当前位置:文档之家› 数据结构知识点全面总结—精华版

数据结构知识点全面总结—精华版

数据结构知识点全面总结—精华版
数据结构知识点全面总结—精华版

第1章绪论

内容提要:

◆数据结构研究的内容。

针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。

数据结构涵盖的内容:

◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。

数据——所有能被计算机识别、存储和处理的符号的集合。

数据元素——是数据的基本单位,具有完整确定的实际意义。

数据对象——具有相同性质的数据元素的集合,是数据的一个子集。

数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:

Data_Structure=(D, R)

数据类型——是一个值的集合和定义在该值上的一组操作的总称。

抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,

它由基本的数据类型构成。

◆算法的定义及五个特征。

算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。

算法的基本特性:输入、输出、有穷性、确定性、可行性

◆算法设计要求。

①正确性、②可读性、③健壮性、④效率与低存储量需求

◆算法分析。

时间复杂度、空间复杂度、稳定性

学习重点:

◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。

◆用计算语句频度来估算算法的时间复杂度。

第二章线性表

内容提要:

◆线性表的逻辑结构定义,对线性表定义的操作。

线性表的定义:用数据元素的有限序列表示

◆线性表的存储结构:顺序存储结构和链式存储结构。

顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。

链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。通过指针来实现!

◆线性表的操作在两种存储结构中的实现。

数据结构的基本运算:修改、插入、删除、查找、排序

1)修改——通过数组的下标便可访问某个特定元素并修改之。

核心语句: V[i]=x;

顺序表修改操作的时间效率是 O(1)

2) 插入——在线性表的第i个位置前插入一个元素

实现步骤:

①将第n至第i 位的元素向后移动一个位置;

②将要插入的元素写到第i个位置;

③表长加1。

注意:事先应判断: 插入位置i 是否合法?表是否已满?

应当符合条件: 1≤i≤n+1 或 i=[1, n+1]

核心语句:

for (j=n; j>=i; j--)

a[j+1]=a[ j ];

a[ i ]=x;

n++;

插入时的平均移动次数为:n(n+1)/2÷(n+1)=n/2≈O(n)

3) 删除——删除线性表的第i个位置上的元素

实现步骤:

①将第i+1 至第n 位的元素向前移动一个位置;

②表长减1。

注意:事先需要判断,删除位置i 是否合法?

应当符合条件:1≤i≤n 或 i=[1, n]

核心语句:

for ( j=i+1; j<=n; j++ )

a[j-1]=a[j];

n--;

顺序表删除一元素的时间效率为:T(n)=(n-1)/2 ≈O(n)

顺序表插入、删除算法的平均空间复杂度为O(1)

单链表:

(1)

用单链表结构来存放26个英文字母组成的线性表(a,b,c,…,z),请写出C语言程序。#include<>

#include<>

typedef struct node{

char data;

struct node *next;

}node;

node

*p,*q,*head;

d1, c2..d2],

则行优先存储时的地址公式为:

二维数组列优先存储的通式为:

◆稀疏矩阵(含特殊矩阵)的存储及运算。

稀疏矩阵:矩阵中非零元素的个数较少(一般小于5%)

学习重点:?

◆线性表的逻辑结构,指线性表的数据元素间存在着线性关系。在顺序存储结构中,元素存储的先后位置反映出这种线性关系,而在链式存储结构中,是靠指针来反映这种关系的。

◆顺序存储结构用一维数组表示,给定下标,可以存取相应元素,属于随机存取的存储结构。

◆链表操作中应注意不要使链意外“断开”。因此,若在某结点前插入一个元素,或删除某元素,必须知道该元素的前驱结点的指针。

◆掌握通过画出结点图来进行链表(单链表、循环链表等)的生成、插入、删除、遍历等操作。

◆数组(主要是二维)在以行序/列序为主的存储中的地址计算方法。

◆稀疏矩阵的三元组表存储结构。

◆稀疏矩阵的十字链表存储方法。

补充重点:

1.每个存储结点都包含两部分:数据域和指针域(链域)

2.在单链表中,除了首元结点外,任一结点的存储位置由其直接前驱结点的链域的值指示。

3.在链表中设置头结点有什么好处?

头结点即在链表的首元结点之前附设的一个结点,该结点的数据域可以为空,也可存放表长度等附加信息,其作用是为了对链表进行操作时,可以对空表、非空表的情况以及对首元结点进行统一处理,编程更方便。

4.如何表示空表?

(1)无头结点时,当头指针的值为空时表示空表;

(2)有头结点时,当头结点的指针域为空时表示空表。

5.链表的数据元素有两个域,不再是简单数据类型,编程时该如何表示?

因每个结点至少有两个分量,且数据类型通常不一致,所以要采用结构数据类型。(x)——计算变量x的长度(字节数);

malloc(m) —开辟m字节长度的地址空间,并返回这段空间的首地址;

free(p) ——释放指针p所指变量的存储空间,即彻底删除一个变量。

7.链表的运算效率分析:

(1)查找

因线性链表只能顺序存取,即在查找时要从头指针找起,查找的时间复杂度为 O(n)。(2)插入和删除

因线性链表不需要移动元素,只要修改指针,一般情况下时间复杂度为 O(1)。

但是,如果要在单链表中进行前插或删除操作,因为要从头查找前驱结点,所耗时间复杂度将是 O(n)。

例:在n个结点的单链表中要删除已知结点*P,需找到它的前驱结点的地址,其时间复杂度为O(n)

8. 顺序存储和链式存储的区别和优缺点?

顺序存储时,逻辑上相邻的数据元素,其物理存放地址也相邻。顺序存储的优点是存储密度大,存储空间利用率高;缺点是插入或删除元素时不方便。

链式存储时,相邻数据元素可随意存放,但所占存储空间分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针。链式存储的优点是插入或删除元素时很方便,使用灵活。缺点是存储密度小,存储空间利用率低。

◆顺序表适宜于做查找这样的静态操作;

◆链表宜于做插入、删除这样的动态操作。

◆若线性表的长度变化不大,且其主要操作是查找,则采用顺序表;

◆若线性表的长度变化较大,且其主要操作是插入、删除操作,则采用链表。

9. 判断:“数组的处理比其它复杂的结构要简单”,对吗?

答:对的。因为——

①数组中各元素具有统一的类型;

②数组元素的下标一般具有固定的上界和下界,即数组一旦被定义,它的维数和维界就不

再改变。

③数组的基本操作比较简单,除了结构的初始化和销毁之外,只有存取元素和修改元素值的

操作。

10.三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别

表示该元素的行下标、列下标和元素值。

11.写出右图所示稀疏矩阵的压缩存储形式。

解:介绍3种存储形式。

法1:用线性表表示:

(( 1,2,12) ,(1,3,9), (3,1,-3), (3,5,14),

(4,3,24), (5,2,18) ,(6,1,15), (6,4,-7))

法2:用十字链表表示

用途:方便稀疏矩阵的加减运算

方法:每个非0元素占用5个域

法3:用三元组矩阵表示:

稀疏矩阵压缩存储的缺点:将失去随机存取功能

代码:

1.用数组V来存放26个英文字母组成的线性表(a,b,c,…,z),写出在顺序结构上生成

和显示该表的C语言程序。

char V[30];

void build() base=(QElemType

*)malloc(sizeof (QElemType )

* QUEUE_MAXSIZE;

base=(QElemType *)malloc(sizeof(QElemType)

* QUEUE_MAXSIZE); rear + 1 ) % QUEUE_MAXSIZE;

[ ] = e; 什么要设计队列?它有什么独特用途?

