当前位置:文档之家› 焊接残余应力讲义

焊接残余应力讲义

焊接残余应力讲义
焊接残余应力讲义

焊接残余应力讲义

张思功

0317

焊接应力:钢材焊接时在焊件上产生局部高温的不均匀温度场,焊接中心处可达1600o C以上,高温部分钢材要求较大的膨胀伸长但受到邻近钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中随时间和温度而不断变化,称为焊接应力。

焊接残余应力:焊接应力较高的部位将达到钢材屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接残余应力。

当局部受热温度较低时,温度应力和变形将在弹性范围以内,并随温度的升降而按比例增减。钢板完全冷却后,应力和变形恢复到零,不产生残余应力(假定原始钢板无残余应力)或残余变形。当局部受热温度较高,达到100~150o C(Q235钢)或150~200o C(低合金结构钢)时,钢板中央部分热胀受抑制引起的温度压应力将达到钢材屈服强度;温度再升高

时则进入塑性受压状态,即继续压缩时钢材只发生压缩变形(塑性变形)而应力保持受压

不变。(屈服时,应力不增加但应变会继续增加。)

在厚度不大的焊接结构中,残余应力基本上是双轴的,即只有纵向和横向残余应力,如图1所示的和,而厚度方向温度大致均匀,残余应力很小。只在厚度大的焊接结构

中,厚度方向的应力才达到较高的数值。

图1 焊接残余应力

1.纵向焊接残余应力

焊接结构中的焊缝(求其是组合构件中的纵向焊缝)沿纵向(焊缝长度方向)收缩时,将产生纵向焊接残余应力。

2.横向焊接残余应力

焊接结构的横向(垂直于焊缝长度方向)焊接残余应力是由焊缝及其附近

塑性变形区纵向收缩所引起的,以及因焊缝全长的不同时(有先后顺序)焊

接引起的横向收缩不同时性所引起的合成的。

以钢板对接焊缝为例,焊缝纵向收缩使两侧钢板趋向于形成相反方向的弯曲变形,但实际上焊缝将两侧钢板连成整体不能分开,因而就产生中部受拉两端受

压的自相平衡的横向焊接残余应力,如图2(b)所示.横向收缩不同时性引起的

横向焊接残余应力与焊接方向和顺序有关。每一段焊缝冷却时的横向收缩使

其本身横向受拉(注意这一段焊缝是最后焊接的部位),而对邻近先焊的已冷却凝固部分为横向偏心受压(这一段是指中间焊缝部位),因应力自相平衡,更远处的另一端焊缝则受拉应力,如图2(c)所示。

图2 焊缝横向焊接应力

3.厚度方向的焊接应力

较厚钢材焊接时,厚度中部冷却比表面缓慢,会引起厚度方向的焊接残余应力(厚度中部受拉而上下表面为零);且纵向和横向焊接残余应力和在厚

度方向为不均匀分布。具体分布状况与焊接尺寸和焊接工艺密切相关。

X射线衍射在残余应力分析中应用

X射线衍射在材料分析中的应用 一、X射线衍射原理 X射线照射晶体,电子受迫振动产生相干散射,同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内各原子呈周期排列,因而各原子散射波间也存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成了衍射波。由此可知,衍射的本质是晶体中原子相干散射波叠加(合成)的结果。 二、X射线衍射在材料分析中的应用 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途: 1)物相分析:物相分析是指确定材料由哪些相组成和确定各组成相的含量。物相是决定或影响材料性能的重要因素,因而物相分析在材料、冶金、机械等行业中得到广泛应用。物相分析有定性分析和定量分析2 种: ①相定性分析的目的是检测固体样品中的相组成,采用未知样品衍射图谱与标 准图谱比较的办法. 如果衍射图谱相同即可确定为该物相。但如果样品为多相混合试样时,衍射线条谱多,谱线可能发生重叠,就需要根据强度分解组合衍射图谱来确定。 ②物相定量分析就是确定物质样品中各组成相的相含量. 根据衍射强度理论,物质中某相的衍射强度Ii与其质量百分数Xi 成如下关系 .Ii = KiXi/ Um 其中, Ki 为由实验条件和待测相而共同决定的常数;Xi 为质量百分数;Um 为待测样品的平均质量吸收系数,与Xi 有关。根据Um 的校正提出一系列物相定量分析方法,如内标法、K 值法、直接对比法,一般相定量分析误差可控制在5%以下; 2)结晶度:X 射线衍射图谱中,在一些情况下,结晶物质的图谱和非晶物质图谱重叠. 结晶度定义为结晶部分质量与总的试样质量之比的百分数. 目前非晶态合金用处很多,如软磁材料等. 而结晶度直接影响其材料的性能、损耗等. 测定结晶度方法主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,也可根据衍射线位置来确定结晶度; 3)残余应力分析:将产生应力的各种外部因素去除后,物体内部依然存在的应力称为残余应力. 在固体样品中,固体处于弹性极限内,该物质将随所受外力的大小而发生形变,从微观的角度来讲其晶面间距d 将发生改变,因此, 可根据d 值变化来测量残余应力σ.由于残余应力测试的特殊性,所以必须在X 射线衍射仪基础上加应力附件测试; 4) 微晶大小:X射线衍射图中峰宽β表现了构成物质的晶粒大小,峰宽化的原因除了晶粒的大小还有晶粒内部的非均匀应变. 使用Scherrer 公式和Hall 公式可计算微晶大小和非均匀应变; 5)晶体取向的测定:又称为单晶定向,是指测定晶体样品中晶体取向与样品外观坐标系的位向关系通过建立合适的外坐标系之后,对样品进行所要求的晶面或晶向的方位测定材料的性质与它的物相组成、结晶度和结晶粒子的大小、材料内部微观应变都有密切关系。

