当前位置:文档之家› 2015年江苏科技大学 运筹学期末习题参考范围及简要问题详解

2015年江苏科技大学 运筹学期末习题参考范围及简要问题详解

2015年江苏科技大学 运筹学期末习题参考范围及简要问题详解
2015年江苏科技大学 运筹学期末习题参考范围及简要问题详解

运筹学期末习题参考围及简要答案1.

2.

3.某厂Ⅰ、Ⅱ、Ⅲ三种产品分别经过A、B、C三种设备加工。已知生产单位各种产品所需的设备台时,设备的现有加工能力及每件产品的预期利润见表:

1)建立线性规划模型,求获利最大的产品生产计划。

2)产品Ⅲ每件的利润到多大时才值得安排生产?如产品Ⅲ每件利润增加到50/6元,求最优计划的变化。

3)产品Ⅰ的利润在多大围变化时,原最优计划保持不变。

4)设备A的能力在什么围变化时,最优基变量不变。

5)如有一种新产品,加工一件需设备A、B、C的台时各为1、4、3h,预期每件为8元,是否值得生产。

6)如合同规定该厂至少生产10件产品Ⅲ,试确定最优计划的变化。

解:1)建立线性规划模型为:

MaxZ=10x1+6x2+4x3

x1+x2+x3≤100

10x1+4x2+5x3≤600

2x1+2x2+6x3≤300

x j≥0,j=1,2,3

获利最大的产品生产计划为:

X*=(x1,x2,x3,x4,x5,x6)’=(100/3,200/3,0,0,0,100)’ Z*=2200/3

2)产品Ⅲ每件利润到20/3才值得生产。如果产品Ⅲ每件利润增加到50/6元,最优计划的变化为:

X*=(x1,x2,x3,x4,x5,x6)’=(175/6,275/6,25,0,0,0)’ Z*=775

3)产品Ⅰ的利润在[6,15]变化时,原最优计划保持不变。

4)设备A的能力在[60,150]变化时,最优基变量不变。

5)新产品值得生产。

6)

最优计划的变化为:X*=(x1,x2,x3,x4,x5,x6)’=(190/6,350/6,10,0,0,60 )’ Z*=706.7

4.试建立一个动态规划模型。

某工厂购进100台机器,准备生产 p1 , p2 两种产品。若生产产品 p1 ,每台机器每年可收入45万元,损坏率为65%;若生产产品 p2 ,每台机器每年可收入35万元,损坏率为35%;估计三年后将有新 的机器出现,旧的机器将全部淘汰。试问每年应如何安排生产,使在三年收入最多?

解:(1)设阶段变量k 表示年度,因此,阶段总数n =3。

(2)状态变量sk 表示第k 年度初拥有的完好机床台数, 同时也是第 k –1 年度末时的完好机床数量。

(3)决策变量uk ,表示第k 年度中分配于生产产品 p 1 的机器台数。于是sk – uk 便为该年度中分配于生产产品 p 2的机器台数. (4) 状态转移方程为

(5)允许决策集合,在第 k 段为 (6)目标函数。设gk (sk ,uk )为第k 年度的产量,则

gk (sk ,uk ) = 45uk + 35(sk –uk ) ,

因此,目标函数为 (7)条件最优目标函数递推方程。

令fk (sk )表示由第k 年的状态sk 出发,采取最优分配方案到第3年度结束这段时间的产品产量,根据最优化

原理有以下递推关系: (8).边界条件为

第一年,第二年机器全部用于生产P2,第三年全部用于生产P1,可使三年收入最多为7676.25万元

)

(65.035.01k k k k u s u s -+=+}{)(k k k k k s u u s U ≤≤=0∑

==3

),(k i k

k k k u s g R ))((max )(k

k U u k k s u s f k

k ∈=)]}

(65.035.0[)](3545{[1k k k k k k k u s u f u s u -++-++0)(1313=++s f

5.求解决策问题。

某种子商店希望订购一批种子。据已往经验,种子的销售量可能为500,1000,1500或2000公斤。假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。要求:

