当前位置:文档之家› 机械振动知识点

机械振动知识点

机械振动知识点
机械振动知识点

简谐运动及其图象

知识点一:弹簧振子

(一)弹簧振子

如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。这样就成了一个弹簧振子。

注意:

(1)小球原来的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。

(2)小球的运动是平动,可以看作质点。

*

(3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。

(二)弹簧振子的位移——时间图象

(1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。

说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。

(2)振子位移的变化规律

振子的运动*

A→O

O→

B

B→

O

O→

A

对O点位移的

方向

|向

大小变化

(4)弹簧振子的位移-时间图象是一条曲线。

知识点二:简谐运动

(一)简谐运动

如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。

简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。

(二)描述简谐运动的物理量

;

(1)振幅(A)

振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。

一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。

(2)周期(T)和频率(f)

振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。

周期和频率都是描述振动快慢的物理量。周期越小,频率越大,表示振动得越快。

周期和频率的关系是:

,

(3)相位(φ)

相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。(三)固有周期、固有频率

任何简谐运动都有共同的周期公式:2m

=,其中m是振动物体的,k是回复力系数,

T

k

对弹簧振子来说k为弹簧的系数。

对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。T叫系统的周期,f叫频率。

可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是2m

=。这个结论可以直

T

k

接使用。

(四)简谐运动的表达式

y=Asin(ωt+φ),其中A是,f

ω==,φ是t=0时的相位,即初相位或初相。

T

知识点三:简谐运动的回复力和能量

(一)回复力:使振动物体回到平衡位置的力。

(1)回复力是以命名的力。性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。

如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的

力;在竖直方向上振动的弹簧振子的回复力是弹簧力和力的合力。

(2)回复力的作用是使振动物体回到平衡位置。回复力的方向总是“平衡位置”。

(3)回复力是是振动物体在方向上的合外力,但不一定是物体受到的合外力。

(二)对平衡位置的理解

(1)平衡位置是振动物体最终振动后振子所在的位置。

(2)平衡位置是回复力为的位置,但平衡位置是合力为零的位置。

(3)不同振动系统平衡位置不同。竖直方向的弹簧振子,平衡位置是其弹力

于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。

(三)简谐运动的动力学特征

F回=,a回=-kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的系数。负号表示回复力的方向与位移的方向。

也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。

*

弹簧振子在平衡位置时F

=。当振子振动过程中,位移为x时,由胡克定律(弹簧不超出

弹性限度),考虑到回复力的方向跟位移的方向相反,有F

=,k为弹簧的劲度系数,所以弹簧振子做简谐运动。

(四)简谐运动的能量特征

振动过程是一个动能和势能不断转化的过程,总的机械能。

振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越。

知识点四:简谐运动过程中各物理量大小、方向变化情况

(一)全振动

振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。

(二)弹簧振子振动过程中各物理量大小、方向变化情况

(

过程:物体从A由静止释放,从A→O→B→O→,经历一次全振动,图中O为平衡位置,A、B为最大位移处:

物理

量过程

移s

度v

:

加速

度a

回复

力F

动能

E k

势能

E P

运动

性质

A 最

(-)

|

最大最大

kA

0最大

"

A→O (-) 增

大减小

(+)

增大减小

a↓的

变加

速运

O 0

:

势能

全部

转化

为动

O→B

(+) 减

(+)

增大增大

(-) <

减小

a↑的

变减

速运

B 0最大

0最大动能全部转化为势

B →O

减小(+) 增

|

减小

(-)

(-) 增大

a ↓的

变加

速运

O

0 —

? 势能

全部

转化为动能

O →A (-) 减小 —

增大

(+) 减小 增大

a ↑的变减

速运

动 小结:弹簧振子的运动过程是完全对称的。

.

(1)B 、O 、A 为三个特殊状态

O 为平衡位置,即速度具有最大值v max ,而加速度a = A 为负的最大位移处,具有加速度最大值a max ,而速度v = B 为正的最大位移处,具有加速度最大值a max ,而速度v =

(2)其运动为变加速运动与变减速运动的交替过程,在此过程中,机械能守恒,动能和弹性势能之间相互转化

加速度a 与速度v 的变化 max max

0v a a v =???=??,而加速度,而速度

(3)任一点C 的受力情况

\

重力G 与弹力N 平衡;F 回=F 弹=kx ,可看出回复力方向始终与位移方向相反

知识点五:简谐运动图象的应用 (一)简谐运动图象的物理意义

图象描述了做简谐运动的质点的位移随时间变化的规律,即是位移——时间函数图象。 注意振动图象 质点的运动轨迹。 (二)简谐运动图象的特点

简谐运动的图象是一条正弦(余弦)曲线。

(1)从平衡位置开始计时,函数表达式为sin x A t ω=,图象如图1。

>

(2)从最大位移处开始计时,函数表达式cos x A t ω=,图象如图2。

(三)简谐运动图象的应用

(1)振动质点在任一时刻的位移。如图中,对应t 1、t 2时刻的位移分别为x 1=+7cm 、x 2=-5cm 。

(2)确定振动的振幅、周期和频率。

图中 位移的值就是振幅,如图表示的振动振幅是10cm ;