焊接应力产生的原因及处理方法

1.焊接应力的分类 焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 2.焊接残余应力对结构性能的影响 (1)对结构静力强度的影响:焊接应力不影响结构的静力强度。 (2)对结构刚度的影响:焊接残余应力降低结构的刚度。 (3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。(4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。 (5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。 焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本 原因。 减少焊接应力与变形的工艺措施主要有: 一、预留收缩变形量。根据理论计算和实践经验,在焊件备料及加工时预先考 虑收缩余量, 以便焊后工件达到所要求的形状、尺寸。 二、反变形法。根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 三、刚性固定法。焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 四、选择合理的焊接顺序。尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形。 五、锤击焊缝法。在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 六、加热“减应区”法。焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减小焊接应力和变形。 七、焊前预热和焊后缓冷。预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和 保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本

航空材料与腐蚀防护讲义 (腐蚀与防护部分)

第一章绪论 1.1 材料腐蚀的基本概念 腐蚀是一种自发过程。 腐蚀是由于环境作用引起的材料的破坏和变质。 从这个定义可以看出,材料(或结构)是否会发生腐蚀破坏,既取决于材料本身的性质,也与环境有关。 导致材料发生腐蚀的环境因素构成了腐蚀环境。腐蚀环境包括总体环境(大气环境)和工作环境。 随着非金属材料(塑料、橡胶,以及树脂基复合材料等)越来越多地用作工程材料,非金属材料的环境破坏现象也越来越引起人们的重视。因此,腐蚀科学家们主张把腐蚀的定义扩展到所有材料(金属和非金属材料)。 环境因素可以是机械的、物理的或化学的。如载荷造成的断裂和磨损,光和热造成的老化,氧化剂造成的氧化等。从这个意义来说,所有的材料破坏都可认为是腐蚀。这是腐蚀的广义概念。 但由机械的或物理的因素造成的材料或结构破坏,以及某些材料的老化等破坏形式,有专门的研究方法。所以通常所说的腐蚀是指由于环境因素与材料之间发生化学反应造成的破坏。这是腐蚀的狭义概念。 本课程中将主要介绍金属材料由于环境中化学因素造成的腐蚀及其控制。 1.2 研究材料腐蚀的重要性 材料腐蚀问题遍及国民经济的各个领域。从日常生活到交通运输、机械、化工、冶金,从尖端科学技术到国防工业,凡是使用材料的地方,都不同程度地存在着腐蚀问题。腐蚀给社会带来巨大的经济损失,造成了灾难性事故,耗竭了宝贵的资源与能源,污染了环境,阻碍了高科技的正常发展。 一、腐蚀给国民经济带来巨大损失 以金属材料为例,每年由于腐蚀而造成的经济损失约占国民经济生产总值的2%~4%(表1.1)。这些损失中包含了腐蚀的直接损失和间接损失,包括了浪费的材料和能源、腐蚀引起的原材料或产品的流失或污染、因腐蚀失效而损失的设备和结构、腐蚀降低设备性能造成的损失、因腐蚀造成的误工停产、因腐蚀导致的维修费用、控制腐蚀带来的费用,和因腐蚀造成的毒害物质泄漏所污染环境的治理费用等等。 表1.1 腐蚀造成经济损失的统计数据 国家统计年份腐蚀造成的经济损失占当年国民生产总值的百分比 美国1975 700亿美元 4.2% 1982 1260亿美元-

4 (顾望平) 石化设备腐蚀与防腐-讲义

石化设备腐蚀与防腐 国家压力容器与管道安全工程技术研究中心 (合肥通用机械研究院) 顾望平 教授级高级工程师 2010-11-26 mmgwp@https://www.doczj.com/doc/7211187422.html, 2 我国炼油厂行业的现状 原料劣质化趋势严重 部分装置原设计不能满足原料劣质化要求 部分重点装置材质升级不彻底 装置长周期安全运转的要求 设计与建设遗留问题多 管理粗放 缺乏技术支持 人员变动大 2010-11-26 mmgwp@https://www.doczj.com/doc/7211187422.html, 3 2737 3470 3680 45325604 6537 6913 5000 100001500020000250002004200520062007200820092010 总量 高硫 中国石化2010年加工原油硫含量平均1.22%,酸0.65mgKOH/g,API 达到30.02。标志着全面进入劣质原油加工时代。 面临着原油进一步劣质化的趋势 2010-11-26 mmgwp@https://www.doczj.com/doc/7211187422.html, 4 0.50 1.63 0.51 0.25 0.00 0.50 1.001.50 2.00 金陵1# 茂名3# 设防值 超出值 平均硫含量长期超出设防值的有2家企业2套装置,占总套数的3.92%;月平均酸值长期超出设防的有5家企业5套装置,占总套数 的9.8%。 % 1.00 1.00 1.00 0.50 1.50 0.11 0.16 0.26 0.88 0.84 0.00 0.501.00 1.50 2.002.50 3.00武汉新2# 安庆1#九江1#金陵1#齐鲁1# 设防值 超出值 硫含量 酸 值 mgKOH/g 2010-11-26 mmgwp@https://www.doczj.com/doc/7211187422.html, 5 随着原油性质不断劣质化,因腐蚀引起的装置非计划停工 一度成为非计划停工的主要原因。 2005年~2009上半年因腐蚀引起的非计划停工 因腐蚀非计划停工 33 32 25 26 14 9 7 5 9 30 51015202530352005年 2006年2007年 2008年2009上半年 非计划停工次数 腐蚀引起的次数 2010-11-26 mmgwp@https://www.doczj.com/doc/7211187422.html, 6 原油劣质化后加剧了腐蚀 为了提高油田的产量与降低原油采购成本,原油的腐蚀性增加了,其中的腐蚀元素越来越复杂;原油中的腐蚀介质:氯化盐、氟化物、硫化物、有机酸、氧、氮化物,有机氯化物,重金属等;运输和生产中加入的助剂:减阻剂、原油脱硫剂、脱钙剂、破乳化剂、中和剂、缓蚀剂、氯化物、酸、碱、氢氟酸、糠醛、胺等;炼制过程生成的:硫化氢、二氧化碳、氰化物、氢、盐酸、氨、氯化氨、有机酸、连多硫酸、二硫化物、酚等;