(1)建立损益矩阵;

(2)用悲观法决定该商店应订购的种子数。

(3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。

解:(1)损益矩阵如下表所示:……3分

(2)悲观法:A1,订购500公斤。……2分

(3)后悔矩阵如下表所示:……3分

……2分

23

运筹学习题精选

运筹学习题精选

运筹学习题精选 第一章线性规划及单纯形法 选择 1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C ) A.多余变量 B.松弛变量 C.自由变量 D.人工变量 2.约束条件为0 AX的线性规划问题的可行解集 b ,≥ =X 是………………………………………( B ) A.补集 B.凸集 C.交集 D.凹集 3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。 A.内点 B.外点 C.顶点 D.几何点 4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B) A.正数 B.非负数 C.无约束 D.非零的 5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D) A.外点 B.所有点 C.内点 D.极点 6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解 7.满足线性规划问题全部约束条件的解称为…………………………………………………( C ) A.最优解 B.基本解 C.可行解 D.多重解 8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。 A.和 B.差 C.积 D.商 9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A ) 第 2 页共 30 页

第 3 页 共 30 页 A .多重解 B .无解 C .正则解 D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。 A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空 计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。 2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量, 表中的解代入目标函数中得Z=14,求出a~g 的值,并判断→j c 0 0 0 28 1 2 B C 基 b 1x 2x 3x 4x 5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G

运筹学例题

例9 分析在原计划中是否应该安排一种新产品。以第一章例1为例。设该厂除了生产产品Ⅰ、Ⅱ外,现有一种新产品Ⅲ。已知生产产品Ⅲ,每件需要消耗原材料A ,B 各为6kg ,3kg ,使用设备2台时;每件可获利5元。问改产是否应生产该产品和生产多少?若能以10个单位的价格再买进15单位的原材料A ,这样做是否有利? ()()T B P B C c 3,6,20,125.0,5.153133-='-'='-σ =1.25>0 21max x x z += ?????? ?≥≤+-≤+为整数 21212 121,0,13651914x x x x x x x x ()T n X ??? ??=310,23 ()629=*z 2,111≥≤x x 21max x x z += 21max x x z = (IP1)?????????≥≤≤+-≤+为整数212112121,0,113651914x x x x x x x x x (IP2)????? ????≥≥≤+-≤+为整数 212112121,0,21 3651914x x x x x x x x x 继续解(IP1)和(IP2),得最优解分别为: ()()()()941,923,2310,37,12211= ?? ? ??== ??? ??=z X z X T T ()9410≤≤*z 3,221≥≤x x 21max x x z = 21max x x z +=

(IP3)??????????≥≤≥≤--为整数2121212121,0,22136x x x x x x x x (IP3)??????????≥≥≥≤+-为整数 2121212121,0,32 1 36x x x x x x x x ()()1461,2,143333=?? ? ??=z X T IP4无可行解 21max x x z += 21max x x z = (IP5)???????????≥≤≤≤+-≤+为整数2121212121,0,2113651914x x x x x x x x x x (IP6)???????????≥≤≤≤+-≤+为整数 2121212121,0,31 1 3651914x x x x x x x x x x ()()()3,2,155==z X T IP6无可行解 14613≤≤*z ()T 2,1433=不为整数 3,211≥≤x x 分别加入问题(IP3)形成两个子问题 21max x x z += 21max x x z =

运筹学试题

运筹学试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

运筹学试题 一、填空题(本大题共8小题,每空2分,共20分) 1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。 2.线性规划模型有三种参数,其名称分别为价值系数、___和___。 3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。 4.求最小生成树问题,常用的方法有:避圈法和 ___。 5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。 6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。 7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。 8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。 二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。多选无分。 9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】 A.有唯一的最优解 B.有无穷多最优解 C.为无界解 D.无可行解 10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】 A.b列元素不小于零 B.检验数都大于零 C.检验数都不小于零 D.检验数都不大于零

