当前位置:文档之家› 正等轴测图

正等轴测图

正等轴测图
正等轴测图

正等轴测图

一、正等轴测图的轴间角和变形系数

1.正等轴测图的投射(影)方向垂直于轴测投影面。

2空间三个坐标轴均与轴测投影面倾斜35°16′

3.因此三轴间角相等:即∠X1O1Y1=∠Y1O1Z1=∠Z1O1X1=120°

4.沿三个轴测轴向变形系数也相等,即p=q=r=0.82

如图3-3所示

图3-3正等轴测图的轴间角

作图方法:a)通常将O1Z1轴画成铅垂线;

b)O1X1、O1Y1轴与水平线成30°角;

c)为作图方便,国标(GB)规定用简化的变形系数“1”代替理论变形系数0.82,(也就是说,凡是平行于坐标轴的尺寸,均按原尺寸画出。)这样画出的轴测图,比按理论变形系数画出的轴测图放大1/0.82=1.22倍,但对物体形状的表达没有影响,今后在画正等轴测图时,如不特别指明,均按简化的变形系数作图。

二、正等轴测图中平行于坐标面的圆的轴测投影

在正等测中,由于空间各坐标面对轴测投影面的位置都是倾斜的,其倾角均相等。所以在各坐标面的直径相同的圆,其轴测投影为长、短轴大小相等的椭圆。为画出各椭圆,需要掌握长、短轴的大小、方向和椭圆的画法。

图3-4轴线平行于坐标轴的圆柱的正等轴测图1.椭圆长、短轴方向:

平行于X1O1Y1坐标面的圆(水平圆)等测为水平椭圆长轴⊥O1Z1轴短轴∥O1Z1轴

平行于X1O1Z1坐标面的圆(水平圆)等测为水平椭圆长轴⊥O1Y1轴短轴∥O1Y1轴

平行于Y1O1Z1坐标面的圆(水平圆)等测为水平椭圆长轴⊥O1X1轴短轴O1X1轴

综上所述:椭圆的长轴⊥与圆所平行的坐标面垂直的那个轴,短轴则平行与该轴测轴。

例如:水平圆的正等测水平椭圆,长轴垂直于圆所平行的水平面垂直的轴测轴Z1轴,短轴则∥Z1轴。

图3-5平行于坐标面的圆的正等轴测图图3-6

2.椭圆长、短轴的大小

长轴:是圆内平行于轴测投影面的直径的轴测投影。因此:

(1)在采用变形系数0.82作图时,椭圆长轴大小为d,短轴大小为0.58d。

(2)采用简化作图时,因整个轴测图放大了约1.22倍,所以椭圆长短轴也相应放大1.22倍,即长轴=1.22d,短轴=0.71d。

3.正等测图中,椭圆长、短轴端点的连线与长轴约为30°角,因此已知长轴的大小,即可求出短轴的大小,反之亦然。如图3-6所示。

4圆角的画法:

图3-7圆角的画法

从图(图3-7)中所示的椭圆的近似画法可以看出;菱形的钝角与大圆相对相应,锐角与小圆弧对应;菱形相邻两边的中垂钱的交点是圆心。由此可得出平板上圆角的近似画法,如图3-7所示。

三、正等轴测图的作图方法

根据物体在正投影图上的坐标,画出物体的轴测图,称为用坐标法画轴测图。这种方法是画轴测图的基本方法。因各物体的形状不同,除基本方法外,还有:切割法、堆积法、综合法。

详见书中P92~93

§3-3 斜二等轴测图

一、斜轴测投影图、斜二测图

将物体连同确定其空间位置的直角坐标系,按倾斜于轴测投影面P的投射方向S,一起投射到轴测投影面上,这样得到的轴测图,称斜轴测投影图。

斜二等轴测图:是以平行于X1O1Z1坐标面的平面作为轴测投影面。

这样,凡是平行于X1O1Z1坐标面的平面图形,在斜等轴测图上反映实形。这种斜二等轴测图,是斜轴到投影图的特例。又称为正面斜二等轴测图。

二、斜二等轴测图的轴间角、变形系数:

《机械制图》的国标中规定了斜二等轴测图:

变形系数:p=r=1,q=0.5(O1Y1轴的轴向变形系数)

轴间角∠X1O1Z1=90°,∠X1O1Y1=∠Y1O1Z1=135°,如图3-8所示

图3-8

三、斜二等轴测图中平行于坐标面的圆的轴测投影

因为轴侧投影面∥X1O1Z1坐标面,所以∥X1O1Z1坐标面的圆其轴测投影仍为原来的大小的图。若所画物体仅在一个方向上有圆,画它的斜二测时,把圆放在∥X1O1Z1坐标面的位置,可避免画椭圆,这是斜二测的一个优点。

∥X1O1Y1和Y1O1Z1坐标面的圆,其斜二测投影为长、短轴大小分别相同的椭圆。长轴方向与相应坐标轴夹角约为7°。偏向于椭圆外切平行四边形的长对角线一边。长=1.06d,短轴垂直于长轴,大小=d/3。

四、斜二等轴测图的作图方法

重点:选好投影方向,这样可使画图简化,而且直观。(p96

任务五 绘制正等轴测图解读

I 复习提问: 1、读图的基本要领? 2、用形体分析法读组合体视图的方法与步骤? II 引入新课: 多面正投影图能完整、准确地反映物体的形状和大小,且度量性好、作图简单,但立体感不强,只有具备一定读图能力的人才能看懂。 有时工程上还需采用一种立体感较强的图来表达物体,即轴测图,。轴测图是用轴测投影的方法画出来的富有立体感的图形,它接近人们的视觉习惯,但不能确切地反映物体真实的形状和大小,并且作图较正投影复杂,因而在生产中它作为辅助图样,用来帮助人们读懂正投影图。III 新课讲授: 任务五绘制正等轴测图 一、轴测图的基本知识: 1、轴测图的形成:将空间物体连同确定其位置的直角坐标系,沿不平行于任一坐标平面的方向,用平行投影法投射在某一选定的单一投影面上所得到的具有立体感的图形,称为轴测投影图,简称轴测图,如图1所示。 图1 轴测图的形成

在轴测投影中,我们把选定的投影面P称为轴测投影面;把空间直角坐标轴OX、OY、OZ在轴测投影面上的投影O1X1、O1Y1、O1Z1称为轴测轴;把两轴测轴之间的夹角∠X1O1Y1、∠Y1O1Z1、∠X1O1Z1称为轴间角;轴测轴上的单位长度与空间直角坐标轴上对应单位长度的比值,称为轴向伸缩系数。OX、OY、OZ的轴向伸缩系数分别用p1、q1、r1表示。例如,在图4-2中,p1= O1A1/OA,q1 =O1B1/OB,r1 =O1C1/OC。 强调:轴间角与轴向伸缩系数是绘制轴测图的两个主要参数。 2、轴测图的种类: (1)按照投影方向与轴测投影面的夹角的不同,轴测图可以分为:1)正轴测图——轴测投影方向(投影线)与轴测投影面垂直时投影所得到的轴测图。 2)斜轴测图——轴测投影方向(投影线)与轴测投影面倾斜时投影所得到的轴测图。 (2)按照轴向伸缩系数的不同,轴测图可以分为: 1)正(或斜)等测轴测图——p1=q1=r1,简称正(斜)等测图; 2)正(或斜)二等测轴测图——p1=r1≠q1,简称正(斜)二测图; 3)正(或斜)三等测轴测图——p1≠q1≠r1,简称正(斜)三测图; 3、轴测图的基本性质: (1)物体上互相平行的线段,在轴测图中仍互相平行;物体上平行于坐标轴的线段,在轴测图中仍平行于相应的轴测轴,且同一轴向所有线段的轴向伸缩系数相同。 (2)物体上不平行于坐标轴的线段,可以用坐标法确定其两个端点然后连线画出。 (3)物体上不平行于轴测投影面的平面图形,在轴测图中变成原形的