①离散事件的模拟(模拟事件发生的先后顺序,例如 CPU芯片中的指令译码队列);

②操作系统中的作业调度(一个CPU执行多个作业);

③简化程序设计。

3.什么叫“假溢出”?如何解决?

答:在顺序队中,当尾指针已经到了数组的上界,不能再有入队操作,但其实数组中还有空位置,这就叫“假溢出”。解决假溢出的途径———采用循环队列。

4.在一个循环队列中,若约定队首指针指向队首元素的前一个位置。那么,从循环队列中删除一个元素时,其操作是先移动队首位置,后取出元素。

5.线性表、栈、队的异同点:

相同点:逻辑结构相同,都是线性的;都可以用顺序存储或链表存储;栈和队列是两种特殊的线性表,即受限的线性表(只是对插入、删除运算加以限制)。

不同点:①运算规则不同:

线性表为随机存取;

而栈是只允许在一端进行插入和删除运算,因而是后进先出表LIFO;

队列是只允许在一端进行插入、另一端进行删除运算,因而是先进先出表FIFO。

②用途不同,线性表比较通用;堆栈用于函数调用、递归和简化设计等;队列用于离散事件模拟、OS作业调度和简化设计等。

第四章串

内容提要?:

◆串是数据元素为字符的线性表,串的定义及操作。

串即字符串,是由零个或多个字符组成的有限序列,是数据元素为单个字符的特殊线性表。串比较:int strcmp(char *s1,char *s2);

求串长:int strlen(char *s);

串连接:char strcat(char *to,char *from)

子串T定位:char strchr(char *s,char *c);

◆串的存储结构,因串是数据元素为字符的线性表,所以存在“结点大小”的问题。

模式匹配算法?。

串有三种机内表示方法:

模式匹配算法?:

算法目的:确定主串中所含子串第一次出现的位置(定位)

定位问题称为串的模式匹配,典型函数为Index(S,T,pos)

BF算法的实现—即编写Index(S, T, pos)函数

BF算法设计思想:

将主串S的第pos个字符和模式T的第1个字符比较,

若相等,继续逐个比较后续字符;

若不等,从主串S的下一字符(pos+1)起,重新与T第一个字符比较。

直到主串S的一个连续子串字符序列与模式T相等。返回值为S中与T匹配的子序列第一个字符的序号,即匹配成功。

否则,匹配失败,返回值 0。

Int Index_BP(SString S, SString T, int pos)

{ 串和空白串有无区别?

答:有区别。

空串(Null String)是指长度为零的串;

而空白串(Blank String),是指包含一个或多个空白字符‘’(空格键)的字符串.

2.“空串是任意串的子串;任意串S都是S本身的子串,除S本身外,S的其他子串称为S 的真子串。”

第六章树和二叉树

内容提要:?

◆树是复杂的非线性数据结构,树,二叉树的递归定义,基本概念,术语。

树:由一个或多个(n≥0)结点组成的有限集合T,有且仅有一个结点称为根(root),当n>1时,其余的结点分为m(m≥0)个互不相交的有限集合T1,T2,…,Tm。每个集合本身又是棵树,被称作这个根的子树。

二叉树:是n(n≥0)个结点的有限集合,由一个根结点以及两棵互不相交的、分别称为左子树和右子树的二叉树组成。

术语:P88

◆二叉树的性质,存储结构。

性质1: 在二叉树的第i层上至多有2i-1个结点(i>0)。

性质2: 深度为k的二叉树至多有2k-1个结点(k>0)。

性质3: 对于任何一棵二叉树,若2度的结点数有n2个,则叶子数(n0)必定为n2+1 性质4: 具有n个结点的完全二叉树的深度必为 ?

性质5: 对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)。

二叉树的存储结构:

一、顺序存储结构

按二叉树的结点“自上而下、从左至右”编号,用一组连续的存储单元存储。

若是完全/满二叉树则可以做到唯一复原。

不是完全二叉树:一律转为完全二叉树!

方法很简单,将各层空缺处统统补上“虚结点”,其内容为空。

缺点:①浪费空间;②插入、删除不便

二、链式存储结构

用二叉链表即可方便表示。一般从根结点开始存储。

优点:①不浪费空间;②插入、删除方便

◆二叉树的遍历。

指按照某种次序访问二叉树的所有结点,并且每个结点仅访问一次,得到一个线性序列。遍历规则———

二叉树由根、左子树、右子树构成,定义为D、 L、R

若限定先左后右,则有三种实现方案:

DLR LDR LRD

先序遍历中序遍历后序遍历

◆树的存储结构,树、森林的遍历及和二叉树的相互转换。

回顾2:二叉树怎样还原为树?

要点:逆操作,把所有右孩子变为兄弟!

讨论1:森林如何转为二叉树?

法一:①各森林先各自转为二叉树;②依次连到前一个二叉树的右子树上。

法二:森林直接变兄弟,再转为二叉树

讨论2:二叉树如何还原为森林?

要点:把最右边的子树变为森林,其余右子树变为兄弟

树和森林的存储方式:

树有三种常用存储方式:

①双亲表示法②孩子表示法③孩子—兄弟表示法

问:树→二叉树的“连线—抹线—旋转”如何由计算机自动实现?

答:用“左孩子右兄弟”表示法来存储即可。

存储的过程就是树转换为二叉树的过程!

树、森林的遍历:

①先根遍历:访问根结点;依次先根遍历根结点的每棵子树。

②后根遍历:依次后根遍历根结点的每棵子树;访问根结点。

讨论:树若采用“先转换,后遍历”方式,结果是否一样?

1. 树的先根遍历与二叉树的先序遍历相同;

2. 树的后根遍历相当于二叉树的中序遍历;

3. 树没有中序遍历,因为子树无左右之分。

①先序遍历

若森林为空,返回;

访问森林中第一棵树的根结点;

先根遍历第一棵树的根结点的子树森林;

先根遍历除去第一棵树之后剩余的树构成的森林。

②中序遍历

若森林为空,返回;

中根遍历森林中第一棵树的根结点的子树森林;

访问第一棵树的根结点;

中根遍历除去第一棵树之后剩余的树构成的森林。

◆二叉树的应用:哈夫曼树和哈夫曼编码。

Huffman树:最优二叉树(带权路径长度最短的树)

Huffman编码:不等长编码。

树的带权路径长度:(树中所有叶子结点的带权路径长度之和)

构造Huffman树的基本思想:权值大的结点用短路径,权值小的结点用长路径。

构造Huffman树的步骤(即Huffman算法):

(1) 由给定的 n 个权值{ w1, w2, …, wn }构成n棵二叉树的集合F = { T1, T2, …, Tn } (即森林),其中每棵二叉树 Ti 中只有一个带权为 wi 的根结点,其左右子树均空。

(2) 在F 中选取两棵根结点权值最小的树做为左右子树构造一棵新的二叉树,且让新二叉树根结点的权值等于其左右子树的根结点权值之和。

(3) 在F 中删去这两棵树,同时将新得到的二叉树加入 F中。

(4) 重复(2) 和(3) , 直到 F 只含一棵树为止。这棵树便是Huffman树。

具体操作步骤:

学习重点:(本章内容是本课程的重点)

◆二叉树性质及证明方法,并能把这种方法推广到K叉树。

◆二叉树遍历,遍历是基础,由此导出许多实用的算法,如求二叉树的高度、各结点的层次数、度为0、1、2的结点数。

◆由二叉树遍历的前序和中序序列或后序和中序序列可以唯一构造一棵二叉树。由前序和后序序列不能唯一确定一棵二叉树。

◆完全二叉树的性质。

◆树、森林和二叉树间的相互转换。

◆哈夫曼树的定义、构造及求哈夫曼编码。

补充:

1.满二叉树和完全二叉树有什么区别?