消除残余应力的方法

消除残余应力的方法(金属)——时效处理 消除残余应力的方法(金属)——时效处理 金属工件(铸件、锻件、焊接件)在冷热加工过程中都会产生残余应力,残余应力值高者(单位为Pa)在屈服极限附近构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度、降低疲劳极限,造成应力腐蚀和脆性断裂,由于残余应力的松弛,使零件产生变形,大大的影响了构件的尺寸精度。因此降低和消除工件的残余应力就十分必要了,特别是在航空航天、船舶、铁路及工矿生产等应用的,由残余应力引起的疲劳失效更不容忽视。 目前的针对残余应力的不同处理方法有:自然时效方法和人工时效方法(包括热处理时效、敲击时效、振动时效、超声冲击时效) 1、自然时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 自然时效是最古老的时效方法。它是把构件露天放置于室外,依靠大自然的力量,经过几个月至几年的风吹、日晒、雨淋和季节的温度变化,给构件多次造成反复的温度应力。再温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。 自然时效降低的残余应力不大,但对工件尺寸稳定性很好,原因是工件经过长时间的放置,石墨尖端及其他线缺陷尖端附近产生应力集中,发生了塑性变形,松弛了应力,同时也强化了这部分基体,于是该处的松弛刚度也提高了,增加了这部分材质的抗变形能力,自然时效降低了少量残余应力,却提高了构件的松弛刚度,对构件的尺寸稳定性较好,方法简单易行,但生产周期长.占用场地大,不易管理,不能及时发现构件内的缺陷,已逐渐被淘汰。 2、热处理时效——适合:热应力(铸造锻造过程中产生的残余应力)冷应力(机械加工过程中产生的残余应力)焊接应力(焊接过程中产生的应力) 热时效处理是传统的消除残余应力方法。它是将构件由室温缓慢,均匀加热至550℃左右,保温4-8小时,再严格控制降温速度至150℃以下出炉。 热时效工艺要求是严格的,如要求炉内温差不大于±25℃,升温速度不大于50℃/小时,降温速度不大于20℃/小时。炉内最高温度不许超过570℃,保温时间也不易过长,如果温度高于570℃,保温时间过长,会引起石墨化,构件强度降低。如果升温速度过快,构件在升温中薄壁处升温速度比厚壁处快的多,构件各部分的温差急剧增大,会造成附加温度应力。如果附加应力与构件本身的残余应力叠加超过强度极限,就会造成构件开裂。 热时效如果降温不当,会使时效效果大为降低,甚至产生与原残余应力相同的温度应力(二次应力、应力叠加),并残留在构件中,从而破坏了已取得的热