机械制图——正等轴测图及其画法

教学时数:3 学时 课题:§4-2 正等轴测图及其画法 教学目标: 掌握正等测图的画法。 教学重点: 平面立体,平面坐标的回转体的正等测轴测图的画法。教学难点: 熟练掌握正等测图的画法。 教学方法: 讲练结合 教具: 挂图、模型 教学步骤: (复习提问) 1、轴测图是指什么? 2、轴间角是如何定义的? 3、轴向伸缩系数指什么? (引入新课) (讲授新课) §4-2 正等轴测图及其画法 一、正等轴测图的轴间角、轴向伸缩系数

正等测图的轴间角 1、∠XOY=∠XOZ=∠YOZ=1200 2、三根轴的简化伸缩系数 p=q=r=1 二、正等轴测图的画法 1、平面立体正等轴测图的画法 例:已知长方体的三视图,画它的正 等轴测图。 解:分析:图4-2a为长方体的三视图。长方体共有八个顶点,用坐标确定各个顶点在其轴测图中的位置,然后连接各点的棱线即为所求。 作图步骤: (1)在三视上定出原点和坐标轴的位置。设定右侧后下方的棱

角为原点,X、Y、Z轴是过原点的三条棱线,如图4-2a所示。 (2)用30o的三角板画出三根轴测轴,在X轴上量取物体的长l,在Y轴上量取宽b;然后由端点Ⅰ和Ⅱ分别画出X、Y轴的平行线,画出物体底面的形状,如图4-2b所示。 (3)由长方体底面各端点画Z轴的平行线,在各线上量取物体的高度h,得到长方体顶面各端点。把所得各点连接起来并擦去多余的棱线,即得物体的顶面、正面和侧面的形状,如图4-2c所示。 (4)擦去轴测轴线,描深轮廓线,即得长方体正等轴测图。 学生练习: 画出垫块的正等轴测图。 分析:图4-3所示的垫块为一个简单的组合体,是由两个长方体与一个三棱柱组合而成的。只要画出底部长方体后,应用叠加法就可得到它的正等轴测图。 作图步骤: (1)使OZ轴处于垂直位置,OX,OY与水平成30o;根据三视图尺寸(图4-3a)画出长方体的正等轴测图,如图4-3b所示。 (2)根据图示的相对位置,画出上部长方体竖板与中央部位的三棱柱,如图4-3c所示。 (3)擦去不必要的图线,描深轮廓线,即得垫块的轴测图,如图4-3d所示。

绘制轴测图的方法和步骤--

?正等轴测图的绘制 三条坐标轴的制定: 正等轴测图的坐标系是由相邻两个坐标轴夹角都等于120°的三个坐标轴组成。左下方的坐标轴为X轴,右下方的为Y轴,Z轴一般都是让它竖直向上。物体在正视图上沿三个坐标轴的尺寸与其对应的轴测投影尺寸近似取为相等。即轴向变形系数都近似为1。由物体的正投影(即三视图)绘制轴测图,是根据坐标对应关系作图,即利用物体上的点,线,面等几何元素在空间坐标系中的位置,用沿轴向测定的方法,确定其在轴测坐标系中的位置从而得到相应的轴测图。实际上是两种坐标系的转换。 绘制轴测图的方法和步骤: A- 对所画物体进行形体分析测量,搞清原体的形体特征. B- 在原投影图上确定坐标轴和原点; C- 绘制轴测图。画图时,先画轴测轴,然后再逐步画出物体的轴测图; D- 轴测图中一般只画出可见部分,必要时才画出不可见部分