答:满二叉树是叶子一个也不少的树,而完全二叉树虽然前k-1层是满的,但最底层却允许

在右边缺少连续若干个结点。满二叉树是完全二叉树的一个特例。

2.Huffman树有什么用?

最小冗余编码、信息高效传输

第七章图

内容提要:?

◆图的定义,概念、术语及基本操作。

图:记为 G=( V, E )

其中:V 是G 的顶点集合,是有穷非空集;

E 是G 的边集合,是有穷集。

术语:见课件

◆图的存储结构。

1.邻接矩阵(数组)表示法

①建立一个顶点表和一个邻接矩阵

②设图 A = (V, E) 有 n 个顶点,则图的邻接矩阵是一个二维数组 [n][n]。

注:在有向图的邻接矩阵中,

第i行含义:以结点vi为尾的弧(即出度边);

第i列含义:以结点vi为头的弧(即入度边)。

邻接矩阵法优点:容易实现图的操作,如:求某顶点的度、判断顶点之间是否有边(弧)、找顶点的邻接点等等。

邻接矩阵法缺点:n个顶点需要n*n个单元存储边(弧);空间效率为O(n2)。

2.邻接表(链式)表示法

①对每个顶点vi 建立一个单链表,把与vi有关联的边的信息(即度或出度边)链接起来,表中每个结点都设为3个域:

②每个单链表还应当附设一个头结点(设为2个域),存vi信息;

③每个单链表的头结点另外用顺序存储结构存储。

邻接表的优点:空间效率高;容易寻找顶点的邻接点;

邻接表的缺点:判断两顶点间是否有边或弧,需搜索两结点对应的单链表,没有邻接矩阵方便。

◆图的遍历。

遍历定义:从已给的连通图中某一顶点出发,沿着一些边,访遍图中所有的顶点,且使每个顶点仅被访问一次,就叫做图的遍历,它是图的基本运算。

图常用的遍历:一、深度优先搜索;二、广度优先搜索

深度优先搜索(遍历)步骤:

①访问起始点 v;

②若v的第1个邻接点没访问过,深度遍历此邻接点;

③若当前邻接点已访问过,再找v的第2个邻接点重新遍历。

基本思想:——仿树的先序遍历过程。

广度优先搜索(遍历)步骤:

①在访问了起始点v之后,依次访问 v的邻接点;

②然后再依次(顺序)访问这些点(下一层)中未被访问过的邻接点;

③直到所有顶点都被访问过为止。

◆图的应用(最小生成树,最短路经)

最小生成树(MST)的性质如下:若U集是V的一个非空子集,若(u0, v0)是一条最小权值的边,其中u0?U,v0?V-U;则:(u0, v0)必在最小生成树上。

求MST最常用的是以下两种:Kruskal(克鲁斯卡尔)算法、Prim(普里姆)算法

Kruskal算法特点:将边归并,适于求稀疏网的最小生成树。

Prime算法特点: 将顶点归并,与边数无关,适于稠密网。

在带权有向图中A点(源点)到达B点(终点)的多条路径中,寻找一条各边权值之和最小的路径,即最短路径。

两种常见的最短路径问题:

一、单源最短路径—用Dijkstra(迪杰斯特拉)算法

二、所有顶点间的最短路径—用Floyd(弗洛伊德)算法

一、单源最短路径 (Dijkstra算法)一顶点到其余各顶点(v0→j)

目的:设一有向图G=(V, E),已知各边的权值,以某指定点v0为源点,求从v0到图的其余各点的最短路径。限定各边上的权值大于或等于0。

二、所有顶点之间的最短路径

可以通过调用n次Dijkstra算法来完成,还有更简单的一个算法:Floyd算法(自学)。

学习重点:图是应用最广泛的一种数据结构,本章也是这门课程的重点。

◆基本概念中,连通分量,生成树,邻接点是重点。

①连通图:在无向图中, 若从顶点v1到顶点v2有路径, 则称顶点v1与v2是连通的。

如果图中任意一对顶点都是连通的, 则称此图是连通图。

非连通图的极大连通子图叫做连通分量。

②生成树:是一个极小连通子图,它含有图中全部n个顶点,但只有n-1条边。

③邻接点:若 (u, v) 是 E(G) 中的一条边,则称 u 与 v 互为邻接顶点。

◆图是复杂的数据结构,也有顺序和链式两种存储结构:数组表示法(重点是邻接距阵)和邻接表。这两种存储结构对有向图和无向图均适用

◆图的遍历是图的各种算法的基础,应熟练掌握图的深度、广度优先遍历。

◆连通图的最小生成树不是唯一的,但最小生成树边上的权值之和是唯一的。应熟练掌握prim和kruscal算法,特别是手工分步模拟生成树的生成过程。

◆从单源点到其他顶点,以及各个顶点间的最短路径问题,掌握熟练手工模拟。

补充:

1.问:当有向图中仅1个顶点的入度为0,其余顶点的入度均为1,此时是何形状?

答:是树!而且是一棵有向树!

2.讨论:邻接表与邻接矩阵有什么异同之处?

1. 联系:邻接表中每个链表对应于邻接矩阵中的一行,

链表中结点个数等于一行中非零元素的个数。

2. 区别:

对于任一确定的无向图,邻接矩阵是唯一的(行列号与顶点编号一致),

但邻接表不唯一(链接次序与顶点编号无关)。

3. 用途:

邻接矩阵多用于稠密图的存储

而邻接表多用于稀疏图的存储

3.若对连通图进行遍历,得到的是生成树

若对非连通图进行遍历,得到的是生成森林。

第八章查找

内容提要:

◆查找表是称为集合的数据结构。是元素间约束力最差的数据结构:元素间的关系是元素仅共在同一个集合中。(同一类型的数据元素构成的集合)

◆ 查找表的操作:查找,插入,删除。 ◆ 静态查找表:顺序表,有序表等。

针对静态查找表的查找算法主要有:顺序查找、折半查找、分块查找 一、顺序查找(线性查找)

技巧:把待查关键字key 存入表头或表尾(俗称“哨兵”),这样可以加快执行速度。

int Search_Seq( SSTable ST , KeyType key ){ [0].key =key;

for( i=; [ i ].key!=key; - - i ); return i;

}

PL s p PR f

找的过程是怎样的?

给定一个值K ,在含有n 个记录的文件中进行搜索,寻找一个关键字值等于K 的记录,

如找到则输出该记录,否则输出查找不成功的信息。 2.对查找表常用的操作有哪些?

n

n n

n j n ASL m j j 2211log 1)1(log 121≈-++=?=∑=-

查询某个“特定的”数据元素是否在表中;

查询某个“特定的”数据元素的各种属性;

在查找表中插入一元素;

从查找表中删除一元素。

3.哪些查找方法?

查找方法取决于表中数据的排列方式;

4.如何评估查找方法的优劣?