表面残余应力分析

表面残余应力 胡宏宇 (浙江工业大学机械工程学院,浙江杭州 310032) 摘要:残余应力主要是由构件内部不均匀的塑性变形引起的。各种工程材料和构件在毛坯的制备、零件的加工、热处理和装配的过程中都会产生不同程度的残余应力。残余应力因其直观性差和不易检测等因素往往被人们忽视。残余应力严重影响构件的加工精度和尺寸稳定性、静强度、疲劳强度和腐蚀开裂。特别是在承力件和转动件上,残余应力的存在易导致突发性破坏且后果往往十分严重。因此,研究残余应力的产生机理、检测手段、消除方法以及残余应力对构件的影响[1]。 关键词:残余应力;切削变形;磁测法;喷丸强化; Surface residual stress (S chool of mechanical engineering,Zhejiang University of Technology,Hangzhou 310032,China) Abstract:Residual stress is mainly caused by the uneven plastic deformation of component. All kinds of engineering materials in the preparation of blank, parts and components processing, heat treatment and assembly process will produce different degree of residual stress. Residual stress because of its intuitive factors such as poor and difficult to detect is often neglected. Seriously affect the residual stress of component machining precision and dimension stability, static strength, fatigue strength and corrosion cracking. Especially on the bearing and rotating parts, the existence of the residual stress can lead to sudden destruction and the consequences are often very serious. Therefore, to study the mechanism of residual stress, detection means, elimination method and the influence of residual stress of components。 Key words:Residual stress;machining deflection;magnetic method;Shot peening strengthening; 前言 随着现代制造技术的发展,大飞机、高铁、核设施等大型设备相继出现;这些设备具有高速、重载和长时间运行的特点,其零部件工作环境恶劣、复杂,且往往对安全性有着极其苛刻的要求,因而对这些设备的关键部件,如轴承、曲轴、传动轴的疲劳寿命和可靠性也有很高的要求,对它们的疲劳寿命预测 和分析成为研究的重点. 金属切削加工是一个伴随着高温、高压、高应率的塑性大变形过程, 在已加工表面上存在着相当大 的残余应力; 同时又由于切削过程切削力和切削热作用及刀具与工件的摩擦等综合因素的影响, 使得零件内部初始的残余应力重新分布并与表面层残余应力耦合作用形成新的残余应力分布规律。残余应力以平衡状态存在于物体内部, 是固有应力域中局部内应力的一种。残余应力是一种不稳定的应力状态, 当物体受到外力作用时, 作用应力与残余应力相互作用, 使其某些局部呈现塑性变形, 截面内应力重新分配; 当外力作用去除后, 整个物体由于内部残余应力的作用将发生形变。 根据理论分析和实验研究的结果,工件的疲劳寿命和加工表面的残余应力状态有重要的关系:残余压应力能抑制工件的疲劳破坏,延长疲劳寿命;残余拉应力则相反,会加速疲劳破坏的出现[2].因此,了解

消除焊接件应力的工厂方法

消除焊接件应力的工厂方法 所谓工厂方法,就是立刻见效并且投资很小,极其具备操作性的方法。 某些焊接件,完工后存在极大应力。比如,使用油压机压配合装配的工件,铸钢件,铸铁冷焊件。 消除应力的方法: 1.日光暴晒!在夏天,如果产品不急于赶工,这是个最省钱的办法。头天晚上把工件拖到露天,当中午2点太阳最毒辣的时候,立刻施焊。然后让日光暴晒15天,应力得到基本消除。适用于16Mn之类的结构件和铸钢件,不过弟兄们可就太辛苦啦,需事先预备水壶若干,诸葛行军散少许···,在此先行道乏。 2.敲击!首先用高速钢(报废钻头改,但不是所有钻头都是高速钢的,事先必须查明)磨削一个尖头锤,然后敲击焊缝,标准是每平方厘米至少15点,要敲出坑,切实产生强制变形,才有效果。否则没用。弟兄们偷懒不得啊!此法适用于结构钢件。铸钢件敲击不要太狠了,铸铁件更要轻敲,但点数要增加一倍。 3.使用30度窄坡口!一般坡口都是60度,操作方便,但是焊接时间长,填充金属多,变形大,自然焊接应力就大。使用窄坡口,不仅降低成本(焊条和焊丝价格比钢板贵至少2倍),提高操作速度(弟兄们对于高效率的工艺从来都是欢迎的),而且极大地降低应力。除了薄板和特厚板,都适用。就是对弟兄们的操作技能提出更高要求。只要抓住一条,焊枪摆动时,坡口两端要停留时间足够(其实不超过0.3秒),看到坡口边缘已经熔化并且液态金属产生波纹才向另一侧摆动,就不会产生未熔合。焊道层间打磨时要把熔渣除尽,X光检测保证条条焊缝都是I级片,一个缺陷都不会有。接头要采用冷接法,事先把接头磨削成斜坡状,又美观质量又好。 4.强制加热!如果构件能够预热,后热,应力都能减小。但是,一个拳头大的铸铁件用507焊条热焊都要两把气割枪加热,稍微大一点的铸件就无法有效加热,也就不能用507焊条热焊,而冷焊应力是比较大的。怎么办?作一个10孔加热头就行了。就像猪八戒那个耙子一样。用20号气焊枪一把,其实气割枪火力更大,别用气割枪啊!回火爆炸了不负责啊!把喷嘴取下,用紫铜棒加工一个10孔加热头,图纸回头我上传过来,现在在王霸里边,然后对要焊接的铸件加热,火焰厉害得多!此法适用于铸铁,铸钢件。 心得]铸件、锻件、焊接件残余应力的产生和时效方法 铸件、锻件、焊接件残余应力的产生和时效方法 金属构件(铸件、锻件、焊接件)在冷热加工过程中产生残余应力,高者在屈服极限附近构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度、降低疲劳极限,造成应力腐蚀和脆性断裂,由于残余应力的松弛,使零件产生变形,大大的影响了构件的尺寸精度。因此降低和消除构件的残余应力就十分必要了。 一、残余应力的产生 1.铸造应力的产生 (1)热应力 铸件各部分的薄厚是不一样的,如机床床身导轨部分很厚,侧壁.筋板部分较薄,其横向端面如图一所示。铸后,薄壁部分冷却速度快收缩大,而厚壁部分,冷却速度慢,收缩的小。薄壁部分的收缩受到厚壁部分的阻碍,所以薄壁部分受拉力,厚壁部分受压力。因纵向收缩差大,因而产生的拉压也大。这时铸件的温度高,薄厚壁都处于塑性状态,其压应力使厚壁部分变粗,拉应力使薄壁部分变薄,拉压应力,随塑性变形而消失。 铸件逐渐冷却,当薄壁部分进入弹性状态而厚壁部分仍处于塑性时,压应力使厚壁部分产生塑