11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】 A.3 B.2 C.1 D.以上三种情况均有可能 12.如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足【】 13.在运输方案中出现退化现象,是指数字格的数目【】 A.等于 m+n B.等于m+n-1 C.小于m+n-1 D.大于m+n-1 14.关于矩阵对策,下列说法错误的是【】 A.矩阵对策的解可以不是唯一的 C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失 D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值 【】 A.2 8.—l C.—3 D.1 16.关于线性规划的原问题和对偶问题,下列说法正确的是【】 A.若原问题为元界解,则对偶问题也为无界解

运筹学论文最短路问题

运筹学论文 ——旅游路线最短问题摘要: 随着社会的发展,人民的生活水平的提高,旅游逐渐成为一种时尚, 越来越多的人喜欢旅游。而如何才能最经济的旅游也成为人民考虑的一项 重要环节,是选择旅游时间最短,旅游花费最少还是旅游路线最短等问题 随之出现,如何决策成为一道难题。然而,如果运用运筹学方法来解决这 一系列的问题,那么这些问题就能迎刃而解。本文以旅游路线最短问题为 列,给出问题的解法,确定最短路线,实现优化问题。 关键词:最短路 0-1规划约束条件 提出问题: 从重庆乘飞机到北京、杭州、桂林、哈尔滨、昆明五个城市做旅游,每个城市去且仅去一次,再回到重庆,问如何安排旅游线路,使总旅程最短。 各城市之间的航线距离如下表: 重庆北京杭州桂林哈尔滨昆明 重庆0 1640 1500 662 2650 649 北京1640 0 1200 1887 1010 2266 杭州1500 1200 0 1230 2091 2089 桂林662 1887 1230 0 2822 859 哈尔滨2650 1010 2091 2822 0 3494 昆明649 2266 2089 859 3494 0 问题分析: 1.这是一个求路线最短的问题,题目给出了两两城市之间的距离,而在最短路线中,这些城市有的两个城市是直接相连接的(即紧接着先 后到达的关系),有些城市之间就可能没有这种关系,所以给出的两 两城市距离中有些在最后的最短路线距离计算中使用到了,有些则 没有用。这是一个0-1规划的问题,也是一个线性规划的问题。 2.由于每个城市去且仅去一次,最终肯定是形成一个圈的结构,这就

导致了这六个城市其中有的两个城市是直接相连的,另外也有两个 城市是不连接的。这就可以考虑设0-1变量,如果两个城市紧接着 去旅游的则为1,否则为0。就如同下图 实线代表两个城市相连为1, 虚线代表没有相连为0 3.因为每个城市只去一次,所以其中任何一个城市的必有且仅有一条进入路线和一条出去的路线。 LINGO解法: 为了方便解题,给上面六个城市进行编号,如下表(因为重庆是起点, 将其标为1) 假设:设变量x11。如果x11=1,则表示城市i与城市j直接相连(即先后紧接到达关系),否则若x11=0,则表示城市i与城市j不相连。 特别说明:xij和xji是同一变量,都表示表示城市i与城市j是否有相连的关系。这里取其中xij (i

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1 +x 2 与 约束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

运筹学期末试题

《运筹学》课程考试试卷( A卷) 专业:管理大类年级:2007考试方式:闭卷学分:3 考试时间:120 分钟

二、已知如下的运输问题(20分) 用表上作业法求该运输问题的最优调运方案 三、已知线性规划问题(15分) max z =3x1+4x2 -x1+2x2≤8 x1+2x2≤12 2x1+ x2≤16 x1, x2≥0 (1)写出其对偶问题 (2)若其该问题的最优解为,x 1*=20/3, x 2 *=8/3,试用对偶问题的性质,求对偶问题的最优解。 四、求如下图网络的最大流,并找出最小截集和截量。每弧旁的数字是(C ij ,f ij)(15分) v1(7,4)v3 (8,8)(3,1)(8,6) v s(3,3)(3,0)v t (9,4)(2,2)(9,6) v2(5,5)v4 五、用动态规划方法求解下列非线性规划问题(15分) max z =x1 x22x3 x1+x2+x3 =8 x j≥0 (j=1,2,3)