用比较次数的平均值来评估算法的优劣。称为平均查找长度ASL。

ASL=∑ Pi. Ci

5.使用折半查找算法时,要求被查文件:采用顺序存贮结构、记录按关键字递增有序

6.将线性表构造成二叉排序树的优点:

①查找过程与顺序结构有序表中的折半查找相似,查找效率高;

②中序遍历此二叉树,将会得到一个关键字的有序序列(即实现了排序运算);

③如果查找不成功,能够方便地将被查元素插入到二叉树的叶子结点上,而且插入或删除时只需修改指针而不需移动元素。

第九章????内部排序

内容提要:

◆排序的定义,排序可以看作是线性表的一种操作

排序:将一组杂乱无章的数据按一定的规律顺次排列起来。

◆排序的分类,稳定排序与不稳定排序的定义。

稳定性——若两个记录A和B的关键字值相等,但排序后A、B的先后次序保持不变,则

称这种排序算法是稳定的。

◆插入排序(直接插入、折半插入,索引表插入、希尔插入排序)。

插入排序的基本思想是:

每步将一个待排序的对象,按其关键码大小,插入到前面

已经排好序的一组对象的适当位置上,直到对象全部插入

为止。

简言之,边插入边排序,保证子序列中随时都是排好序的。

1) 直接插入排序

在已形成的有序表中线性查找,并在适当位置插入,把原来位置上的元素向后顺移。

时间效率:因为在最坏情况下,所有元素的比较次数总和为(0+1+…+n-1)→O(n2)。

其他情况下也要考虑移动元素的次数。故时间复杂度为O(n2)

空间效率:仅占用1个缓冲单元——O(1)

算法的稳定性:因为25*排序后仍然在25的后面——稳定

直接插入排序算法的实现:

void InsertSort ( SqList &L ) { ey

{ [j+1]= [j];

j-- ; }

的定义:设有n个元素的序列 k1,k2,…,kn,当且仅当满足下述关系之一时,称之为堆。

解释:如果让满足以上条件的元素序列(k1,k2,…,kn)顺次排成一棵完全二叉树,则此树的特点是:树中所有结点的值均大于(或小于)其左右孩子,此树的根结点(即堆顶)必最大(或最小)。

2.怎样建堆?

步骤:从最后一个非终端结点开始往前逐步调整,让每个双亲大于(或小于)子女,直到根结点为止。

堆排序算法分析:

时间效率: O(nlog2n)。因为整个排序过程中需要调用n-1次HeapAdjust( )算法,而算法本身耗时为log2n;

空间效率:O(1)。仅在第二个for循环中交换记录时用到一个临时变量temp。

稳定性:不稳定。

优点:对小文件效果不明显,但对大文件有效。

学习要点:?

◆各种排序所基于的基本思想。

◆在“最好”和“最差”情况下,排序性能的分析,是否是稳定排序的结论,时间效率和空间效率。

◆对每种排序方法的学习,应掌握其本质(排序所基于的思想),熟练掌握手工模拟各种排序的过程。

补充:

1.排序算法的好坏如何衡量?

时间效率——排序速度(即排序所花费的全部比较次数)

空间效率——占内存辅助空间的大小

稳定性——若两个记录A和B的关键字值相等,但排序后A、B的先后次序保持不变,则称这种排序算法是稳定的。

2.“快速排序”是否真的比任何排序算法都快?

——基本上是,因为每趟可以确定的数据元素是呈指数增加的。

结构力学知识点复习过程

建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称为结构。 从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。 结构力学中所有的计算方法都应考虑以下三方面条件: ①力系的平衡条件或运动条件。 ②变形的几何连续条件。 ③应力与变形间的物理条件(或称为本构方程)。 结点分为:铰结点、刚结点。 铰结点:可以传递力,但不能传递力矩。 刚结点:既可以传递力,也可以传递力矩。 支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。 在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全弹性或弹塑性的。 荷载是主动作用于结构的外力。 狭义荷载:结构的自重、加于结构的水压力和土压力。 广义荷载:温度变化、基础沉降、材料收缩。 根据荷载作用时间的久暂,可以分为:恒载、活载。 根据荷载作用的性质,可以分为:静力荷载、动力荷载。 结构的几何构造分析 在几何构造分析中,不考虑这种由于材料的应变所产生的变形。 杆件体系可分为两类: 几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 自由度:一个体系自由度的个数,等于这个体系运动时可以独立改变的坐标的个数。 一点在平面内有两个自由度(横纵坐标)。 一个刚片在平面内有三个自由度(横纵坐标及转角)。 凡是自由度的个数大于零的体系都是几何可变体系。 一个支杆(链杆)相当于一个约束。可以减少一个自由度。 一个单铰(只连接两个刚片的铰)相当于两个约束。可以减少两个自由度。一个单刚结(刚性结合)相当于三个约束,可以减少三个自由度。 如果在一个体系中增加一个约束,而体系的自由度并不因而减少,则此约束称为多余约束。增加了约束,计算自由度会减少。因为w=s-n . 瞬变体系:本来是几何可变、经微小位移后又成为几何不变的体系称为瞬变体系。 实铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,并且两根链杆能在其中一个刚片上交于一点,所构成的铰就叫实铰。 瞬铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,两根链杆在两刚片间没有交于一点,而是在两根链杆的延长线上交于一点,从瞬时微小运动来看,这就是瞬铰了。两根链杆所起的约束作用等效于在链杆交点处上面放了一个单铰的约束作用。通常所起作用为转动。 截面上应力沿杆轴切线方向的合力,称为轴力。轴力以拉力为正。 截面上应力沿杆轴法线方向的合力称为剪力。剪力以绕微段隔离体顺时针转者为正。 截面上应力对截面形心的力矩称为弯矩。在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。 作轴力图和剪力图要注明正负号。作弯矩图时,规定弯矩图的纵坐标应画在受拉纤维一边,不注明正负号。 通常在桁架的内力计算中,采用下列假定: ①桁架的结点都是光滑的铰结点; ②各杆的轴线都是直线并通过铰的中心; ③荷载和支座反力都作用在结点上。 根据几何构造的特点,静定平面桁架可分为三类:简单桁架,联合桁架,复杂桁架。 在单杆的前提下,当结点无荷载作用时,单杆的内力必为零。此单杆称为零杆。 由链杆和梁式杆组成的结构,称为组合结构。 链杆只受轴力作用;梁式杆除受轴力作用外,还受弯矩和剪力作用。 三铰拱受力特点: ①在竖向荷载作用下,梁没有水平反力,而拱则有推力。 ②由于推力的存在,三铰拱截面上的弯矩比简支梁的弯矩小。弯矩的降低,使拱能更充分地发挥材料的作用。 ③在竖向荷载作用下,梁的截面内没有轴力,而拱的截面内轴力较大,且一般为压力。 合理拱轴线:在固定荷载作用下使拱处于无弯矩、无剪力、而只有轴力作用的轴线。 合理轴线:通常指具有不同高跨比的一组抛物线。 影响线 内力影响线:表示单位移动荷载作用下内力变化规律的图形。无论在剪力、弯矩、支座反力的影响线图中都需要标上正负号。影响线是研究移动荷载最不利位置和计算内力最大值(或最小值)的基本工具。 荷载:特定单位移动荷载P=1 固定、任意荷载最不利位置:如果荷载移动到某个位置,使某量Z达到最大值,则此荷载位置称为最不利位置。 影响线的一个重要作用,就是用来确定荷载的最不利位置。 定出荷载最不利位置判断的一般原则是:应当把数量大、排列密的荷载放在影响线竖距较大的部位。 计算结构的位移目的有两个: ①一个目的是验算结构的刚度,即验算结构的位移是否超过允许的位移限值。 ②另一个目的是为超静定结构的内力分析打下基础。 产生位移的原因主要有下列三种: ①荷载作用②温度变化和材料胀缩③支座沉降和制造误差 一组力可以用一个符号P表示,相应的位移也可用一个符号Δ表示,这种夸大了的力和位移分别称为广义力和广义位移。 图乘法的应用条件:①杆段应是等截面直杆段。②两个图形中至少应有一个是直线,标距y0 应取自直线图中。 互等定理包括四个普遍定理:①功的互等定理②位移互等定理 ③反力互等定理④位移反力互等定理。 3、对称结构就是指: ①结构的几何形式和支承情况对某轴对称。 ②杆件截面和材料性质也对此轴对称。(因而杆件的截面刚度EI对此轴对称) 4、对称荷载:对称荷载绕对称轴对折后,左右两部分的荷载彼此重合(作用点相对应、数值相等、方向相同) 反对称荷载:反对称荷载绕对称轴对折后,左右两部分的荷载正好相反(作用点相对应、数值相等、方向相反) 超静定结构有一个重要特点,就是无荷载作用时,由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用也可以产生内力。 超静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移也可以产生内力。 静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移但不能产生内力。 力法:多余未知力静定结构变形协调(位移相等) 位移法:结构独立结点位移(角、线位移)超静定单杆(是用位移表示的)平衡方程 2、系数EAi /Li是使杆端产生单位位移时所需施加的杆端力,称为杆件的刚度系数。 体系的自由度指的是确定物体位置所需要的最少坐标数目。 拱的基本特点是在竖向荷载作用下会产生水平支座反力。 .静定结构的特性:(1)静定结构的全部约束反力与内力都可以用静力平衡方程求得。(2)温度变化、支座位移不引起静定结构的内力。3)当一个平衡力系作用在静定结构的某一自身几何不变的杆上时,静定结构只在该力系作用的杆段内产生内力。(4).作用在静定结构的某一自身为几何不变的杆 段上的某一荷载,若用在该段上的一个等效 力系来代替,则结构仅在该段上的内力发生 变化,其余部分内力不变。 1.平面杆件结构分类? 梁、刚架、拱、桁架、组合结构。 2.请简述几何不变体系的俩刚片规则。 两刚片用一个铰和一根不通过该铰链中心的链杆或不全交于一点也不全平行的三根链杆相联,则组成的体系是几何不变的,并且没有多余约束。 3.请简述几何不变体系的三刚片规则。 三刚片用不共线的三个铰两两相联或六根链杆两两相联,则组成的体系是几何不变体系,且没有多余约束。 4.从几何组成分析上来看什么是静定结构,什么是超静定结构?(几何特征) 无多余约束的几何不变体系是静定结构,有多余约束的几何不变体系是超静定结构,有几个多余约束,即为几次超静定。 5.静定学角度分析说明什么是静定结构,什么是超静定结构? 只需要利用静力平衡条件就能计算出结构全部支座反力和构件内力的结构称为静定结构;全部支座反力和构件内力不能只用静力平衡条件确定的结构称为超静定结构。 6.如何区别拱和曲梁 杆轴为曲线且在竖向荷载作用下能产生水平推力的结构,称为拱;杆轴为曲线,但在竖向荷载作用下无水平推力产生,称为曲梁。 7.合理拱轴的条件? 在已知荷载作用下,如所选择的三铰拱轴线能使所有截面上的弯矩均等于零,则此拱轴线为合理拱轴线。 仅供学习与参考