振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示 。由图可知,OD 、AE 、BF 的间隔都等于 =; (

频率1

5Z f H T

=

=。

(3)确定各时刻质点的速度、加速度(回复力)的方向。

加速度方向总与位移方向相 。只要从振动图象中认清位移的方向即可。例如在图中t 1时刻质点位移x 1为正,则加速度a 1为负,两者方向相反;t 2时刻,位移x 2为负,则a 2便为正;

判定速度的方向的方法有:

①位移——时间图象上的斜率代表速度。某时刻的振动图象的斜率大于0,速度方向与规定的正方向 ;斜率小于0,速度的方向与规定的正方向 ;

②将某一时刻的位移与相邻的下一时刻的位移比较,如果位移 ,振动质点将远离平衡位置;反之将靠近平衡位置。

例如图中在t 1时刻,质点正远离平衡位置运动;在t 3时刻,质点正向着平衡位置运动。 :

(4)比较不同时刻质点的速度、加速度、动能、势能的大小。

加速度与 的大小成正比。如图中|x 1|>|x 2|,所以|a 1|>|a 2|;

而质点的位移越大,它所具有的势能越 ,动能、速度则越 。如图中,在t 1时刻质点的势能E P1大于t 2时刻的势能E P2,而动能则E k1<E k1,速度v 1<v 1。

小结:若某段时间内质点的振动速度指向平衡位置(可为正也可为负),则质点的速度、动能均变 ,回复力、加速度、势能均变 ,反之则相反。凡图象上与t 轴距离 的点,振动质点具有相同的动能和势能。

单摆 外力作用下的振动

知识点一:单摆 |

(一)单摆

如图所示,一条 的细线下端拴一小球,上端固定,如果细线的质量与 相比可以忽略,球的直径与 的长度相比可以忽略,这样的装置叫单摆。单摆是实际摆的理想化模型。

(二)在摆角较小的条件下,单摆的振动是 运动

证明:将摆球由平衡位置O 点拉开一段距离,然后由静止释放,摆球在摆线拉力T 和重力G 共同作用下,沿圆弧在其平衡位置O 点左右往复运动。

当它摆到位置P 时,摆线与竖直夹角为θ, 将重力沿圆周切线方向和法线方向(半径方向)分解成两个分力G 1与G 2,其中G 1=mgsinθ,G 2=mgcosθ ^

G 2与T 在一条直线上,它们的合力是维持摆球做圆周运动的 力。它改变了摆球的运动 ,而不改变其速度的大小。

而G 1不论摆球在平衡位置O 点左侧还是右侧,始终沿圆弧切线方向 平衡位置O ,正是在G 1的作用下摆球才在平衡位置附近做往复运动,所以G 1是摆球振动的 力。即:F 回= 。

在摆角较小的条件下,≈=

≈OP x

sin l l

θθ 在考虑了回复力F 回的方向与位移x 方向间的关系,回复力可表示为:F 回=-?mg

x l

对一个确定的单摆来说,m 、l 都是确定值,所以

mg

l

为常数,即满足F 回=-kx 。 所以在摆角较小的条件下,使摆球振动的回复力跟位移大小成 ,而方向与位移的方向 ,故单摆的振动是简谐运动。 (三)几种常见的单摆模型

知识点二:探究单摆的周期与摆长的关系 (一)探究思路

探究影响单摆周期的因素可以从单摆的装置入手,单摆的装置包括细绳和小球。因此影响单摆周期的因素可能有:细绳的长度、小球的质量、摆角等。在这里只探究单摆的周期与摆长的关系。 (1)实验所用的单摆应符合理论要求,即摆线要 且弹性要 ,摆球用密度和质量较 的小球,以减小空气阻力影响,并且要在摆角较 的情况下进行实验。

(2)要使单摆在竖直平面内振动,不能使其形成 摆或摆球转动,方法是摆球拉到一定位置后由 释放。

R

O

a

θ

θ

(3)单摆的上端不要卷在夹子上,而要用夹子加紧,以免单摆摆动时摆线滑动或者摆长改变。

(4)测量摆长时,不能漏掉摆球的 。

(5)测单摆周期时,应从摆球通过 位置开始计时,在数到“零”的同时按下秒表开始计时计数。计时从平衡位置开始是因为此处摆球的速度最大,人在判定它经过此位置的时刻,产生的计时误差较小。要测量30次到50次全振动的时间,然后取 值计算出一次全振动的时间,即为单摆的振动周期。 先通过数据分析,对周期和摆长的定量关系做出猜测,例如可能是∝T l 、2∝T l ,或者∝T l 、

3∝T l ……然后按照猜测来确定纵坐标轴和横坐标轴。

例如,我们通过简单的估算,认为很可能是2∝T l ,那么可以用纵坐标表示T ,横坐标表示2l ,作出图象。如果这样作出的图象确实是一条直线,说明的确有2∝T l 的关系,否则再做其他尝试。 单摆的周期与摆长的平方根成正比。 知识点三:单摆的周期

.