?坐标法: 根据形体的形状特点选定适当的坐标轴,然后将形体上各点的坐标关系转移到轴测图上去,以定出形体上各点的轴测投影,从而作出形体的轴测图。 作图步骤: ?在三视图中,画出坐标轴的投影; ?画出正等测的轴测轴,∠X1-O1-Y1=∠X1-O1-Z1=∠Y1-O1-Z1=120°; ?量取O1-2=O-2,O1-4=O-4; ?分别过2、4作O1-Y1、O1-X1的平行线,完成底面投影; ?过底面各顶点作O1-Z1轴的平行线,长度为四棱柱高度; ?依次连接各顶点,完成正等测图。

三棱锥形的正等测图作图步骤: ?在三视图中,画出坐标轴的投影; ?画出正等测的轴测轴,∠X1-O1-Y1=∠X1-O1-Z1=∠Y1-O1-Z1=120°; ?量取O1-A’=O-A ; ?在平面俯视图中以B点向C -A 引垂直线得到点1,量取O1-1’=O-1,1’-B’=1-B ;?连接点A’,B’,C’得到三棱锥形的底面投影; ?在平面俯视图中以S点向C -A 引垂直线得到点2,量取O1-2’=O-2,2’-3’=2-S ;?过3’点作O1-Z1轴的平行线,长度为三棱锥高度,得到S’点; ?依次连接各顶点,完成正等测图。 3’

正等轴测图(一)

成都汽车职业技术学校教案工作页

投影方向垂直于轴测投影面时,称为正轴测图;当投影方向倾于轴测投影面时,称为斜轴测图。 由些可见:正轴测图是由正投影法得来的,而斜轴测图则是用斜投影法得来的。 正轴测图按三个轴向伸缩系数是否相等而分为三种: 1、正等测图简称正等测:三个轴向伸缩系数都相等; 2、正二测图简称正二测:只有两个轴向伸缩系数相等; 3、正三测图简称正三测:三个轴向伸缩系数各不相等。 同样,斜轴测图也相应地分为三种: 1、斜等测图简称斜等测:三个轴向伸缩系数都相等; 2、斜二测图简称斜二测:只有两个轴向伸缩系数相等; 3、斜三测图简称斜三测:三个轴向伸缩系数各不相等。 工程上用得较多的是正等测和斜二测。本章只介绍这两种轴测图的画法。 三、正等轴测图的形成,轴间角和轴向变形系数 1、形成 当三根坐标轴与轴测投影面倾斜的角度相同时,用正投影法得到的投影图称为正等轴测图,简称正等测。 2、轴间角和轴向伸缩系数 由于空间坐标轴 OX、OY、OZ对轴测投影面的倾角相等,可计算出其轴间角∠X1O1Y1=∠X1O1Z1=∠Y1O1Z1=120°,其中O1Z1轴规定画成铅垂方向。 由理论计算可知:三根轴的轴向伸缩系数为 0.82,但为了作图方便,通常简化伸缩系数为1。用此轴向伸缩系数画出的图形其形状不变,但比实物放大1.22倍。 四、平面立体正等轴测图的画法 画轴测图的方法有坐标法、切割法和叠加法三种,绘制轴测图最基本的方法是坐标法。 坐标法:画轴测图时,先在物体三视图中

确定坐标原点和坐标轴,然后按物体上各点的坐标关系采用简化轴向变形系数,依次画出各点的轴测图,由点连线而得到物体的正等测图。坐标法是画轴测图最基本的方法。 切割法:在平面立体的轴测图上,图形由直线组成,作图比较简单,且能反映各种轴测图的基本绘图方法,因此,在学习轴测图时,一般先从平面立体的轴测图入手。当平面立体上的平面多数和坐标平面平行时,可采用叠加或切割的方法绘制,画图时,可先画出基本形体的轴测图,然后再用叠加切割法逐步完成作图。画图时,可先确定轴测轴的位置,然后沿与轴测轴平行的方向,按轴向缩短系数直接量取尺寸。特别值得注意的是,在画和坐标平面不平行的平面时,不能沿与坐标轴倾斜的方向测量尺寸。 五、平面立体的正等轴测图绘制实例 例1:已知长方体的三视图,画它的正等轴测图。 解:分析:图4-2a为长方体的三视图。长方体共有八个顶点,用坐标法确定各个顶点在其轴测图中的位置,然后连接各点的棱线即为所求。 作图步骤: (1)在三视上定出原点和坐标轴的位置。设定右侧后下方的棱角为原点,X、Y、Z轴是过原点的三条棱线,如图4-2a所示。 (2)用30o的三角板画出三根轴测轴,在X 轴上量取物体的长l,在Y轴上量取宽b;然后由端点Ⅰ和Ⅱ分别画出X、Y轴的平行线,画出物体底面的形状,如图4-2b所示。