(完整版)非常实用的数据结构知识点总结

数据结构知识点概括 第一章概论 数据就是指能够被计算机识别、存储和加工处理的信息的载体。 数据元素是数据的基本单位,可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。 数据结构的定义: ·逻辑结构:从逻辑结构上描述数据,独立于计算机。·线性结构:一对一关系。 ·线性结构:多对多关系。 ·存储结构:是逻辑结构用计算机语言的实现。·顺序存储结构:如数组。 ·链式存储结构:如链表。 ·索引存储结构:·稠密索引:每个结点都有索引项。 ·稀疏索引:每组结点都有索引项。 ·散列存储结构:如散列表。 ·数据运算。 ·对数据的操作。定义在逻辑结构上,每种逻辑结构都有一个运算集合。 ·常用的有:检索、插入、删除、更新、排序。 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。 ·结构类型:由用户借助于描述机制定义,是导出类型。 抽象数据类型ADT:·是抽象数据的组织和与之的操作。相当于在概念层上描述问题。 ·优点是将数据和操作封装在一起实现了信息隐藏。 程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。算法取决于数据结构。 算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。 评价算法的好坏的因素:·算法是正确的; ·执行算法的时间; ·执行算法的存储空间(主要是辅助存储空间); ·算法易于理解、编码、调试。 时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。 渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。 时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O (n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

结构力学单元复习题第一套、2.doc

结构力学一、二单元复习资料 一、填空题 1.荷载按作用时间久暂分为和两类。 2.结构计算简图中,结点通常简化为结点、结点和组合结点。 杆系结构中联结杆件的基本结点有和两种。 3.刚结点的特点是,各杆件在连接处既无相对错动也无相对,可以传递剪力 和。 4.建筑是关于空间的艺术,建筑物中起到支撑起稳固空间作用的骨架体系被称为,骨架体系中能够承受和传递力的作用的杆件被称为。很多杆件通过约束相联所组成的体系,按照几何形状是否可变可以分为和。 5.杆系结构按其受力特性不同可分为:、拱、、、组合结构、悬索结构。 6.连接n根杆件的复铰相当于个单铰,相当于个约束,一个固定铰支座相当于个约束,一个固定端支座相当于个约束。 7.切断受弯杆后再加入一个单铰,相当于去掉了个约束 8.几何不变体系的三个基本组成规则分别是三刚片规则、规则、规则。9.两刚片用一个铰和_________________相联,组成无多余约束的几何不变体系。 10.平面内一个点和一根链杆自由运动时的自由度数分别等于和。 11.从几何组成上讲,静定和超静定结构都是体系,前者多余约束而后者多余约束。 12.试判断下列图示体系的几何组成性质,图是没有多余约束的几何不变体系, 图是几何可变体系。 (a) (b) (c) 13.下列(a)图体系为几何体系;(b)图体系为几何体系;(c)图体系为体系。其中有多余联系的体系为图中的体系,此体系的自由度为,计算自由度W为。 (a) (b) (c)

二、判断题 1.三刚片用三个铰两两相联必成为几何不变体系。() 2.某结构若计算自由度W≤0,则该结构必是几何不变体系。() 3.当一个体系的计算自由度为零时,必为几何不变体系。() 4.几何不变体系的自由度一定为0,而其计算自由度可能大于0。() 5.两刚片用一个铰和一根不通过此铰的链杆连接,组成没有多余约束的几何不变体系。() 6.瞬变体系由于经微小位移后就变成几何不变体系,所以可以作为结构形式使用。()7.静定结构几何不变且无多余联系。() 8.几何不变体系的计算自由度必定等于零。() 三、单选题 1.下列哪种情况不能组成无多余约束的几何不变体系() A.三刚片以3个铰两两相连,3个铰不在一条直线上; B.两刚片以一个铰和一个链杆相连,链杆不通过铰; C.两刚片以3个链杆相连,3个链杆不平行也不汇交; D.无。 2.图示结构的几何性质为()。 A. 几何不变体,无多余约束 B. 几何不变体,有多余约束 C. 常变体系 D. 瞬变体系 题2图题3图题4图 3.如图所示平面杆件体系为()。 A.几何不变无多余约束体系; B.几何不变有多余约束体系; C.瞬变体系; D.常变体系。 4.如图所示体系为() A.几何不变无多余约束体系 B.几何不变有多余约束体系 C.几何可变体系 D.无法确定5.图示体系为()体系 A.无多余约束几何不变 B.有多余约束几何不变 C.瞬变体系 D.常变体系