(一)单摆的周期公式

实验证明单摆的周期与振幅A 关,与质量m 关,随摆长的增大而增大,随重力加速度g 的增大而减小。荷兰物理学家惠更斯总结出单摆周期公式:

=T

(二)单摆的等时性

在小振幅摆动时,单摆的振动周期与 无关的性质称为单摆的等时性利用单摆振动周期与振幅无关的等时性,可制成计时仪器,如摆钟等。由单摆周期公式知道,调节 即可调节钟表的快慢。

(三)等效摆长与等效重力加速度

在有些振动系统中l 不一定是绳长,g 也不一定为9.8m/s 2,因此出现了等效摆长和等效重力加速度的问题。

(1)等效摆长

/

如图所示,三根等长的绳123l l l 、、共同系住一密度均匀的小球m ,球直径为d 。23l l 、与天花板的夹角030<α。

若摆球在纸面内做小角度的左右摆动,则摆动圆弧的圆心在1O 处,故等效摆长 ,周期1=T ;

若摆球做垂直纸面的小角度摆动,则摆动圆弧的圆心在O 处,故等效摆长为 ,周期2=T 。

(2)等效重力加速度

①公式中的g 由单摆所在的空间位置决定。

2=

M

G g

R

知,g随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的'g代入公式,即g不一定等于9.8 m/s2。

②g还由单摆系统的运动状态决定。

单摆处在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值'=

g。若单摆若在轨道上运行的航天飞机内,摆球完全失重,回复力为零,则等效值'=

g,所以周期为无穷大,即单摆不摆动了。

当单摆有水平加速度a时(如加速运动的车厢内),等效重力加速'=

g

,平衡位置已经改变。

③g还由单摆所处的物理环境决定。

如带电小球做成的单摆在竖直方向的匀强电场中,回复力应是力和

力的合力在圆弧切线方向的分力,所以也有等效值'g的问题。

知识点四:用单摆测当地的重力加速度

(一)实验目的

,

利用单摆测定当地的重力加速度

(二)实验器材

铁架台(带铁夹)一个,中心有孔的金属小球一个,长约1m的细线一条,毫米刻度尺一根,游标卡尺(选用),秒表一块

(三)实验原理

单摆在偏角很小时的振动是简谐运动,振动周期跟偏角的大小和摆球的质量无关,这时单摆的周

期公式是2

=l

T

g ,变换这个公式可得=

g。因此只要

测出单摆的和,即可求出当地的重力加速度g的值。

(四)实验步骤

(1)在细线的一端打一个比小球上的孔径稍大些的结,将细线穿过球上的小孔,制成一个单摆。

(2)将铁夹固定在铁架台的上端,铁架台放在实验桌边,使铁夹伸到桌面以外,把做好的单摆固定在铁夹上,使摆线自由下垂。

(3)测量单摆的摆长l:用游标卡尺测出摆球直径2r,再用米尺测出从悬点至小球上端的悬线长'l,则摆长=l。

(4)把单摆从平衡位置拉开一个小角度,使单摆在竖直平面内摆动,用秒表测量单摆完成全振动30至50次所用的时间t,求出完成一次所用的平均时间,这就是单摆的周期T。

(5)重复上述步骤,将每次对应的摆长l、周期T填于表中,按公式=

g

算出每次g 值,然后求出结果。

摆长 》

l (m )

振动次数 n (s )

N 次历时

t (s )

周期 T (s ) 【

22

4=l g T

π

(m/s 2)

g (m/s 2)

平均值 (m/s 2)

1

2

3 (1)选择材料时摆线应选择 而不易 的线,长度一般不应短于1m ;小球应选用密度较 的金属球,直径应较 ,最好不超过2cm ;

(2)单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象;

(3)摆动时控制摆线偏离竖直方向不超过10°;

(4)摆动时,要使之保持在同一个运动平面内,不要形成 摆;

(5)计算单摆的振动次数时,应在摆球通过 位置时开始计时,以后摆球从同一方向通过最低位置时进行读数,且在数“零”的同时按下秒表,开始计时计数;

(6)由公式224=l

g T

π可以得出k= ,因此对数据的处理

可采用图象的方法。如图所示,作出2-l T 的图象,图象应是一条通过原点的直线,求出图线的 ,即可求得g 值。这样可以减小误差。

知识点五:受迫振动和振动的能量 (一)阻尼振动与无阻尼振动

振幅逐渐减小的振动叫阻尼振动;振幅不变的振动为等幅振动,也叫无阻尼振动。 (二)振动系统的能量

(1)对于给定的振动系统,振动的动能由振动的 决定,振动的势能由振动的 决定,振动的能量就是振动系统在某个状态下的动能与势能之和。

(2)对于同一振动系统,它的机械能大小由 大小决定,振幅越大,机械能就越 。若无能量损失,简谐运动过程中机械能守恒,为等幅振动。 (三)受迫振动

振动系统在 力作用下的振动叫受迫振动。

受迫振动稳定时,系统振动的频率等于 的频率,跟系统的固有频率 关。

受迫振动不是系统内部动能和势能的转化,而是与外界时刻进行着能量交换,系统的机械能也时刻变化。 (四)共振

在受迫振动中,当驱动力的频率 振动系统的固有频率时,振动物体的振幅最 ,这种现象叫做共振。声音的共振现象叫做共鸣。

共振曲线如图所示:

在需要利用共振时,应使驱动力的频率接近或振动物体的固有频率;在需要防止共振时,应使驱动力的频率与振动物体的固有频率不同,而且相差越越好。

机械振动公式

弹簧串并联 单自由度无阻尼自由振动 单自由度有阻尼自由振动 单自由度有阻尼强迫振动 简谐力直接激励 2 1212121,111k k k k k k k k k k k +=+=+=并联串联 ) ,(,)3(; ,1,2)2(; 0) ()1()( ,)( ),sin(,sin cos ,,0,0002 0120 2 0002 2x x A g T f T m k dt E E d x x tg x x A t A x t x t x x m k x x kx x m st n n n p k n n n n n n n n &&&&&&&&θδωωπωωθωθωωωωωω求响应:静变形法,求固有频率:定义法能量法求微分方程:定理法,= ====+=+=+=+== =+=+-2 00120 02 020 002 12ln 1 ) ( ,)( ),sin(,1,sin cos )1(,2,2,02,0ζπζζωδζωωθωζωθωωζωωωζωωζωωζωζωζω-===+=++=+=-=++ ==== =++=+++--d n j i i n d d n d t n d d d n d n cr cr n n n T A A j x x x tg x x x A t Ae x t x x t x x m c c c m c x x x kx x c x m n &&&π&&&&&&λβζλλβλωω λλζλαζλλαωω-=+-==-= =-=+-=-==++-,,)2()1(11,,12,)2()1(), sin(,sin 2 22221222k F x x x k F B tg k F B t B x t F kx x c x m st st n 无阻尼时,&&&

机械振动试题(参考答案)

机械振动基础试卷 一、填空题(本题15分,每空1分) 1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。 2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。 3、周期运动的最简单形式是(),它是时间的单一()或()函数。 4、叠加原理是分析( )系统的基础。 5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。 6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。 7、机械振动是指机械或结构在平衡位置附近的( )运动。 二、简答题(本题40分,每小题10分) 1、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 (10分) 2、 共振具体指的是振动系统在什么状态下振动简述其能量集聚过程 (10分) 3、 简述刚度矩阵[K]中元素k ij 的意义。 (10分) 4、 简述随机振动问题的求解方法,以及与周期振动问题求解的区别。 (10分) 三、计算题(45分) 、(14分)如图所示中,两个摩擦轮可分别绕水平轴O 1,O 2 无相对滑动;摩擦轮的半径、质量、转动惯量分别为r 1、m 1、I 1和m 2、I 2。轮2的轮缘上连接一刚度为k 的弹簧,轮1悬挂质量为m 的物体,求: 1)系统微振的固有频率;(10分) 2)系统微振的周期;(4分)。 、(16分)如图所示扭转系统。设转动惯量I 1=I 2,扭转刚度K r1=K r2。 1)写出系统的动能函数和势能函数; (4分) 2)求出系统的刚度矩阵和质量矩阵; (4分) 3)求出系统的固有频率; (4分) 4)求出系统振型矩阵,画出振型图。 (4分) 、(15分)根据如图所示微振系统, 1)求系统的质量矩阵和刚度矩阵和频率方程; (5 分) 2)求出固有频率; (5分) 3)求系统的振型,并做图。 (5分) 参考答案及评分细则: 填空题(本题15分,每空1分) 1、线性振动;随机振动;自由振动; 2、势能;动能;阻尼 图2 图3

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

机械振动 知识点总结

机械振动 1、判断简谐振动的方法 简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m. 要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。 然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。 2、简谐运动中各物理量的变化特点 简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系: 如果弄清了上述关系,就很容易判断各物理量的变化情况 3、简谐运动的对称性 简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。 理解好对称性这一点对解决有关问题很有帮助。 4、简谐运动的周期性 5、简谐运动图象 简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。 6、受迫振动与共振 (1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 位移x 回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2

机械运动知识点总结

1、机械运动 (1)参照物 人们判断物体是运动的还是静止的,总是先选取某一物体作为标准,相对于这个标准,如果物体的位置发生了改变,就认为它是运动的;否则,就认为它是静止的。这个被选作标准的物体叫做参照物。 (2)机械运动 物理学中把一个物体相对于参照物位置的改变,叫做机械运动,简称为运动。 2.运动和静止 (1)由于运动的描述与参照物有关,所以运动和静止都是相对的。 (2)自然界中的一切物体都是运动的,没有绝对静止的物体。平时所说物体是“运动的”或“静止的”都是相对于参照物而言的,这就是运动的相对性。 3.机械运动的分类 (1)根据物体运动的路线,可以将物体的运动分为直线运动和曲线运动。 (2)直线运动,可以分为匀速直线运动和变速直线运动。 匀速直线运动:在相同时间内通过的路程相等,运动快慢保持不变。 变速直线运动:在相同时间内通过的路程不相等,运动快慢发生了变化 4.速度 (1)定义:物体在单位时间内通过的路程叫做速度。可见,速度可以定量描述物体运动的快慢。 路程 (2)公式:速度= 时间 s 用s表示路程,t表示时间,v表示速度,则速度公式可表示为:v= t (3)单位:如果路程的单位取米,时间的一单位取秒,那么,由速度公式可以推出速度的单位是米/秒,符一号为m/s,读作米每秒。常用的速度单位还有千米/时,符号为Km/h,读作千米每时。 5.参照物的选取及有关物体运动方向的判断 (1)位置的变化判断 一个物体相对于另一个物体,如果其方位发生了变化或距离发生了变化,则这个物体相对于参照物的位置就发生了变化。 (2)如果两个物体同向运动,以速度大的物体为参照物,则速度小的物体向相反方向运动。6.比较物体运动快慢的方法 (1)在通过的路程相同时,用运动时间比较运动的快慢。在路程相同时,所用时间短的物体运动快,所用时间长的物体运动慢。 (2)在运动时间相同时,用路程比较物体运动的快慢。即在时间相同时,通过路程越长的物体运动得越快,通过路程越短的物体运动得越慢。 (3)如果通过的路程和时间都不相等时,可运用速度公式直接求出速度来比较运动的快慢或求出相同时间内通过的路程,再来比较运动的快慢或求出在通过路程相同时用的时间来比较运动的快慢。 7.速度的测量