正等轴测图

正等轴测图 一、正等轴测图的轴间角和变形系数 1.正等轴测图的投射(影)方向垂直于轴测投影面。 2空间三个坐标轴均与轴测投影面倾斜35°16′ 3.因此三轴间角相等:即∠X1O1Y1=∠Y1O1Z1=∠Z1O1X1=120° 4.沿三个轴测轴向变形系数也相等,即p=q=r=0.82 如图3-3所示 图3-3正等轴测图的轴间角 作图方法:a)通常将O1Z1轴画成铅垂线; b)O1X1、O1Y1轴与水平线成30°角; c)为作图方便,国标(GB)规定用简化的变形系数“1”代替理论变形系数0.82,(也就是说,凡是平行于坐标轴的尺寸,均按原尺寸画出。)这样画出的轴测图,比按理论变形系数画出的轴测图放大1/0.82=1.22倍,但对物体形状的表达没有影响,今后在画正等轴测图时,如不特别指明,均按简化的变形系数作图。 二、正等轴测图中平行于坐标面的圆的轴测投影 在正等测中,由于空间各坐标面对轴测投影面的位置都是倾斜的,其倾角均相等。所以在各坐标面的直径相同的圆,其轴测投影为长、短轴大小相等的椭圆。为画出各椭圆,需要掌握长、短轴的大小、方向和椭圆的画法。 图3-4轴线平行于坐标轴的圆柱的正等轴测图1.椭圆长、短轴方向:

平行于X1O1Y1坐标面的圆(水平圆)等测为水平椭圆长轴⊥O1Z1轴短轴∥O1Z1轴 平行于X1O1Z1坐标面的圆(水平圆)等测为水平椭圆长轴⊥O1Y1轴短轴∥O1Y1轴 平行于Y1O1Z1坐标面的圆(水平圆)等测为水平椭圆长轴⊥O1X1轴短轴O1X1轴 综上所述:椭圆的长轴⊥与圆所平行的坐标面垂直的那个轴,短轴则平行与该轴测轴。 例如:水平圆的正等测水平椭圆,长轴垂直于圆所平行的水平面垂直的轴测轴Z1轴,短轴则∥Z1轴。 图3-5平行于坐标面的圆的正等轴测图图3-6 2.椭圆长、短轴的大小 长轴:是圆内平行于轴测投影面的直径的轴测投影。因此: (1)在采用变形系数0.82作图时,椭圆长轴大小为d,短轴大小为0.58d。 (2)采用简化作图时,因整个轴测图放大了约1.22倍,所以椭圆长短轴也相应放大1.22倍,即长轴=1.22d,短轴=0.71d。 3.正等测图中,椭圆长、短轴端点的连线与长轴约为30°角,因此已知长轴的大小,即可求出短轴的大小,反之亦然。如图3-6所示。 4圆角的画法:

正等轴测图(正等测)教学设计

正等轴测图(正等测)<平面体部分>

轴测图直观、小朋友都可以看得出形状 教学内容与过程 设计意图及达成目标 预测 组织教学(1分钟): 1、学生按时进入课室,师生互相问候。 2、检查学生出勤、装束、精神状态情况。 3、宣布本次课题的内容及任务。 新课导入(3分钟): 1、复习旧知识,提问两位同学何谓轴间角、轴向伸 缩糸数? 2、课件演示: 讲授新课 (一)正等测轴间角和轴向伸缩糸数: 1、轴间角∠XOY=∠YOZ=∠ZOX=120o 2、p=q= r =1 任务一 试一试: 课件展示,给出课前准备好的长方体萝卜模型和任务单1,要求学生四人一组试一试根据三视图和模型绘制出长方体的正等轴测图。 评一评: 对学生绘制的长方体进行评比,比速度,比质量。用幻灯片进行投影,共同指出典型问题并纠正。 讲一讲: 被评为最佳绘图能手的同学总结正等轴测图的作图步骤,教师用课件展示作简单总结。(1)定原点及坐标轴(2)定出A 、B 、D 点 (3)过B 点作X 轴平行线,量取C 点,并连接各点,得长方体底。 (4)过ABCD 点量取高h ,并连接各点,即得上底面长方形。 (5)擦去多余图线 (1) (2) (3) (4) (5) 任务二 比一比: 课件展示,变动长方体萝卜模型并给出任务单2,要求学生四人一组根据三视图和模型绘制出垫块1的正等轴测图,。比一比速度和质量。 赛一赛: 对学生绘制的垫块1进行评比,比速度,比质量。用幻灯片进行投影,共同指出典型问题并纠正。 理一理: 通过直观演示,幽默诙谐的语言艺术让学生在轻松的氛围中进入课程。设置的问题也顺利的成为后面知识的前奏。 将难点分解,通过直观演示,学生分组讨论,师生共同探讨等手段,活跃课堂气氛,还学生以期望和激励,让学生更有 成就感。使整个过程循序渐进,步步深入,变难点为趣点,使学生轻松掌握所学知识。 通过实物模型的展示,吸引学生的眼球,激发学生的学习兴趣 和动手绘图的欲望,使学生尽快进入学习状态。并利用任务驱 动法和分组学习引导学生自主协作。体现了“教为主导,学为 主体”。这一环节要求 学生“不做君子做小 人,君子动口不动手, 我们动口又动手。”在 良好的教学氛围中完 成教学任务。 本环节以简单的长方体为例,在教师的示 范下,学生完整的完成整个图。在解决重点的同时,增加了学 生的兴趣和成就感。其中评一评讲一讲更加增强了学生的自主 性和自信心。给了学三视图学过制图的才能看明白 重点! 切记!!

绘制轴测图的方法和步骤

绘制轴测图的方法和步骤 由物体的正投影绘制轴测图,是根据坐标对应关系作图,即利用物体上的点,线,面等几何元素在空间坐标系中的位置,用沿轴向测定的方法,确定其在轴测坐标系中的位置从而得到相应的轴测图。 绘制轴测图的方法和步骤: a.对所画物体进行形体分析,搞清原体的形体特征,选择适当的轴测图 b.在原投影图上确定坐标轴和原点; c.绘制轴测图,画图时,先画轴测轴,作为坐标系的轴测投影,然后再逐步画出; d 轴测图中一般只画出可见部分,必要时才画出不可见部分 (1) 平面立体的轴测图画法 画平面立体轴测图的基本方法是:沿坐标轴测量,按坐标画出各顶点的轴测图,该方法简称坐标法;对一些不完整的形体;可先按完整形体画出,然后再用切割方法画出不完整部分,此法称为切割法;对另一些平面立体则用形体分析法,先将其分成若干基本形体,然后还逐一将基本形体组合在一起,此法称为组合法。 下面举例说明两种种方法说明轴测图的画法。 1 )坐标法 [ 例1] 根据截头四棱锥正投影图, 画出其正等测轴测图 [ 解] 作图步骤如下; a )以四棱锥体的对称轴线为坐标轴,以O 为原点; b )画轴测轴并相应地画出各项点的轴测图,连接各点即得四棱锥体的轴测图; c )根据截口的位置,按坐标作出截面上各项点的轴测图; d )连接各点,擦去不可见的轮廓线,即得截头四棱锥的轴测图。 2) 切割法 [ 例2] 根据平面立体的三视图, 画出它的正等测图( 图2)