数据结构复习要点整理版

第一章数据结构概述 基本概念与术语 1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。 2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。 (补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。(有时候也叫做属性。) 4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。 数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。 依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种: 1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。 2.线性结构:结构中的数据元素之间存在“一对一“的关系。若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。 3.树形结构:结构中的数据元素之间存在“一对多“的关系。若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。 4.图状结构:结构中的数据元素存在“多对多”的关系。若结构为非空集,折每个数据可有多个(或零个)直接后继。 (2)数据的存储结构:数据元素及其关系在计算机的表示称为数据的存储结构。 想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。逻辑结构可以映射为以下两种存储结构: 1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。 2.链式存储结构:借助指针表达数据元素之间的逻辑关系。不要求逻辑上相邻的数据元素物理位置上也相邻。 5.时间复杂度分析:1.常量阶:算法的时间复杂度与问题规模n无关系T(n)=O(1) 2.线性阶:算法的时间复杂度与问题规模n成线性关系T(n)=O(n) 3.平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++ 时间复杂度的大小比较: O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )

结构力学的知识点

双筋计算方法: 一As与As' 1、截面计算 1)假设a s=65mm,a s'=35mm,求得h0=h-a s 2)验算是否需要双筋。Mu= f cd bh02§b(1-0.5§b) 3)取§=§b,求As'=【M- f cd bh02§(1-0.5§)】/【f sd'(h0- a s')】 4)求As=【f cd bx+f sd'As'】/ f sd 其中x=§b h0 下面选钢筋,钢筋层净距,钢筋间净距(大于30mm和直径d),保护层厚度,再计算a s和a s' 二、已知As',求As 5)假设a s,求得h0=h-a s 6)求受压区高度x= h0-√h02-2【M- f sd'As'(h0- a s')】/f cd b 7)当x﹤§b h0且x﹤2 a s'时,As=M/【f sd(h0- a s')】 当x≤§b h0且x≥2 a s'时,As=【f cd bx+f sd'As'】/ f sd 8)选择受拉钢筋直径的数量,布置截面钢筋(同上) 2、截面复核 1)检查钢筋布置是否符合规要求 2)将As=?As'=?h0=?f cd f sd' f sd 若带入x=【f sd As- f sd'As'】/f cd b ≤§b h0 ﹤2 a s' 用Mu= f sd As(h0- a s')计算正截面承载力 若2 a s'≤x≤§b h0,矩形截面抗弯承载力 Mu= f cd bx(h0-x/2)+ f sd'As'(h0- a s')

一、As与As'均未知 1、截面设计 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之, ξ1=0.27+2.7 e0/ h0 ξ2=1.15-0.01l0/h η=1+1/【1400(e0/ h0)】(l0/h)2ξ1ξ2 2)令§=§b,求As'=【Ne s- f cd bh02§b(1-0.5§b)】/ f sd'(h0- a s') ≥ρmin bh (ρmin=0.2%)取σs= f sd 求As=【f cd bh0§b+ f sd'As'-N】/ f sd≥ρmin bh 二、已知As',求As 1)求偏心距e0=M/N 长细比l0/h﹥5,考虑偏心增大系数η(l0/h≤5时,取η=1)假设a s= a s'=45.当ηe0﹥0.3 h0时,为大偏心,反之,2)计算受压区高度x= h0-√h02-2【Ne s - f sd'As'(h0- a s')】/f cd b 当2 a s'﹤x≤§b h0时,取σs= f sd 求As=【f cd bx+ f sd'As'-N】/ f sd 当x≤§b h0 x≤2 a s'时,As=Ne s'/ f sd(h0- a s') 3)选钢筋,看配筋率是否符合ρ+ρ'≥0.5%,纵筋最小净距(一般为30mm),重取a s= a s'=?,计算保护层厚度是否满足要求,最小截面宽度b min 2、截面复核 1)垂直于弯矩作用平面

数据结构复习提纲(整理)

复习提纲 第一章数据结构概述 基本概念与术语(P3) 1.数据结构是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科. 2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合 2.数据元素是数据的基本单位 3.数据对象相同性质的数据元素的集合 4.数据结构包括三方面内容:数据的逻辑结构.数据的存储结构.数据的操作. (1)数据的逻辑结构指数据元素之间固有的逻辑关系. (2)数据的存储结构指数据元素及其关系在计算机内的表示 ( 3 ) 数据的操作指在数据逻辑结构上定义的操作算法,如插入,删除等. 5.时间复杂度分析 -------------------------------------------------------------------------------------------------------------------- 1、名词解释:数据结构、二元组 2、根据数据元素之间关系的不同,数据的逻辑结构可以分为 集合、线性结构、树形结构和图状结构四种类型。 3、常见的数据存储结构一般有四种类型,它们分别是___顺序存储结构_____、___链式存储结构_____、___索引存储结构_____和___散列存储结构_____。 4、以下程序段的时间复杂度为___O(N2)_____。 int i,j,x; for(i=0;i

结构力学主要知识点归纳

结构力学主要知识点 一、基本概念 1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。通常包括以下几个方面: A 、杆件的简化:常以其轴线代表 B 、支座和节点简化: ①活动铰支座、固定铰支座、固定支座、滑动支座; ②铰节点、刚节点、组合节点。 C 、体系简化:常简化为集中荷载及线分布荷载 D 、体系简化:将空间结果简化为平面结构 2、结构分类: A 、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。 B 、按内力是否静定划分: ①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。 ②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。 二、平面体系的机动分析 1、体系种类 A 、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。 B 、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。常具体划分为常变体系和瞬变体系。 2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。 3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系 ①一个链杆可以减少一个自由度,成为一个联系。②一个单铰为两个联系。 4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。 A 、W>0,表明缺少足够联系,结构为几何可变; B 、W=0,没有多余联系; C 、W<0,有多余联系,是否为几何不变仍不确定。 5、几何不变体系的基本组成规则: A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。 B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。 C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。 6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。虚铰在无穷远处的体系分析可见结构力学P20,自行了解。 7、静定结构的几何构造为特征为几何不变且无多余联系。 三、静定梁与静定钢架 1、内力图绘制: A 、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示

2021年自考02331数据结构重点总结最终修订

自考02331数据构造重点总结(最后修订) 第一章概论 1.瑞士计算机科学家沃思提出:算法+数据构造=程序。算法是对数据运算描述,而数据构造涉及逻辑构造和存储构造。由此可见,程序设计实质是针对实际问题选取一种好数据构造和设计一种好算法,而好算法在很大限度上取决于描述实际问题数据构造。 2.数据是信息载体。数据元素是数据基本单位。一种数据元素可以由若干个数据项构成,数据项是具备独立含义最小标记单位。数据对象是具备相似性质数据元素集合。 3.数据构造指是数据元素之间互有关系,即数据组织形式。 数据构造普通涉及如下三方面内容:数据逻辑构造、数据存储构造、数据运算 ①数据逻辑构造是从逻辑关系上描述数据,与数据元素存储构造无关,是独立于计算机。 数据逻辑构造分类:线性构造和非线性构造。 线性表是一种典型线性构造。栈、队列、串等都是线性构造。数组、广义表、树和图等数据构造都是非线性构造。 ②数据元素及其关系在计算机内存储方式,称为数据存储构造(物理构造)。 数据存储构造是逻辑构造用计算机语言实现,它依赖于计算机语言。 ③数据运算。最惯用检索、插入、删除、更新、排序等。 4.数据四种基本存储办法:顺序存储、链接存储、索引存储、散列存储 (1)顺序存储:普通借助程序设计语言数组描述。 (2)链接存储:普通借助于程序语言指针来描述。 (3)索引存储:索引表由若干索引项构成。核心字是能唯一标记一种元素一种或各种数据项组合。 (4)散列存储:该办法基本思想是:依照元素核心字直接计算出该元素存储地址。 5.算法必要满足5个准则:输入,0个或各种数据作为输入;输出,产生一种或各种输出;有穷性,算法执行有限步后结束;拟定性,每一条指令含义都明确;可行性,算法是可行。 算法与程序区别:程序必要依赖于计算机程序语言,而一种算法可用自然语言、计算机程序语言、数学语言或商定符号语言来描述。当前惯用描述算法语言有两类:类Pascal和类C。 6.评价算法优劣:算法"对的性"是一方面要考虑。此外,重要考虑如下三点: ①执行算法所耗费时间,即时间复杂性; ②执行算法所耗费存储空间,重要是辅助空间,即空间复杂性; ③算法应易于理解、易于编程,易于调试等,即可读性和可操作性。