大学 机械振动 课后习题和答案

试举出振动设计、系统识别和环境预测的实例。 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?

设有两个刚度分别为1k ,2k 的线性弹簧如图T —所示,试证明: 1)它们并联时的总刚度eq k 为:21k k k eq += 2)它们串联时的总刚度eq k 满足: 2 1111k k k eq += 解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为: 1122P k x P k x =?? =? 由力的平衡有:1212()P P P k k x =+=+ 故等效刚度为:12eq P k k k x = =+ 2)对系统施加力P ,则两个弹簧的变形为: 11 22P x k P x k ?=??? ?=?? ,弹簧的总变形为:1212 11()x x x P k k =+=+ 故等效刚度为:122112 111 eq k k P k x k k k k ===++

求图所示扭转系统的总刚度。两个串联的轴的扭转刚度分别为1t k ,2t k 。 解:对系统施加扭矩T ,则两轴的转角为: 11 22t t T k T k θθ?=??? ?=?? 系统的总转角为: 1212 11 ( )t t T k k θθθ=+=+, 12111()eq t t k T k k θ==+ 故等效刚度为: 12 111 eq t t k k k =+

两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c 1)在两只减振器并联时, 2)在两只减振器串联时。 解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为: 1122 P c x P c x =?? =?&& 由力的平衡有:1212()P P P c c x =+=+& 故等效刚度为:12eq P c c c x = =+& 2)对系统施加力P ,则两个减振器的速度为: 11 22P x c P x c ? =????=?? &&,系统的总速度为:12 12 11()x x x P c c =+=+&&& 故等效刚度为:12 11 eq P c x c c = =+&

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

机械振动学习题解答大全

机械振动习题解答(四)·连续系统的振动 连续系统振动的公式小结: 1 自由振动分析 杆的拉压、轴的扭转、弦的弯曲振动微分方程 22 222y y c t x ??=?? (1) 此式为一维波动方程。式中,对杆,y 为轴向变形,c =;对轴,y 为扭转 角,c ;对弦,y 为弯曲挠度,c 令(,)()i t y x t Y x e ω=,Y (x )为振型函数,代入式(1)得 20, /Y k Y k c ω''+== (2) 式(2)的解为 12()cos sin Y x C kx C kx =+ (3) 将式(3)代入边界条件,可得频率方程,并由此求出各阶固有频率ωn ,及对应 的振型函数Y n (x )。可能的边界条件有 /00, 0/0p EA y x Y Y GI y x ??=??? ?'=?=????=???? 对杆,轴向力固定端自由端对轴,扭矩 (4) 类似地,梁的弯曲振动微分方程 24240y y A EI t x ρ??+=?? (5) 振型函数满足 (4)4420, A Y k Y k EI ρω-== (6) 式(6)的解为 1234()cos sin cosh sinh Y x C kx C kx C kx C kx =+++ (7) 梁的弯曲挠度y (x , t ),转角/y x θ=??,弯矩22/M EI y x =??,剪力 33//Q M x EI y x =??=??。所以梁的可能的边界条件有 000Y Y Y Y Y Y ''''''''======固定端,简支端,自由端 (8) 2 受迫振动 杆、轴、弦的受迫振动微分方程分别为 222222222222(,) (,), (,) p p u u A EA f x t t x J GI f x t J I t x y y T f x t t x ρθθ ρρ??=+????=+=????=+??杆:轴:弦: (9) 下面以弦为例。令1 (,)()()n n n y x t Y x t ?∞==∑,其中振型函数Y n (x )满足式(2)和式(3)。代入式(9)得 1 1 (,)n n n n n n Y T Y f x t ρ??∞ ∞ ==''-=∑∑ (10) 考虑到式(2),式(10)可改写为 21 1 (,)n n n n n n n Y T k Y f x t ρ??∞ ∞ ==+=∑∑ (11) 对式(11)两边乘以Y m ,再对x 沿长度积分,并利用振型函数的正交性,得 2220 (,)l l l n n n n n n Y dx Tk Y dx Y f x t dx ρ??+=???