焊接应力的消除方法

焊接应力的消除方法 1、利用锤击焊缝区来控制焊接残余应力焊接残余应力产生的根本原因是由于焊缝在冷却过程中的收缩,因此,焊后用小锤轻敲焊缝及其邻近区域,使金属展开,能有效地减少焊接残余应力。据测定,利用锤击法可使残余应力减少1/2~1/4。锤击焊缝时,构件温度应当维持在100~150℃之间,或在400℃以上,避免在200~300℃之间进行,因为此时金属正处于蓝脆阶段,若锤击焊缝容易造成断裂。 多层焊时,除第一层和最后一层焊缝外,每层都要锤击。第一层不锤击是为了避免产生根部裂纹;最后一层通常焊得很薄,主要是为了消除由于锤击而引起的冷作硬化。 2、利用振动法来消除焊接残余应力构件承受变载荷应力达到一定数值,经过多次循环加载后,结构中的残余应力逐渐降低,即利用振动的方法可以消除部分焊接残余应力。一种大型焊件使用振动器消除应力的装置。振动法的优点是设备简单、成本低,时间比较短,没有高温回火时的氧化问题,已在生产上得到一定应用。 3、利用“加热减应区法”来控制焊接残余应力焊接时,加热那些阻碍焊接区自由伸缩的部位,使之与焊接区同时膨胀和同时收缩,就能减小焊接应力,这种方法称为“加热减应区法”,加热的部位就称之为“减应区”。利用“加热减应区法”减小焊接应力,关键在于正确选择“减应区”的部位,总的原则是选择那些阻碍焊接区自由膨胀和伸缩的部位。必须注意,焊接区本身绝不能作为减应区的部位,因为那时焊接应力非但不减小,相反还会增加。实际操作时,检验减应区的部位是否选择正确,可用气体火焰在该处加热一下,若焊接缝隙处张开,则表示选择正确。 4、利用降低结构局部刚来控制焊接残余应力构件的刚度增加时,焊后的残余应力将显著加大。因此,在条件许可时,焊前采取一定的工艺措施,将焊接区域的局部刚度降低,能有效地降低焊接残余应力。例如,一圆形封头补焊时,需加一塞块。因封头较厚又是封闭焊缝,所以焊接应力很大,焊后在焊缝中经常发现裂纹。今在靠近焊缝处开两圈缓和槽,降低了接头处的局部刚度,使焊接应力大为降低,有效地防止了裂纹。 5、利用预热法来控制焊接残余应力构件本体上温差越大,焊接残余应力也越大。焊前对构件进行预热,能减小温差和减慢冷却速度,两者均能减小焊接残余应力。预热法经常用于减小合金钢(奥氏体不锈钢除外)、厚板、刚度大的构件焊接时产生的应力。若构件整体预热有困难时,可采用局部预热,即在焊缝及其两侧不少于80mm处进行加热。因为加热区太窄,会造成新的温差应力。 6、利用高温回火来消除焊接残余应力由于构件残余应力的最大值通常可达到该种材料的屈服点,而金属在高温下屈服点将降低。所以将构件的温度升高至某一定数值时,应力的最大值也应该减少到该温度下的屈服点数值。如果要完全消除结构中的残余应力,则必须将构件加热到其屈服点等于零的温度,所以一般所取的回火温度接近于这个温度。 (1)整体高温回火 将整个构件放在炉中加热到一定温度,然后保温一段时间再冷却。通过整体高温

焊接残余应力的消除方法——【焊接工艺】

焊接残余应力的消除方法 焊接残余应力是焊接技术带来的一个几乎无法避免的缺陷,其危害众所周知。当焊接造成的残余应力会影响结构安全运行时,还需设法消除焊接残余应力,改善焊接接头的塑性和韧性,以提高焊件结构性能。 一、焊接的应力与应变: 在接过程中,由于焊接件产生温度梯度,接头组织和性能的不均匀,就会在焊件内产生应力和应变。焊后残留在焊件内的焊接应力就是焊接残余应力,它是没有外载荷作用时就存在的应力。 二、焊接残余应力的危害: 焊接残余应力与外载荷产生的应力叠加,局部区域应力过高,使结构承载能力下降,引起裂纹和变形,使焊件形状和尺寸发生变化,需要进行矫形。变形过大会因无法矫形而报废甚至导致结构失效。 三、减少焊接残余应力和变形的措施: ①设计 ②焊接工艺 如: ?尽量减少焊接接头数量 ?相邻焊缝间应保持足够的间距 1

?尽可能避免交叉,避免出现十字焊缝 ?焊缝不要布置在高应力区 ?焊前预热等等 四、焊后残余应力的消除方法 消除焊接残余应力的方法有:热处理、锤击、振动法和预载法等。 1、热处理消除法 焊后热处理是一种消除焊接残余应力常用的方法。工程上我们主要用退火处理,退火温度越高、保温时间越长,消除焊接残余应力的效果就越好。但是温度过高,使工件表面氧化比较严重,组织可能发生转变,影响工件的使用性能,存在弊端。蠕变应力松弛理论为热处理消除焊接残余应力提供了另一条思路,工件在较低温度时会发生蠕变,材料内部的残余应力会因应力松弛而得到释放,只要保温时间足够长,理论上残余应力可完全消除。在低温消除焊接残余应力时,材料的组织和性能变化甚微,几乎不影响材料的使用性能,而且低温处理材料表面的氧化和脱碳也比较小,这就可以在材料的力学性能和组织基本不变的情况下达到降低材料焊接残余应力的目的。 2、锤击消除法 2