图2 用组合法作正等测图 [ 解] 作图步骤如下: a )在视图上定坐标轴,并将组合体分解成三个基本体: b )画轴测轴,沿轴测量历16,12,4 画出形体I ; c )形体II 与形体I 左右和后面共面,沿轴量16 、 3 、14 画出长方体,再量出尺寸12 、10 ,画出形体II ; d )形体III 与形体I 和形体II 右面共面;沿轴量取 3 ,画出形体III : e )擦去形体间不应有的交线和被遮挡的线,然后描深。 坐标法、切割法和组合法是给制轴测图的基本方法,画图时必须根据形体特点灵活应 用。 ( 2 )曲面立体的画法 简单的曲面立体有圆柱、圆锥(台)、圆球和圆环等,它们的端面或断面均为圆。因此,首先要掌握坐标面内或平行干坐标面圆的正轴测图画法。 1 )坐标面内或平行于坐标面的圆的轴测投影 在三种轴测图中,因斜二测的一个坐标面平行轴测投影面,故与此坐标而平行的圆的轴测投影仍为圆,其余圆的轴测投影均为椭圆,称为轴测椭圆,轴测椭圆的画法有两种: 坐标法:按坐标法确定圆周上若干点的轴测投影,后光滑地连接成椭圆。 近似法:用四心扁圆代替轴测椭圆,确定的四个圆心,四段圆弧光滑地连接成一扁圆,使之与轴测椭圆近似。 ①轴测椭圆的长、短轴方向和大小 常用的三种轴测图中,轴测椭圆的长、短轴方向和大小如图3所示。在正等测和正二测图中,采用简化系数后,轴测椭圆的长、短袖大小如图 4 所示。

正等轴测图及其画法学案

正等轴测图及其画法学案 学习目标:能够根据三视图或实物自己独立画出平面立体正确的正等轴测图。 学习重点:平面立体正等轴测图如何画。 学习难点:怎样将一个三视图转化画出正等轴测图。 知识回顾轴测投影的基本特性: ①空间互相平行的线段,在同一轴测投影中一定互相。与直角坐标轴平行的线段,其轴测投影必与相应的轴测轴。 ②与轴测轴平行的线段,按该轴的进行度量。绘制轴测图必须沿测量尺寸。 知识学习: 一、正等轴测图的轴间角、轴向伸缩系数 正等轴测图的轴间角∠XOY =∠XOZ =∠YOZ =120°。 三根轴的简化伸缩系数p=q=r=1,故绘制轴测图时相应轴按的比例量取。 巩固小练习: 利用手头的三角板绘制一个正等轴测图的三根轴测轴。

二、平面立体正等轴测图的画法。 开动脑筋,看看能否通过自己的努力读懂下面的例题 例4-1 已知长方体的三视图,画出他的正等轴测图。 (1)在三视图上定出原点和坐标轴的位置。设定右侧后下方的棱角为原点,X、Y、Z轴是过原点的三条棱线,如图a所示。 (2)用30°的三角板画出三根轴测轴,在X轴上量取物体的长l,在Y轴上量取宽度b;然后由端点I和II分别画Y、X轴的平行线,画出物体底面的形状,如图b所示。 (3)由长方体底面各端点画Z轴的平行线,在各线上量取物体的高度h,得到长方体顶面各端点。把所得的各点连接起来并擦去多余

的棱线,即得物体顶面、正面和侧面的形状,如图c所示。 (4)擦去轴测轴,描深轮廓线,即得长方体正等轴测图。 通过自己的研究学习以及老师的讲解,你是否弄懂了长方体正等轴测图的画法,我们来进行一个小小的练习,进一步巩固知识。 小练习:画一个长40,宽28,高为18的长方体正等轴测图。 我们再来看一个例题,看看这类图形我们都可以通过什么方式画出它的正等轴测图。 例4-2 已知凹形槽的三视图(图4-4a),画出它的正等轴测图

相关主题
文本预览
相关文档 最新文档