六、用匈牙利法求解下列指派问题(10分) 有四份工作,分别记作A 、B 、C 、D 。现有甲、乙、丙、丁四人,他们每人做各项工作所需时间如下表所示,问若每份工作只能一人完成,每人只能完成一份工作,如 何分派任务,可使总时间最少? 《运筹学》A 卷标准答案 一、解:(1)单纯形法 (10分) 建立模型:max z = 3x 1+4x 2 2x 1+x 2 ≤ 40 x 1 +3x 2≤30 xj ≥ 0 j = 1,2 首先,将问题化为标准型。加松弛变量x 3,x 4,得 ??? ??=≥=++=+++=4,...,1,030340 243max 42132121j x x x x x x x st x x z j 其次,列出初始单纯形表,计算最优值。 任务 人员 A B C D 甲 4 5 9 8 乙 7 8 11 2 丙 5 9 8 2 丁 3 1 11 4

运筹学例题

某昼夜服务的公交线路 解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 s.t. x1 + x6≥60 x1 + x2≥70 x2 + x3≥60 x3 + x4≥50 x4 + x5≥20 x5 + x6≥30 x1,x2,x3,x4,x5,x6 ≥0 解得50,20,50,0,20,10(x1到x6)一共需要150人 一家中型的百货商场 解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7 s.t. x1 + x2 + x3 + x4 + x5 ≥28 x2 + x3 + x4 + x5 + x6≥15 x3 + x4 + x5 + x6 + x7≥24 x4 + x5 + x6 + x7 + x1≥25 x5 + x6 + x7 + x1 + x2≥19 x6 + x7 + x1 + x2 + x3≥31 x7 + x1 + x2 + x3 + x4≥28 x1,x2,x3,x4,x5,x6,x7 ≥0 解得12.0.11.5.0.8.0(x1到x7) 最小值36 某工厂要做100套钢架 设x1,x2,x3,x4,x5 分别为5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 s.t. x1 + 2x2 +x4≥100 2x3+2x4 +x5≥100 3x1+x2+2x3+3x5≥100 x1,x2,x3,x4,x5≥0 解得30,10,0,50,0 只需要90根原料造100钢架某工厂要用三种原料1、2、3 设设x ij 表示第i 种(甲、乙、丙)产品中原料j 的含量。 目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 s.t. 0.5 x11-0.5 x12 -0.5 x13≥0 -0.25x11+0.75x12 -0.25x13≤0 0.75x21-0.25x22 -0.25x23≥0 -0.5 x21+0.5 x22 -0.5 x23≤0 x11+x21 +x31≤100 x12+x22 +x32≤100 x13+x23+x33≤60 x ij≥0 , i = 1,2,3; j = 1,2,3 解得x11=100,x12=50,x13=50原料分别为第1种100 第2种50 第3种50 资源分配 解:将问题按工厂分为三个阶段,甲、乙、丙三个厂分别编号为1、2、3厂。设sk= 分配给第k个厂至第3个厂的设备台数(k=1、2、3)。xk=分配给第k个工厂的设备台数。 已知s1=5, 并有S2=T1(s1,x1)=s1-x1,S3=T2(s2,x2)=s2-x2从Sk与Xk的定义,可知s3=x3 以下我们从第三阶段开始计算。Maxr3(s3,x3)=r3(s3,x3)即F3(s3)= Maxr3(s3,x3)=r3(s3,x3). 第二阶段F2(s2)=max[r2(s2,x2)+f3(s3)]第一阶段当s1=5时最大盈利为f1(5)=max[r1(5,x1)+f2(5-x1)] 得出2个方案⑴分配给甲0台乙0台丙3台⑵分配甲2台乙2台丙1台,他们的总盈利值都是21. 背包 设Sk=分配给第k种咨询项目到第四种咨询项目的所有客户的总工作日Xk=在第k种咨询项目中处理客户的数量已知s1=10,有S2=T1(s1,x1)=s1-x1. S3=T2(s2,x2)=s2-3x2. S4=T3(s3,x3)=s3-4x3,第四阶段F4(s4)=maxr4(s4,x4)=r4(s4,[s4/7])第三阶段F3(s3)=max[r3(s3,x3)+f4(s3-4x3)]第二阶段F2(s2)=max[r2(s2,x2)+f3(s2-3x2)]第一阶段已知s1=10,又因s2=s1-x1有F1(10)=max[r1(10,x1)+f2(10-x1)] 综上当x1*=0,x2*=1,x3*=0,x4*=1,最大盈利为28 京城畜产品 解:设:0--1变量xi = 1 (Ai 点被选用)或0 (Ai 点没被选用)。这样我们可建立如下的数学模型:Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤720 x1 + x2 + x3 ≤2 x4 + x5 ≥1 x6 + x7 ≥1 x8 + x9 + x10 ≥2 xi≥0 且xi为0--1变量,i = 1,2,3,……,10 函数值245 最优解1,1,0,0,1,1,0,0,1,1(x1到x10的解) 高压容器公司