关于焊接应力

焊接应力 一、焊接残余应力的分类 1.根据应力性质划分:拉应力、压应力 2.根据引起应力的原因划分:热应力、组织应力、拘束应力 3.根据应力作用方向划分:纵向应力、横向应力、厚度方向应力 4.根据应力在焊接结构中的存在情况划分:单向应力、两向应力、三向应力5.根据内应力的发生和分布范围划分:第一类应力、第二类应力、第三类应力减小焊接残余应力的措施 一般来说,可以从设计和工艺两方面着手: 1.设计措施 ①尽可能减少焊缝数量; ②合理布置焊缝; ③采用刚性较小的接头形式。 2.工艺措施 (1)采用合理的装配和焊接顺序及方向 ①钢板拼接焊缝的焊接; ②同时存在收缩量大和收缩量小的焊缝时,应先焊收缩量大的焊缝; ③对工作时受力较大的焊缝应先焊; ④平面交叉焊缝的焊接。 (2)缩小焊接区与结构整体之间的温差(预热法、冷焊法) (3)加热“减应区”法 (4)降低接头局部的拘束度

(5)锤击焊缝 五、消除焊接残余应力的方法 1.热处理法 热处理法是利用材料在高温下屈服点下降和蠕变现象来达到松驰焊接残余应力的目的,同时热处理还可以改善接头的性能。 (1)整体热处理整体炉内热处理、整体腔内热处理 整体加热热处理消除残余应力的效果取决于热处理温度、保温时间、加热和冷却速度、加热方法和加热范围。保温时间根据板厚确定,一般按每毫米板厚1~2 min计算,但最短不小于30 min,最长不超过3h。 碳钢及中、低合金钢:加热温度为580~680℃; 铸铁:加热温度为600~650℃。 (2)局部热处理 局部热处理只能降低残余应力峰值,不能完全消除残余应力。加热方法有电阻炉加热、火焰加热、感应加热、远红外加热等,消除应力效果与加热区的范围、温度分布有关。 2.加载法 加载法就是通过不同方式在构件上施加一定的拉伸应力,使焊缝及其附近产生拉伸塑性变形,与焊接时在焊缝及其附近所产生的压缩塑性变形相互抵消一部分,达到松驰应力的目的。 (1)机械拉伸法 (2)温差拉伸法 (3)振动法 六、焊接残余应力的测定 目前,测定焊接残余应力的方法主要可归结为两类,即机械方法和物理方法。 1.机械方法 利用机械加工将试件切开或切去一部分,测定由此而释放的弹性应变来推算构件中原有的残余应力。包括切条法、钻孔法和套孔法。 2.物理方法 是非破坏性测定焊接残余应力的方法,常用的有磁性法、超声波法和X射线衍射法。

XRD在残余应力分析中的应用

XRD 在残余应力分析中的应用 摘要 X 射线衍射测量残余应力的原理是以测量衍射线位移作为原始数据,所测量的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。 关键词 X 射线衍射 残余应力 XRD 0.引言 X 射线衍射在残余应力分析中具有重要的作用。X 射线应用在残余应力的分析中,是科技的一项重大突破。其中在:定量分析轴承和内燃机喷射器部件中的残余奥氏体;检测输片惰性轮中的残余应力;检测汽车发动机部件的残余应力(凸轮轴、连杆、发动机轴、均衡器);检测由于全回火引起的残余应力(家用电器、结构部件);检测气体传导时所存在的工作压力;检测大幅度拉伸结构件中的工作应力;通过检测应力来测量工件喷丸和轧制的效率;检测铸件的残余应力(机械工具铸铁件和汽车铸铝部件);检测焊接引起的应力(激光和电焊);研究铝合金汽车轮廓中的残余应力和应力阻抗的关系;优化切削去除的工作参数以提高机械部件的应力阻抗;检测螺旋式和叶式弹簧的残余应力;研究加上工作载荷后的临界区域(武器和航空)等很多领域都有贡献。 1.X 衍射射线分析 1.1 原理简介 X 射线衍射分析是利用晶体形成的X 射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X 射线照射到结晶性物质上时,X 射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X 射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象,图1为X 射线衍射的产生。衍射X 射线满足布拉格(W.L.Bragg )方程:λθn d =sin 2 式中:λ是X 射线的波长;θ是衍射角;d 是结晶面间隔;n 是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X 射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。]1[ 图1 X 射线衍射的产生 1.2 应用——物相分析

材料的应力腐蚀

材料应力腐蚀 材料在应力和腐蚀环境的共同作用下引起的破坏叫应力腐蚀。这里需强调的是应力和腐蚀的共同作用。材料应力腐蚀具有很鲜明的特点,应力腐蚀破坏特征,可以帮助我们识别破坏事故是否属于应力腐蚀,但一定要综合考虑,不能只根据某一点特征,便简单地下结论。影响应力腐蚀的因素主要包括环境因素、力学因素和冶金因素。 原理 应力腐蚀是指在拉应力作用下,金属在腐蚀介质中引起的破坏。这种腐蚀一般均穿过晶粒,即所谓穿晶腐蚀。应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。 应力腐蚀一般认为有阳极溶解和氢致开裂两种。常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极 处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。