大学数据结构期末知识点重点总结

第一章概论 1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算 2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系 可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R) 结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据 关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系 3.数据类型 a.基本数据类型 整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型 复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型 4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多) 5.四种基本存储映射方法:顺序、链接、索引、散列 6.算法的特性:通用性、有效性、确定性、有穷性 7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化 8.渐进算法分析 a.大Ο分析法:上限,表明最坏情况 b.Ω分析法:下限,表明最好情况 c.Θ分析法:当上限和下限相同时,表明平均情况 第二章线性表 1.线性结构的基本特征 a.集合中必存在唯一的一个“第一元素” b.集合中必存在唯一的一个“最后元素” c.除最后元素之外,均有唯一的后继 d.除第一元素之外,均有唯一的前驱 2.线性结构的基本特点:均匀性、有序性 3.顺序表 a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度 b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元) c. 线性表的优缺点: 优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样 缺点:空间难以扩充 d.检索:ASL=【Ο(1)】 e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】 f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】 4.链表 4.1单链表 a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】 d.链表的删除(q=p->next; p->next = q->next; delete q;)【Ο(n)】 e.不足:next仅指向后继,不能有效找到前驱 4.2双链表 a.增加前驱指针,弥补单链表的不足 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;) d.删除:(p->prev->next = p->next; p->next->prev = p->prev; p->prev = p->next = NULL; delete p;) 4.3顺序表和链表的比较 4.3.1主要优点 a.顺序表的主要优点 没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利 b.链表的主要优点 无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况 4.3.2应用场合的选择 a.不宜使用顺序表的场合 经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素 b.不宜使用链表的场合 当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择 第三章栈与队列 1.栈 a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种 b.应用: 1)数制转换 while (N) { N%8入栈; N=N/8;} while (栈非空){ 出栈; 输出;} 2)括号匹配检验 不匹配情况:各类括号数量不同;嵌套关系不正确 算法: 逐一处理表达式中的每个字符ch: ch=非括号:不做任何处理 ch=左括号:入栈 ch=右括号:if (栈空) return false else { 出栈,检查匹配情况, if (不匹配) return false } 如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式: 计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式: <表达式> ::= <项><项> + | <项><项>-|<项> <项> ::= <因子><因子> * |<因子><因子>/|<因子> <因子> ::= <常数> ?<常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式 InfixExp为中缀表达式,PostfixExp为后缀表 达式 初始化操作数栈OP,运算符栈OPND; OPND.push('#'); 读取InfixExp表达式的一项 操作数:直接输出到PostfixExp中; 操作符: 当‘(’:入OPND; 当‘)’:OPND此时若空,则出错;OPND若 非空,栈中元素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若为‘(’,弹出即 可 当‘四则运算符’:循环(当栈非空且栈顶不是 ‘(’&& 当前运算符优先级>栈顶运算符优先 级),反复弹出栈顶运算符并输入到 PostfixExp中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP; while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP; 运算符:退出两个操作数, 计算,并将结果入栈} c.递归使用的场合:定义是递归的;数据结构是 递归的;解决问题的方法是递归的 2.队列 a.若线性表的插入操作在一端进行,删除操作 在另一端进行,则称此线性表为队列 b.循环队列判断队满对空: 队空:front==rear;队满: (rear+1)%n==front 第五章二叉树 1.概念 a. 一个结点的子树的个数称为度数 b.二叉树的高度定义为二叉树中层数最大的叶 结点的层数加1 c.二叉树的深度定义为二叉树中层数最大的叶 结点的层数 d.如果一棵二叉树的任何结点,或者是树叶, 或者恰有两棵非空子树,则此二叉树称作满二 叉树 e.如果一颗二叉树最多只有最下面的两层结点 度数可以小于2;最下面一层的结点都集中在 该层最左边的位置上,则称此二叉树为完全二 叉树 f.当二叉树里出现空的子树时,就增加新的、特 殊的结点——空树叶组成扩充二叉树,扩充二 叉树是满二叉树 外部路径长度E:从扩充的二叉树的根到每个 外部结点(新增的空树叶)的路径长度之和 内部路径长度I:扩充的二叉树中从根到每个内 部结点(原来二叉树结点)的路径长度之和 2.性质 a. 二叉树的第i层(根为第0层,i≥0)最多有 2^i个结点 b. 深度为k的二叉树至多有2k+1-1个结点 c. 任何一颗二叉树,度为0的结点比度为2的 结点多一个。n0 = n2 + 1 d. 满二叉树定理:非空满二叉树树叶数等于其 分支结点数加1 e. 满二叉树定理推论:一个非空二叉树的空子 树(指针)数目等于其结点数加1 f. 有n个结点(n>0)的完全二叉树的高度为 ?log2(n+1)?,深度为?log2(n+1)?? g. 对于具有n个结点的完全二叉树,结点按层 次由左到右编号,则有: 1) 如果i = 0为根结点;如果i>0,其父结点 编号是(i-1)/2 2) 当2i+1∈N,则称k是k'的父结点,k'是 的子结点 若有序对∈N,则称k' k″互为兄弟 若有一条由k到达ks的路径,则称k是 的祖先,ks是k的子孙 2.