运筹学复习题目加答案

一、单选题 1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2.下列说法中正确的是( )。 A .基本解一定是可行解 B .基本可行解的每个分量一定非负 C .若B 是基,则B 一定是可逆 D .非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( ) A.多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。 A .多重解 B .无解 C .正则解 D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。 A .等式约束 B .“≤”型约束 C .“≥”约束 D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。 A .多余变量 B .自由变量 C .松弛变量 D .非负变量 7.在运输方案中出现退化现象,是指数字格的数目( )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 二、判断题 1.线性规划问题的一般模型中不能有等式约束。 2.对偶问题的对偶一定是原问题。 3.产地数与销地数相等的运输问题是产销平衡运输问题。 4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。 5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。 6.线性规划问题的基本解就是基本可行解。 三、填空题 1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数 所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。 2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为: 3. 线性规划解的情形有 4. 求解指派问题的方法是 。 5.美国的R.Bellman 根据动态规划的原理提出了求解动态规划的最优化原理为 6. 在用逆向解法求动态规划时,f k (s k )的含义是:

运筹学期末考试题

二、单项选择题(每题3分,共15分) 1、 下面哪一个表达式可以作为目标规划的目标函数 A 、{}-++11min d d B 、{} -++11max d d C 、{}-+-11min d d D 、{} -+-11max d d 2、 线性规划问题可行域的每一个顶点,对应的是一个 。 A 、基本可行解 B 、非可行解 C 、最优解 D 、基 本解 3、 在整数规划割平面方法最终单纯形表中得到的一个各变量之间关系式为 5 8 4154321=+-x x x ,则其确定的割平面方程为 。

A 、53415132-≤+-x x B 、53435132-≤+-x x C 、53415132-≥--x x D 、53415132-≤--x x 4、 已知某个含10个节点的树,其中9个节点的次为1,1,3,1,1,1,3,1,3,另一个节点的次为 。 A 、1 B 、4 C 、3 D 、2 5、 用标号法寻找网络最大流时,发生标号中断(没有增广链),这时若用V 表 示已标号的节点的集合,用V 表示未标号的节点集合,则在网络中所有V → V 方向上的弧有 。(f 为当前流,c 为弧的容量) A 、 f c ≥ B 、c f ≤ C 、c f = D 、0=f 三、已知线性规划问题(第一问8分,第二问7分,共15分) ??? ??≥≤≤-+-=++-+-=无约束 321 3 21321321,0,064 22min x x x x x x x x x x x x z (1) 写出其对偶问题。 (2) 其原问题的最优解为1,0,5321-==-=x x x ,根据对偶性质直接求解 对偶问题的最优解。 四、(共20分,其中第1、3问各7分,第2问6分) 某厂用两种原材料生产 两种产品,已知数据见表1,根据该表列出的数学模型如下,加松弛变量,