影响 应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。一般应力腐蚀都属于脆性断裂。应力腐蚀的裂纹扩展速率一般为10- 6~10-3 mm/min,而且存在孕育期,扩展区和瞬断区三部分。 容易发生应力腐蚀的设备发生这种腐蚀的主要设备有热交换器、冷却器、蒸汽发生器、送风机、干燥机和锅炉 特点 (1)造成应力腐蚀破坏的是静应力,远低于材料的屈服强度,而且一般是拉伸应力(近年来,也发现在不锈钢中可以有压应力引起)。这个应力可以是外加应力,也可以是焊接、冷加工或热处理产生的残留拉应力。最早发现的冷加工黄铜子弹壳在含有潮湿的氨气介质中的腐蚀破坏,就是由于冷加工造成的残留拉应力的结果。假如经过去应力退火,这种事故就可以避免。 (2)应力腐蚀造成的破坏,是脆性断裂,没有明显的塑性变形。

涂层残余应力预测分析模型

涂层残余应力预测解析模型:平面几何模型 热喷涂涂层:熔化的金属颗粒高速碰撞基板然后快速冷却(淬火),在几毫秒时间内冷却。形成大的拉应力。蠕变和屈服是主要的应力释放的机理。 一个典型的预测热喷涂涂层残余应力分布的数学模型。 1 模型公式 建立在平面几何的基础之上。 1.1 沉积应力 1.1.1 第一层 应变(1)σq——内(淬火)应力;E d——杨氏模量 假设每一个部位产生的应变是不相等的,并产生反作用力F(图1),于是有 (2) 可以写为(3) 在涂层形成一个很大的拉应力,同时,在基板上上产生一个对等的平衡的反作用力——压应力。 形成弯矩(banding moment)(4) 中性层δ1 (5) Composite beam stiffness

(6) 平衡弯矩M1,产生曲率变化,κ1-κ0 (7) 通常,κ0可以处理为零。如果涂层在凹面,则曲率是可以明确的。图1的情况。 假设双向应力相等(σx =σz),厚度方向应力可以忽略(σy =0)。 由泊松效应(Poisson effect),σz将在x方向导致一个应变。X方向的net应变可以写为 (8) 于是,x方向的应力应变关系可以表示为: (9) Effective young’s modulus value. 由于仅考虑弹性状态,因此,基板内沿着厚度方向的应力变化应该是线性的,只需要计算基板的底部和顶部的应力即可。从材料力学可以计算: (10) (11) 于是,可以得出涂层第一层中部的应力: (12) 1.1.2 第二层 考虑在基板(镀层)上冲击形成第二层,如图2所示。

不等应变的大小与前面相同。平衡应变改为: (13) 该式中,F2是作用在前面的镀层与基板构成的复合板上的,其中性层δ1如图1所示。这一层与基板具有相同的应变,E2e是等效杨氏模量: (14) 代入上式,可以得到F2的表达式: (15) F2分摊在镀层第一层和基板中。 作用在基板上的力为: (16) 同样,作用第一层镀层上的力为: (17) 显然地,F2s和F2w都是压应力。在镀层的第二层上存在与F2大小相等的拉应力。 大小相等方向相反的力对形成力矩M2: (18) 平衡弯矩M2,产生曲率变化,κ2-κ1 (19) 组合板的硬度(强度)可以写为: (20) 而且可以确定δ2为: (21)

焊接残余应力

焊接残余应力 一、焊接残余应力的分类 1.按焊接残余应力产生的原因分类 (1)温度应力(又称热应力):它是由于金属受热不均匀,各处变形不一致且相互约束而产生的应力。焊接过程中温度的应力是不断变化的,且峰值一般都达到屈服强度,因此产生塑性变形,焊接结束并冷却后产生残余应力保存下来。(2)组织应力:焊接过程中,引起局部金属组织发生转变,随着金属组织的转变,其体积发生变化,而局部体积的变化受到皱纹金属的约束,同时,由于焊接过和中是不均匀的加热与冷却,因此组织的转变也是不均匀的,结果产生了应力。(3)拘束应力:焊件结构往往是在拘束条件下焊接的,造成拘束状态的因素有结构的刚度、自重、焊缝的位置以及夹持卡具的松紧程度等。这种在拘束条件下的焊接,由于受到外界或自身刚度的限制,不能自由变形就产生了拘束应力。(4)氢致应力:焊缝局部产生显微缺陷,扩散氢向显微缺陷处聚集,局部氢的压力增大,产生氢致应力。氢致应力是导致焊接冷裂纹的重要原因。 2.按照焊接残余应力在结构中的作用方向分类 (1)单向应力:应力在焊件中只沿一个方向产生的应力。

