能力很弱,微小的电流变化都可能会导致器件的参数的变化,这些变化又将会危及半导体激光器的安全使用。因此要求半导体激光器的电源是个恒流源,

慢启动半导体激光器驱动电源的设计

慢启动半导体激光器驱动电源的设计 毛海涛,林咏海,张锦龙,冯 伟,柴秀丽,牛金星,李方正 (河南大学物理与信息光电子学院,河南,开封,475001) 摘 要:根据半导体激光器的光功率与电流的关系,通过慢启动电路、纹波调零电路、功率稳恒电路等解决了使用中的电源在工作温度范围内其输出功率不稳定的问题。设计的电路稳定度达到4 10-4。关键词:半导体激光器;功率增益自动控制电路;驱动电源 中图分类号:T N248 44 文献标识码:A 文章编号:1008 7613(2005)05 0021 03 0 引言 半导体激光器(LD)具有体积小、重量轻、价格低、驱动电源简单且不需要高电压(2.5V )等独特优点。目前,广泛应用于光纤通讯、集成光学、激光印刷、激光束扫描等技术领域。在实际应用中,遇到的问题之一是激光器在发光时阻值不断上升,造成输出光功率的下降。这可能导致激光器永久性的破坏或使发光强度达不到作为光源时的参量要求。因此,研制性能可靠、经济、耐用的半导体激光器具有广泛的应用价值。 1 L D 的驱动电流与输出光功率的特性 半导体激光器的结构如图1所示,对一般的半导体激光器来说,激光二极管(L D )是正向接法,光电二极管(P D )是反向接法。P D 受光后转换出的光电流I m 在串联电阻R 2上以电压信号反映出射光功率的大小,如图2所示,因此添加控制电路即可达到 稳定发光功率的目的。 半导体激光器的发光功率与通过的电流关系如图3所示,为便于分辨,图中底部的近似直线有所抬高。从图3中可以看出,在某一温度下,当驱动电流低于阈值电流时,激光器输出光功率P 近似为零,半导体激光器只能发出荧光,当驱动电流高于阈值时输出激光,并且光输出功率随着驱动电流的增大而迅速增加并近似呈线性上升关系。2 半导体激光器驱动电路设计 本例以H TL670T5为例,介绍一种半导体激光器稳功率驱动电路。该管输出波长为650nm,额定功率30mW,其工作特性曲线与图3 所示接近。 2.1 慢启动电路 半导体激光器往往会由于接在同一电网上的日光灯等电器的关闭或开启而损坏,这是因为在开关闭合和开启的瞬间会产生一个很大的冲击电流,该电流足以使半导体激光器损坏,必须避免。为此,驱 21 第19卷 第5期新乡师范高等专科学校学报 Vol.19,No.5 2005年9月 JO U RNAL OF X IN XIAN G T EACHERS COL LEGE Sep.2005 收稿日期:2005 04 05. 作者简介:毛海涛(1953 ),男,河南开封市人,河南大学物理与信息电子学院教授,硕士研究生导师,主要从事激光理论 及应用技术方面的研究工作。

基于UC3842的LED节能灯驱动电源设计

目录 摘要 (4) Abstract (5) 1引言 (6) 2概述 (6) 2.1 LED的发明 (6) 2.2 LED工作原理 (7) 2.2.1、LED发光机理 (7) 2.2.2、LED发光效率 (7) 2.2.3、LED电气特性 (7) 2.2.4、LED光学特性 (7) 2.2.5、LED热学特性 (8) 2.2.6、LED寿命 (8) 3 LED照明应用的国内外现状 (8) 3.1国内外发展现状: (8) 3.2全球LED产业现状与发展趋势 (9) 3.3国内外LED产业发展现状与态势呈现出的特点 (10) 4 LED的驱动方式简介及特点 (12) 4.1 阻容降压式原理及电路 (12)

4.1.1 电路原理 (12) 4.1.2 设计原则 (13) 4.1.3设计举例 (13) 4.2 开关式 (13) 4.2.1、开关式稳压电源的基本工作原理 (13) 4.2.2、开关式稳压电源的原理电路 (14) 4.2.3开关电源的种类 (15) 4.3 PFC电路原理 (19) 4.3.1 PFC的定义 (19) 4.3.2 PFC 的分类 (20) 4.3.3 PFC主电路原理图 (20) 5 高效率恒流PWM开关电源 (21) 5.1 UC3842的主要性能特点 (21) 5.2 UC3842工作原理 (22) 5.3 PWM (22) 5.3.1 DC/DC转换器 (23) 5.3.2 电流型PWM (23) 5.4.1 启动电路 (25) 5.4.3 反馈电路 (26) 5.4.4 整流滤波电路 (27)

5.4.5 并联整流二极管减小尖峰电压 (27) 6 总结 (28) 主要参考文献 (29) 致谢 (31)