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

运筹学试题及答案(武汉理工大学)

武汉理工大学考试试题纸(A卷) 备注:学生不得在试题纸上答题(含填空题、选择题、判断题等客观题),时间:120分钟 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分) 1.线性规划具有唯一最优解是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 2.设线性规划的约束条件为 则基本可行解为 A.(0, 0, 4, 3) B.(3, 4, 0, 0) C.(2, 0, 1, 0) D.(3, 0, 4, 0) 3.则 A.无可行解B.有唯一最优解 C.有多重最优解D.有无界解 4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系 A.Z > W B.Z = W C.Z≥W D.Z≤W 5.有6 个产地4个销地的平衡运输问题模型具有特征 A.有10个变量24个约束 B.有24个变量10个约束 C.有24个变量9个约束 D.有9个基变量10个非基变量 6.下例错误的说法是 A.标准型的目标函数是求最大值 B.标准型的目标函数是求最小值 C.标准型的常数项非正 D.标准型的变量一定要非负 7. m+n-1个变量构成一组基变量的充要条件是 A.m+n-1个变量恰好构成一个闭回路 B.m+n-1个变量不包含任何闭回路 C.m+n-1个变量中部分变量构成一个闭回路

D .m+n -1个变量对应的系数列向量线性相关 8.互为对偶的两个线性规划问题的解存在关系 A .原问题无可行解,对偶问题也无可行解 B .对偶问题有可行解,原问题可能无可行解 C .若最优解存在,则最优解相同 D .一个问题无可行解,则另一个问题具有无界解 9.有m 个产地n 个销地的平衡运输问题模型具有特征 A .有mn 个变量m+n 个约束 B .有m+n 个变量mn 个约束 C .有mn 个变量m+n -1约束 D .有m+n -1个基变量,mn -m -n -1个非基变量 10.要求不超过第一目标值、恰好完成第二目标值,目标函数是 A .)(min 22211+ - + ++=d d p d p Z B .)(min 22211+ - + -+=d d p d p Z C .)(min 22211+ - - -+=d d p d p Z D . ) (min 22211+ - - ++=d d p d p Z 二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。每小题1分,共15分) 11.若线性规划无最优解则其可行域无界 12.凡基本解一定是可行解 13.线性规划的最优解一定是基本最优解 14.可行解集非空时,则在极点上至少有一点达到最优值 15.互为对偶问题,或者同时都有最优解,或者同时都无最优解 16.运输问题效率表中某一行元素分别乘以一个常数,则最优解不变 17.要求不超过目标值的目标函数是 18.求最小值问题的目标函数值是各分枝函数值的下界 19.基本解对应的基是可行基 20.对偶问题有可行解,则原问题也有可行解 21.原问题具有无界解,则对偶问题不可行 22.m+n -1个变量构成基变量组的充要条件是它们不包含闭回路 23.目标约束含有偏差变量 24.整数规划的最优解是先求相应的线性规划的最优解然后取整得到 25.匈牙利法是对指派问题求最小值的一种求解方法 三、填空题(每小题1分,共10分) 26.有5个产地5个销地的平衡运输问题,则它的基变量有( )个 27.已知最优基 ,C B =(3,6),则对偶问题的最优解是( ) 28.已知线性规划求极小值,用对偶单纯形法求解时,初始表中应满足条件( )

运筹学练习题分析

第1题单选 题 A、决策变量 B、松弛变量 C、偏差变量 D、人工变量 2.第2题单选题若用图解法求解线性规划问题,则该问题所含决策变量的数目应为( ) A、二个 B、五个以下 C、三个以上 D、无限制 3.第3题单选题用单纯形法求解目标函数为极大值的线性规划问题,当所有非基变量的检验数均小于零时,表明该问题( ) A、有无穷多最优解 B、无可行解 C、有且仅有一个最优解 D、有无界解 4.第4题单选题 A、1个