机械运动知识点总结

机械运动知识点总结公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

1、机械运动 (1)参照物 人们判断物体是运动的还是静止的,总是先选取某一物体作为标准,相对于这个标准,如果物体的位置发生了改变,就认为它是运动的;否则,就认为它是静止的。这个被选作标准的物体叫做参照物。(2)机械运动 物理学中把一个物体相对于参照物位置的改变,叫做机械运动,简称为运动。 2.运动和静止 (1)由于运动的描述与参照物有关,所以运动和静止都是相对的。(2)自然界中的一切物体都是运动的,没有绝对静止的物体。平时所说物体是“运动的”或“静止的”都是相对于参照物而言的,这就是运动的相对性。 3.机械运动的分类 (1)根据物体运动的路线,可以将物体的运动分为直线运动和曲线运动。 (2)直线运动,可以分为匀速直线运动和变速直线运动。 匀速直线运动:在相同时间内通过的路程相等,运动快慢保持不变。 变速直线运动:在相同时间内通过的路程不相等,运动快慢发生了变化

4.速度 (1)定义:物体在单位时间内通过的路程叫做速度。可见,速度可以定量描述物体运动的快慢。 路程 (2)公式:速度= 时间 s 用s表示路程,t表示时间,v表示速度,则速度公式可表示为:v= t (3)单位:如果路程的单位取米,时间的一单位取秒,那么,由速度公式可以推出速度的单位是米/秒,符一号为m/s,读作米每秒。常用的速度单位还有千米/时,符号为Km/h,读作千米每时。 5.参照物的选取及有关物体运动方向的判断 (1)位置的变化判断 一个物体相对于另一个物体,如果其方位发生了变化或距离发生了变化,则这个物体相对于参照物的位置就发生了变化。 (2)如果两个物体同向运动,以速度大的物体为参照物,则速度小的物体向相反方向运动。 6.比较物体运动快慢的方法 (1)在通过的路程相同时,用运动时间比较运动的快慢。在路程相同时,所用时间短的物体运动快,所用时间长的物体运动慢。 (2)在运动时间相同时,用路程比较物体运动的快慢。即在时间相同时,通过路程越长的物体运动得越快,通过路程越短的物体运动得越慢。

机械振动课程学习体会

机械振动课程学习心得体会 机械振动作为一门专业基础课程,其涉及的学科、专业面广,需要学员具备数学、力学、计算机技术及实验技术等基础理论知识。其主要目的与任务是培养学生学习和掌握机械振动的基本理论,初步具有把机械系统振动、噪声等实际问题抽象为理论模型,并利用所学到的理论知识和方法来分析和解决实际机械系统振动噪声问题的能力,学会机械振动噪声的测试分析及实验方法和技能。培养学生对机械系统动态问题的认识和分析能力,并且提高学生在学校和将来解决实际工程问题的能力。 通过该网络课程学习,我主要从如下方面对该课程进行了系统性学习: 1、再一次深入了解了机械振动的基础知识,如振动研究的基本内容和方法、振动的分类、振动的运动学分析基础知识、频谱分析知识及相应的力学模型建立等基础知识; 2、深入学习了单自由度的自由振动的分析方式和方法。在单自由度系统中,学习了无阻尼自由振动、能量法、等效质量与等效刚度概念,并对其计算进行了相关学习; 3、单自由度的强迫振动学习。理解并掌握了单自由度系统强迫振动的基础知识,结合工程实例例如带有集中载荷的悬臂梁系统,通过在自由端施加力的激励下引起强迫振动的振动频率特性分析,通过该课程学习的知识,利用频率特性曲线,可以很好的求出系统固有频率及阻尼常数;学习到了某种机械系统受到外在激励作用下的分析方法和可采用的实验手段;如稳态受迫振动的主要特性:①在简谐激振力下,单自由度系统稳态受迫振动亦为简谐振动。 ②稳态受迫振动的频率等于简谐激振力的频率,与振动系统的质量及刚度系数无关。③稳态受迫振动的振幅大小与运动初始条件无关,而与振动系统的 固有频率、激振力的频率及激振力的力幅有关。 4、学习了二自由度系统。在双自由度系统的学习中,掌握了二自由度无阻尼自由振动基本知识,并对在一个系统中受到谐振激励条件下的稳态响应进行了较为详细的学习,并能很好的运用到工程实际问题中;除此之外,对动力吸振器的原理进行了学习,通过该原理学习,给实际工厂中工件在车削中发颤引起的噪音问题提出了较为合理的解决方案; 连续系统的定义:系统的惯性、弹性和阻尼都是连续分布的振动系统叫连续系统;工程振动测试的主要参数:位移、速度、加速度、激振力、激振频率和振幅。 5、在多自由度系统中,运动方程如何建立、固有频率与振型的分析方法如:振型截断法、状态空间法等,还了解了计算基频的近似方法。通过这些方法的学习,无论是给工程实际问题,还是对以后该课程及相关课程的教学上面都提供了比较好的素材和知识面,以便能更好的完成教学和科研工作; 6、连续弹性体振动及有限元法:弹性连续体振动问题都只是在简单的特殊边界情况下才能得到精确解,而对于复杂弹性连续体的振动,通常无法得到精确解。因此,只能采用近似解,近似解方法很多,其要旨在于将无限自由度系统(连续体)变换成为有限多自由度系统(离散系统)来处理。有限元的基本思想是将一个复杂结构(连续系统)看成是有限个基本元素(单元)在有限个结点彼此相联结的组合结构。每个单元都是一个弹性体。有限元法通常是采用位移法,即以结点处的位移作为基本未知量,单元的位移是用结点位移的插值函数表示,单元以至整个结构的一切参数包括位移、应变、应力等都通过结点位移表示出来。从振动问题来看,最后是将一个连续体的振动问题变成了一个以有限个结点位移为广义坐标的多自由度系统的振动问题。有限单元法分析过程基本上可分为结构离散化、单元分析、整体分析三个步骤。