树/森林与二叉树的相互转换 a.树转换成二叉树 加线: 在树中所有兄弟结点之间加一连线 抹线: 对每个结点,除了其最左孩子外, 与其余孩子之间的连线 旋转: 45° b.二叉树转化成树 加线:若p结点是双亲结点的左孩子,则将 的右孩子,右孩子的右孩子, 所有右孩子,都与p的双亲用线连起来 线 调整:将结点按层次排列,形成树结构 c.森林转换成二叉树 将各棵树分别转换成二叉树 将每棵树的根结点用线相连 为轴心,顺时针旋转,构成二叉树型结构 d.二叉树转换成森林 抹线:将二叉树中根结点与其右孩子连线,及 沿右分支搜索到的所有右孩子间连线全部抹 掉,使之变成孤立的二叉树 还原:将孤立的二叉树还原成树 3.周游 a.先根(次序)周游 若树不空,则先访问根结点,然后依次先根周 游各棵子树 b.后根(次序)周游 若树不空,则先依次后根周游各棵子树,然后 访问根结点 c.按层次周游 若树不空,则自上而下自左至右访问树中每个 结点 4.存储结构 “左子/右兄”二叉链表表示法:结点左指针指 向孩子,右结点指向右兄弟,按树结构存储, 无孩子或无右兄弟则置空 5. “UNION/FIND算法”(等价类) 判断两个结点是否在同一个集合中,查找一个 给定结点的根结点的过程称为FIND 归并两个集合,这个归并过程常常被称为 UNION “UNION/FIND”算法用一棵树代表一个集合, 如果两个结点在同一棵树中,则认为它们在同 一个集合中;树中的每个结点(除根结点以外) 有仅且有一个父结点;结点中仅需保存父指针 信息,树本身可以存储为一个以其结点为元素 的数组 6.树的顺序存储结构 a. 带右链的先根次序表示法 在带右链的先根次序表示中,结点按先根次序 顺序存储在一片连续的存储单元中 每个结点除包括结点本身数据外,还附加两个 表示结构的信息字段,结点的形式为: info是结点的数据;rlink是右指针,指向结点 的下一个兄弟;ltag是一个左标记,当结点没 有子结点(即对应二叉树中结点没有左子结点 时),ltag为1,否则为0 b. 带双标记位的先根次序表示法 规定当结点没有下一个兄弟(即对应的二叉树 中结点没有右子结点时)rtag为1,否则为0 c. 带双标记位的层次次序表示法 结点按层次次序顺序存储在一片连续的存储单 元中 第七章图 1.定义 a.假设图中有n个顶点,e条边: 含有e=n(n-1)/2条边的无向图称作完全图 含有e=n(n-1) 条弧的有向图称作有向完全图 若边或弧的个数e < nlogn,则称作稀疏图, 否则称作稠密图 b. 顶点的度(TD)=出度(OD)+入度(ID) 顶点的出度: 以顶点v为弧尾的弧的数目 顶点的入度: 以顶点v为弧头的弧的数目 c.连通图、连通分量 若图G中任意两个顶点之间都有路径相通,则 称此图为连通图 若无向图为非连通图,则图中各个极大连通子 图称作此图的连通分量 d.强连通图、强连通分量 对于有向图,若任意两个顶点之间都存在一条 有向路径,则称此有向图为强连通图 否则,其各个极大强连通子图称作它的强连通 分量 e.生成树、生成森林 假设一个连通图有n个顶点和e条边,其中n-1 条边和n个顶点构成一个极小连通子图,称该 极小连通子图为此连通图的生成树 对非连通图,则将由各个连通分量构成的生成 树集合称做此非连通图的生成森林 2.存储结构 a.相邻矩阵表示法 表示顶点间相邻关系的矩阵 若G是一个具有n个顶点的图,则G的相邻矩 阵是如下定义的n×n矩阵: A[i,j]=1,若(Vi, Vj)(或)是图G的边 A[i,j]=0,若(Vi, Vj)(或)不是图G的边 b.邻接表表示法 为图中每个顶点建立一个单链表,第i个单链表 中的结点表示依附于顶点Vi的边(有向图中指 以Vi为尾的弧)(建立单链表时按结点顺序建 立) 3.周游 a. 深度优先周游: 从图中某个顶点V0出发,访问此顶点,然后依 次从V0的各个未被访问的邻接点出发,深度优 先搜索遍历图中的其余顶点,直至图中所有与 V0有路径相通的顶点都被访问到为止 b. 广度优先周游: 从图中的某个顶点V0出发,并在访问此顶点之 后依次访问V0的所有未被访问过的邻接点,随 后按这些顶点被访问的先后次序依次访问它们 的邻接点,直至图中所有与V0有路径相通的顶 点都被访问到为止,若此时图中尚有顶点未被 访问,则另选图中一个未曾被访问的顶点作起 始点,重复上述过程,直至图中所有顶点都被 访问到为止 4.拓扑排序 拓扑排序的方法是:1)选择一个入度为0的顶 点且输出之 2)从图中删掉此顶点及所有的出边 3)回到第1步继续执行,直至图空或者图不空 但找不到无前驱(入度为0)的顶点为止 5.单源最短路径(Dijkstra算法) 6.每对顶点间的最短路径(Floyd算法) 7.最小生成树 a.Prim算法 b.Kruskal算法 c.两种算法比较:Prim算法适合稠密图, Kruskal算法适合稀疏图 第八章内排序 算法最大时间平均时间 直接插入排 序 Θ(n2) Θ(n2) 冒泡排序Θ(n2) Θ(n2) 直接选择排 序 Θ(n2) Θ(n2) Shell排序Θ(n3/2) Θ(n3/2) 快速排序Θ(n2) Θ(nlog n) 归并排序Θ(nlog n) Θ(nlog n) 堆排序Θ(nlog n) Θ(nlog n) 桶式排序Θ(n+m) Θ(n+m) 基数排序Θ(d·(n+r)) Θ(d·(n+r)) 最小时间S(n) 稳定性 Θ(n) Θ(1) 稳定 Θ(n) Θ(1) 稳定 Θ(n2) Θ(1) 不稳定 Θ(n3/2) Θ(1) 不稳定 Θ(nlog n) Θ(log n) 不稳定 Θ(nlog n) Θ(n) 稳定 Θ(nlog n) Θ(1) 不稳定 Θ(n+m) Θ(n+m) 稳定 Θ(d·(n+r)) Θ(n+r) 稳定 第十章检索 1.平均检索长度(ASL)是待检索记录集合中元 素规模n的函数,其定义为: ASL= Pi为检索第i个元素的概率;Ci为找到第i个元 素所需的比较次数 2.散列 a.除余法 用关键码key除以M(取散列表长度),并取余 数作为散列地址 散列函数为:hash(key) =key mod M b.解决冲突的方法 开散列方法:把发生冲突的关键码存储在散列 表主表之外(在主表外拉出单链表) 闭散列方法:把发生冲突的关键码存储在表中 另一个位置上 c.线性探查 基本思想:如果记录的基位置存储位置被占用, 就在表中下移,直到找到一个空存储位置;依 次探查下述地址单元:d0+1,d0+2,...,m-1, 0,1,...,d0-1;用于简单线性探查的探查 函数是:p(K, i) = i d.散列表的检索 1.假设给定的值为K,根据所设定的散列函数h, 计算出散列地址h(K) 2. 如果表中该地址对应的空间未被占用,则检 索失败,否则将该地址中的值与K比较 3. 若相等则检索成功;否则,按建表时设定的 处理冲突方法查找探查序列的下一个地址,如 此反复下去,直到某个地址空间未被占用(可 以插入),或者关键码比较相等(有重复记录, 不需插入)为止 e.散列表的删除:删除后在删除地点应加上墓 碑(被删除标记) f.散列表的插入:遇到墓碑不停止,知道找到真 正的空位置 第十一章索引技术 1.概念: a.主码:数据库中的每条记录的唯一标识 b.辅码:数据库中可以出现重复值的码 2.B树 a.定义:B树定义:一个m阶B树满足下列条 件: (1) 每个结点至多有m个子结点; (2) 除根和叶外 其它每个结点至少有??个子结点; (3) 根结点至少有两个子结点 例外(空树,or独根) (4) 所有的叶在同一层,可以有??- 1到m-1个 关键码 (5) 有k个子结点的非根结点恰好包含k-1个关 键码 b.查找 在根结点所包含的关键码K1,…,Kj中查找给 定的关键码值(用顺序检索(key少)/二分检索 (key多));找到:则检索成功;否则,确定要查 的关键码值是在某个Ki和Ki+1之间,于是取 pi所指结点继续查找;如果pi指向外部结点, 表示检索失败. c.插入 找到的叶是插入位置,若插入后该叶中关键码 个数

相关主题
文本预览
相关文档 最新文档