B、4个 C、6个 D、9个 5.第5题单选题线性规划问题中基可行解与基解的区别在于( ) A、基解都不是可行解 B、 C、基解是凸集的边界 D、 6.第6题判断题如果线性规划问题问题存在最优解,则最优解一定对应可行域边界上的一个点 标准答案:正确 7.第7题判断题若线性规划问题有两个最优解 , 则它一定有无穷多个最优解 标准答案:正确 8.第8题判断题任何线性规划问题存在并具有唯一的对偶问题 标准答案:正确 9.第9题判断 题 标准答案:正确 10.第10题判断题对偶问题的对偶问题一定是原问题 标准答案:正确 11.第11题判断题线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域范围一般将扩大 标准答案:正确 12.第12题判断题线性规划问题的基解对应可行域的顶点

标准答案:错误 13.第13题判断题若线性规划的原问题有无穷多个最优解,则其对偶问题也一定具有无穷多最优解 标准答案:错误 第1题单选题对于 m 个发点、n 个收点的运输问题,叙述错误的是 ( ) A、该问题的系数矩阵有m × n 列 B、该问题的系数矩阵有 m n 行 C、该问题的系数矩阵的秩必为 m n-1 D、该问题的最优解必唯一 2.第2题单选题在解运输问题时,若已求得各个空格的改进路线和判别数,则选择调整格的原则是( ) A、在所有空格中,挑选绝对值最大的正判别数所在的空格作为调整格 B、在所有空格中,挑选绝对值最小的正判别数所在的空格作为调整格 C、在所有空格中,挑选绝对值最大的负判别数所在的空格作为调整格 D、在所有空格中,挑选绝对值最小的负判别数所在的空格作为调整格 3.第3题单选题在运输方案中出现退化现象,是指数字格的数目( ) A、等于m n B、大于m n-1 C、小于m n-1 D、等于m n-1 4.第4题单选题求最初运输方案可采用( ) A、大M法 B、位势法 C、西北角法 D、闭合回路法 5.第5题单选题 A、使诸供应点的供应总量减少G-Q B、使诸需求点的需求总量增加G-Q

《运筹学》-期末考试-试卷A-答案

《运筹学》-期末考试-试卷A-答案

《运筹学》试题样卷(一) 题号一二三四五六七八九十总 分 得 分 一、判断题(共计10分,每小题1分,对的打√,错的打X) 1.无孤立点的图一定是连通图。 2.对于线性规划的原问题和其对偶问题,若 其中一个有最优解, 另一个也一定有最优解。 3.如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>jσ对应的变量都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最 少的无孤立点的图。 10.任何线性规划问题都存在且有唯一的对 ①②③④⑤⑥⑦⑧⑨ 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了

时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。三种作物每年需要的人工及收入情况如下表所示: 大豆 玉米 麦子 秋冬季需人日数 春夏季需人日数 年净收入(元/公顷) 20 50 3000 35 75 4100 10 40 4600 试决定该农场的经营方案,使年净收入为最大。 三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为松弛变量,问题的约束为 形式(共8分)

《运筹学》题库

运筹学习题库 数学建模题(5) 1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: 试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则 max z =70x 1+120x 2 s.t. ????? ??≥≤+≤ +≤+0 300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。 解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z= 4x 1+3x 2 s.t. ???????≥≤≤+≤+ ,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:

建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:建立线性规划数学模型: 设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则 max z =10x 1+6x 2+4x 3 s.t. ???????≥≤++≤++≤++0 3006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通 信器材等。每种物品的重量合重要性系数如表所示。设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。 解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I ?? ?==≤++++++++++++=7 ,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或 5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。 解:设每月生产A 、B 、C 数量为321,,x x x 。 321121410x x x MaxZ ++= 250042.15.321≤++x x x