机械振动和机械波知识点总结

机械振动和机械波 、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位 置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是: a 物体离开平衡位置后要受到回复力作用。 b 、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。 简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡 位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也 可说是物体在跟位移大小成正比, 方向跟位移相反的回复力作用下的振动, 即F= — kx ,其中 “一”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比, 方向跟位移方向相反 的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用, 简谐振动的特点在于它是 一种周期性运动, 它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能) 都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入 面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“ A ”表示,它是标量,为正 值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动 在振动过程中,动 机械振动;:!振动在媒质中传递

精选-机械振动公式

弹簧串并联 单自由度无阻尼自由振动 单自由度有阻尼自由振动 单自由度有阻尼强迫振动 简谐力直接激励 2 1212 121,111k k k k k k k k k k k +=+=+=并联 串联),(,)3(;,1,2)2(; 0)()1()(,)(),sin(, sin cos ,,0,0002012 020 0022x x A g T f T m k dt E E d x x tg x x A t A x t x t x x m k x x kx x m st n n n p k n n n n n n n n &&&&&&&&θδωωπωωθωθωωωωωω求响应:静变形法,求固有频率:定义法能量法求微分方程:定理法,=====+=+=+=+===+=+-2 0012002 020 00212ln 1) (,)(),sin(,1,sin cos )1(,2,2,02,0ζπζζωδζωωθωζωθωωζωωωζωωζωωζωζωζω-= ==+=++=+=-=++=====++=+++--d n j i i n d d n d t n d d d n d n cr cr n n n T A A j x x x tg x x x A t Ae x t x x t x x m c c c m c x x x kx x c x m n &&&π&&&&&&λβζλλβλωω λλζλαζλλαωω-=+-==-= =-=+-=-==++-,,) 2()1(11,,12,)2()1(),sin(,sin 2 22221222k F x x x k F B tg k F B t B x t F kx x c x m st st n 无阻尼时,&&&

机械振动和机械波知识点复习及总结要点

机械振动和机械波知识点复习 一机械振动知识要点 1.机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。回复力:效果力——在振动方向上的合力平衡位置:物体静止时,受(合)力为零的位置:运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量 位移x(m)——均以平衡位置为起点指向末位置 振幅A(m)——振动物体离开平衡位置的最大距离(描述振动强弱)周期T (s)——完成一次全振动所用时间叫做周期(描述振动快慢)全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f(Hz)——1s钟内完成全振动的次数叫做频率(描述振动快慢) 2.简谐运动 概念:回复力与位移大小成正比且方向相反的振动受力特征:运动性质为变加速运动从力和能量的角度分析x、F、a、v、EK、EP 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大、EK同步变化;x、F、a、EP同步变化,同一位置只有v可能不同 3.简谐运动的图象(振动图象) 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周期T(频率f)可知任意时刻振动质点的位移(或反之)可知任意时刻质点的振动方向(速度方向)可知某段时间F、a等的变化 4.简谐运动的表达式: 5.单摆(理想模型)——在摆角很小时为简谐振动 回复力:重力沿切线方向的分力周期公式: l (T与A、m、θ无关——等时性) g 测定重力加速度g,g= 等效摆长L=L线+r 2 T 6.阻尼振动、受迫振动、共振