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

半导体激光器驱动及温度控制电路

电路设计报告 (姓名:_________学号:________) 一、半导体激光器驱动电路 激光二极管广泛用作于光纤通信中的光源,采用恒流驱动方式。电路中,VT 1和VT 2构成恒流源,稳压二极管VD Z 为恒流源提供稳定的基准电压,RP 1限制该电路的电流,RP 2调节最佳工作点。当电流很小时,激光二极管VD 1不发光,光电二极管VD 2检测不到光功率。这时,比较器A 1输出高电平,监视发光二级管LED 不发光显示。调节电路中电流使其超过激光二极管的阈值电平时,激光二极管获得足够大的功率而发光,VD 2中有光电流流过,LED 发光显示。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器驱动电路.d d b D raw n By 0.1μF 0.1μF 100K Ω 2K Ω 10K Ω 820Ω 200Ω 10K Ω 22Ω 10Ω RP2500Ω RP11K Ω LED 9013 V T1V T2 25C3039 A 1LM339 A 2LM339 V D2 PH OTO 3.6V V Dz V D1 LD V CC V CC TTL 输入 二、半导体激光器温度控制电路 这种驱动电路也可作为热电冷却器TEC 中温度控制电路,如下图。TEC 控制电路是基于比较器A 1的反馈系统。若温度高于设定值,

A 1反相输入端电压低于其低阈值电平,A 1输出高电平,通过R 1、VT 1和VT 2驱动TEC 。TEC 电流由VD 1进行限制。当TEC 被驱动导通时,它使激光制冷,A 1反相输入端电压增大到超过其高阈值电平,A 2输出低电平TEC 截止不工作。RP 用于设定温度值。 1 2 3 4 5 6 A B C D 6 5 4 3 2 1 D C B A Tit le N u mb er Rev isio n Size B D ate: 5-A p r-2012Sh eet o f Fil e: E:\ED A\半导体激光器温度控制电路.d d b D raw n By 0.1μF V T2 25C3039V T1 9013 A 1 LM339 20K Ω RP 2.2KΩ R1 10K Ω 12Ω 10K Ω 1MΩ V D 2.7V TEC 热电冷却器 参考书目 [1]何希才.常用电子电路应用365例.电子工业出版社,2006. 其他什么的大家自己写点吧O(∩_∩)O~

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

慢启动半导体激光器驱动电源的设计

慢启动半导体激光器驱动电源的设计毛海涛 ,林咏海 ,张锦龙 ,冯伟 ,柴秀丽 ,牛金星 ,李方正 ()河南大学物理与信息光电子学院 ,河南 ,开封 ,475001 摘要 :根据半导体激光器的光功率与电流的关系 ,通过慢启动电路、纹波调零电路、功率稳恒电路等解决了使 - 4 用中的电源在工作温度范围内其输出功率不稳定的问题。设计的电路稳定度达到4 ×10 。 关键词 :半导体激光器 ;功率增益自动控制电路 ;驱动电源 () 文章编号:1008Ο7613 200505Ο0021Ο03 中图分类号 : TN2484?4 文献标识码 :A 0 引言半导体激光器的发光功率与通过的电流关系如 3 所示 ,为便于分辨 ,图中底部的近似直线有所抬图 () 半导体激光器 L D 具有体积小、重量轻、价格高。从图 3 中可以看出 ,在某一温度下 ,当驱动电流 ( ) 低、驱动电源简单且不需要高电压 2 . 5 V 等独特低于阈值电流时 ,激光器输出光功率 P 近似为零 , 优点。目前 ,广泛应用于光纤通讯、集成光学、激光半导体激光器只能发出荧光 ,当驱动电流高于阈值印刷、激光束扫描等技术领域。在实际应用中 ,遇到时输出激光 ,并且光输出功率随着驱动电流的增大 而迅速增加并近似呈线性上升关系。的问题之一是激光器在发光时阻值不断上升 ,造成 输出光功率的下降。这可能导致激光器永久性的破 2 半导体激光器驱动电路设计坏或使发光强度达不到作为光源时的参量要求。因本例以 H TL 670 T5 为例 ,介绍一种半导体激光

器稳功率驱动电路。该管输出波长为 650 nm ,额定此 ,研制性能可靠、经济、耐用的半导体激光器具有 广泛的应用价值。功率 30 mW ,其工作特性曲线与图 3 所示接近。 1 L 的驱动电流与输出光功率的特性 D 半导体激光器的结构如图 1 所示 ,对一般的半 () 导体激光器来说 , 激光二极管 L 是正向接法 , 光 D ( ) 电二极管 P是反向接法。P受光后转换出的光 D D 电流 I 在串联电阻 R 上以电压信号反映出射光功 m 2 率的大小 ,如图 2 所示 ,因此添加控制电路即可达到 稳定发光功率的目的。

相关主题
文本预览
相关文档 最新文档