运筹学例题解析word精品

(一)线性规划建模与求解 B.样题: 活力公司准备在 5小时内生产甲、乙两种产品。甲、乙两种产品每生产 1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量 的3倍。已知甲、乙两种产品每销售 1单位的利润分别为 3百元和1百元。请问:在5小时 内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值, 并写出解的判断依据。如果不存在最优解, 也请说明理由。 解: 1、(1)设定决策变量: 设甲、乙两种产品分别生产 X]、X 2单位 _____________ max z=2 X 1+X 2 _________________________________ 12X 1 亠X 2 乞5 s.t X 2 _3X ! X,X 2 _0 1所示,其中可行域用阴影部分 目标函数只须画出其中一条等值线, 求解过程如下: 1?各个约束条件的边界及其方向如图 1中直线和箭头所示,其中阴影部分为可 行域,由直线相交可得其顶点 A(5,0)、 B(1,3)和 0(0,0)。 2. 画出目标函数的一条等值线 CD : 2x 什X 2=0,它沿法线向上平移,目标函数 值z 越来越大。 3. 当目标函数平移到线段 AB 时时,z ⑵目标函数:. (3)约束条件如下: 2、该问题中约束条件、目标函数、可行域和顶点见图 标记,不等式约束条件及变量约束要标出成立的方向, 顶点用大写英文字母标记。 -2 -1 X 2> 3 X 4 B(1,3) 3 图1 X2 5; A(5,O) T Max z 。 1 MaX 2

运筹学期末试题

一、判断题(共计10分,每小题1分,对的打√,错的打X) 1.无孤立点的图一定是连通图。 2.对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3.如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与 > j σ 对应的变量都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元/ 人日,秋冬季收入为20元/ 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。 养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只 三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中5 4 ,x x 为松弛变量,问题的约束为?形式(共8分)

(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分) 3212max x x x Z +-= s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0 五、求解下面运输问题。 (18分) 某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 六、灵敏度分析(共8分) 线性规划max z = 10x 1 + 6x 2 + 4x 3 s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0 的最优单纯形表如下:

运筹学试题库

运筹学试题库 一、多项选择题 1、下面命题正确的是()。 A、线性规划的标准型右端项非零; B、线性规划的标准型目标求最大; C、线性规划的标准型有等式或不等式约束; D、线性规划的标准型变量均非负。 2、下面命题不正确的是()。 A、线性规划的最优解是基本解; B、基本可行解一定是基本解; C、线性规划有可行解则有最优解; D、线性规划的最优值至多有一个。 3、设线性规划问题(P),它的对偶问题(D),那么()。 A、若(P)求最大则(D)求最小; B、(P)、(D)均有可行解则都有最优解; C、若(P)的约束均为等式,则(D)的所有变量均无非负限制; D、(P)和(D)互为对偶。 4、课程中讨论的运输问题有基本特点()。 A、产销平衡; B、一定是物品运输的问题; C、是整数规划问题; D、总是求目标极小。 5、线性规划的标准型有特点()。 A、右端项非零; B、目标求最大; C、有等式或不等式约束; D、变量均非负。 6、下面命题不正确的是()。 A、线性规划的最优解是基本可行解; B、基本可行解一定是基本解; C、线性规划一定有可行解; D、线性规划的最优值至多有一个。 7、线性规划模型有特点()。 A、所有函数都是线性函数; B、目标求最大; C、有等式或不等式约束; D、变量非负。 8、下面命题正确的是()。 A、线性规划的最优解是基本可行解; B、基本可行解一定是最优; C、线性规划一定有可行解; D、线性规划的最优值至多有一个。 9、一个线性规划问题(P)与它的对偶问题(D)有关系()。 A、(P)有可行解则(D)有最优解; B、(P)、(D)均有可行解则都有最优解; C、(P)可行(D)无解,则(P)无有限最优解; D、(P)(D)互为对偶。 10、运输问题的基本可行解有特点()。 A、有m+n-1个基变量; B、有m+n个位势; C、产销平衡; D、不含闭回路。

相关主题
文本预览
相关文档 最新文档