--机械运动知识点总结

第一章机械运动知识点总结 一、运动和静止 1、机械运动 ①、运动是宇宙中的普遍现象,运动是绝对的(宇宙间一切物体都在运动),静止是相对的(绝对不动的物体是不存在的),物体的运动和静止是相对的。 ②、机械运动:物理学中,把一个物体相对于另一个物体位置的变化叫作机械运动。 ③、判断物体是运动还是静止??? ?一看:选哪个物体作参照物;二看:被判断物体与参照物之间是否发生位置变化。 2、参照物 ①、定义:,要看以哪个物体做标准,这个被选做标准的物体叫参照物 Ⅰ?参照物是被假定不动的物体 Ⅱ? 研究对象不能做参照物,参照物可以任意选取,运动和静止的物体都可以作为参照物。 Ⅲ? 同一物体是运动还是静止取决于所选参照物 Ⅳ? 研究地面上的物体的运动,常选地面或固定在地面上的物体为参照物。 ②、参照物的特点:客观性--假定性--多重性--任意性 ③、相对运动:研究的对象相对于选定的参照物位置发生了改变。 相对静止:研究的对象相对于选定的参照物位置不变。 二、运动的快慢 1、速度 的速度就小。 速度的定义:速度等于运动物体在单位时间内通过的路程。 ②、公式:? v=s/t?;???速度=总路程/总时间 S→路程→米m?、千米km; t→时间→秒s?、小时h?; v→速度→米每秒m/s、千米每小时km/h ③、公式的变形:s=vt?????;???? t=s/v????? ④、单位换算:1m/s=3.6km/h?;1km/h=1/3.6 m/s;1m/s>1km/h。 ⑤、比较物体运动快慢的方法: Ⅰ?在相等的时间内,通过路程长的物体运动得快,通过路程短的物体运动得慢。 Ⅱ?通过相等的路程,所用时间短的物体运动得快,所用时间长的物体运动得慢。 Ⅲ?在运动的时间、通过的路程都不相等的情况下,1s内通过的路程长的物体运动得快,通过的路程短的物体运动得慢。 ⑥、使用公式时的注意事项: Ⅰ公式中s、v、t必须对应同一对象、同一运动时段。 Ⅱ运动公式必须注意单位匹配。 Ⅲ由于每个物理量要受到另外两个物理量的制约,在条件不足时不能乱下结论。 ⑦、匀速直线运动:物体沿着直线快慢不变的运动叫做匀速直线运动。 做匀速直线运动的物体速度是一个定值。速度的大小与路程、时间的选择无关。不能认为速度与路程成正反比。 匀速直线运动的图像:

高中物理机械振动知识点与题型总结.doc

(一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐 振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)阻尼振动、受迫振动、共振。 简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量总要有所耗散,因此振动系统的机械能总要减小,其振幅也要逐渐减小,直到停下来。振幅逐渐减小的振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变的振动叫无阻尼振动。 振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力的周期和频率,而与振动物体的固有周期或频率无关。 物体做受迫振动的振幅与策动力的周期(频率)和物体的固有周期(频率)有关,二者相差越小,物体受迫振动的振幅越大,当策动力的周期或频率等于物体固有周期或频率时,受迫振动的振幅最大,叫共振。 【典型例题】 [例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是() A. 振子在M、N两点受回复力相同 B. 振子在M、N两点对平衡位置的位移相同 C. 振子在M、N两点加速度大小相等 D. 从M点到N点,振子先做匀加速运动,后做匀减速运动 解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的)。建立起这样的物理模型,这时问题就明朗化了。

机械振动与噪声学习题集与答案

《机械振动噪声学》习题集 1-1 阐明下列概念,必要时可用插图。 (a) 振动;(b) 期振动和期; (c) 简谐振动。振幅、频率和相位角。 1-2 一简谐运动,振幅为0.20 cm,期为0.15 s,求最大的速度和加速度。 1-3 一加速度计指示结构谐振在82 Hz 时具有最大加速度50 g,求其振动的振幅。 1-4 一简谐振动频率为10 Hz,最大速度为4.57 m/s,求其振幅、期和最大加速度。 1-5 证明两个同频率但不同相位角的简谐运动的合成仍是同频率的简谐运动。即: A cos ωn t+ B cos (ωn t+ φ) = C cos (ωn t+ φ' ),并讨论φ=0、π/2 和π三种特 例。 1-6 一台面以一定频率作垂直正弦运动,如要求台面上的物体保持与台面接触,则台面的最大振幅可有多大? 1-7 计算两简谐运动x1 = X1 cos ω t和x2 = X2 cos (ω + ε ) t之和。其中ε << ω。如发生拍的现象,求其振幅和拍频。 1-8 将下列复数写成指数A e i θ形式: (a) 1 + i3 (b) -2 (c) 3 / (3- i ) (d) 5 i (e) 3 / (3- i ) 2 (f) (3+ i ) (3 + 4 i ) (g) (3- i ) (3 - 4 i ) (h) [ ( 2 i ) 2 + 3 i + 8 ] 2-1 钢结构桌子的期τ=0.4 s,今在桌子上放W = 30 N 的重物,如图2-1所示。已知期的变化?τ=0.1 s。求:( a ) 放重物后桌子的期;( b )桌子的质量和刚度。 2 -2 如图2-2所示,长度为L、质量为m 的均质刚性杆由两根刚度为k 的弹簧系住,求杆绕 O点微幅振动的微分程。 2-3 如图2-3所示,质量为m、半径为r的圆柱体,可沿水平面作纯滚动,它的圆心O 用刚度为k的弹簧相连,求系统的振动微分程。 图2-1 图2-2 图2-3 2-4 如图2-4所示,质量为m、半径为R的圆柱体,可沿水平面作纯滚动,与圆心O 距离为a 处用两根刚度为k的弹簧相连,求系统作微振动的微分程。 2-5 求图2-5所示弹簧-质量-滑轮系统的振动微分程。 Word 资料

选修3-4机械振动知识点汇总

高中物理机械振动知识点汇总 一. 教学内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解析 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线方向的分力。单摆的周期公式是 T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)阻尼振动、受迫振动、共振。 简谐振动是一种理想化的振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动的图象中,振幅是恒定的,表明系统机械能不变,实际的振动总是存在着阻力,振动能量

相关主题
文本预览
相关文档 最新文档