(2)双向应力:焊接应力存在于焊件中的一个平面不同方向上(也称平面应力)。 3.体积应力:焊接应力在焊件中沿空间三个方向上发生。 二、控制焊接残余应力的工艺措施 控制焊接残余应力应从设计和工艺两个方面考虑。(1)设计方面: 在保证有足够强度的前提下,尽量减少焊缝的数量和尺寸,选择合理的接头形式,将焊缝布置在构件最大应力区之外。 (2)工艺方面: 1)选择合理的组焊顺序 施焊时,要考虑焊缝尽可能的收缩,以减小结构的拘束

度,从面降低焊接残余应力,其原则是:减小拘束,尽量使每条焊缝能自由的收缩;多种焊缝焊接时,应先焊收缩量大的焊缝;长焊缝宜从中间向两头施焊,避免从两头向中间施焊。 2)选择合理的焊接参数 需要严格控制焊接残余应力的构件,焊接时尽可能地选用较小的焊接电流和较快的速度,减小焊接热输入,以减少焊接的受热范围。对于多道施焊焊缝,采用小的焊接参数进行多层多道施焊,并控制道间温度。 3)采用反变形法 就是通过预先留出焊缝能够自由收缩的余量,使焊缝能够在一定程度上收缩,从面降低焊接残余应力。 1)采用加热“减应区”法 焊接前,选择构件的适当部位加热,使其伸长,在焊后冷却时,加热区的收缩与焊缝的收缩方向相同时,使焊缝能自由收缩,从而降低内应力。 2)采用锤击方法 每焊完一道焊缝,在焊缝冷却时同时锤击焊缝,使焊缝得到一定的延伸,可以减小焊接残余应力。 3)减小氢的措施及消氢处理 尽量选择氢型碱性焊接材料,焊接材料洪干后使用,同时,对焊接区域及其采取预热、打磨、等措施,去除水分、

焊接残余应力与消除方法

建筑钢结构的焊接残余应力与消除方法探索 陈立功1,倪纯珍1,卢立香2,张 敏3 (1.上海交通大学 材料科学与工程学院,上海 200030; 2. 上海宝冶建设有限公司,上海 201900; 3. 上海耐莱斯?詹姆斯伯雷阀门有限公司,上海,200092) 摘 要:本文介绍了建筑钢结构的焊接残余应力测量结果及控制残余应力的意义,以详实的数据分析了几种可能采用的消应力方法,提出了在建筑钢结构制造中采用振动时效与振动焊接工艺的建议。 关键词:建筑钢结构;焊接;残余应力;时效 前言 0建筑钢结构是否需要和能否进行时效工艺,除热时效外还有什么合适的消应力工艺可用于建筑钢结构,是人们关心的问题。随“奥运”和“世博”工程的推展,我国建筑钢结构制造量近年迅猛上升。出现用钢量达十万吨的单体结构,结构钢强度级别由235Mpa、345Mpa 上升到390Mpa乃至460Mpa,结构件板厚达到80-120mm,或更高。因此,目前的建筑钢结构制造形势对开展建筑钢结构消应力技术应用研究及建立和完善相关的标准是个难得的机会。本文作者根据多年的实践,介绍几个大型钢结构及建筑钢结构工程的焊接残余应力测量及应力消除的结果;以此为基础,提出了在建筑钢结构制造中采用振动时效与振动焊接工艺的建议。 1 建筑钢结构的残余应力 建筑焊接钢结构与一般的焊接构一样,同样存在焊接残余应力。以上海安亭蕴藻浜大桥为例,钢号为Q345B ,σs=345MPa。其先在工厂进行箱型分段焊接,然后在现场进行拼焊。采用盲孔法对拼焊残余应力进行测量,结果如表1: 表1 蕴藻浜大桥现场焊后残余应力 位置 应力Mpa 最大主应力 最小主应力 剪应力 纵向应力 横向应力 上表面埋弧焊纵缝 极值 315 -95 133 77 287 平均值 157 2 78 64 94 下表面手工焊纵缝 极值 81 -74 79 48 -34 平均值 62 -46 54 31 -15 人孔封板手工焊缝 极值 261 94 79 232 133 平均值 184 103 41 173 114

焊接残余应力的测试

焊接残余应力的测试 一、实验目的 1.了解ASM1.0全自动应力、应变监测记录仪的结构和工作原理。 2.掌握应力释放法的测试原理及操作技术。 二、实验原理 焊接残余应力的测量方法,按其原理可分为应力释放法、物性变化法(X 射线法、磁性法)等,应力释放法又可分为小孔法(即盲孔法)、套孔法与梳状切条法(及全释法)。本实验采用小孔法进行测量。 对板钻小孔可以评价释放的径向应变。在应力场中去一直径为d 的圆环,并在圆环上粘贴应变片,在圆环的中心处钻一直接为d 0的小孔(图1),由于钻孔使应力的平衡受到破坏,测出孔周围的应力变化,就可以用弹性力学的理论来推算出小孔处的应力。设应变片中心与圆环中的连线与x 轴的夹角为α,其释放的径向应变r ε和钻孔释放的残余应力之间的关系,可按照带孔无线板的弹性理论,同时承受双轴薄膜应力x σ和y σ(理解为主应力)的条件求解。 ()()y x r B A B A σασαεcos cos +++= 2 021? ? ? ??+-=d d E A μ ??? ??? ????? ??-??? ??++-=4 02031421d d d d E B μμ 图1 小孔法所用的应变花示意图 为了完全确定未知的双轴残余应力状态(两个主应力σ1和σ2,以及主应力方向β),必须至少在圆环上的三个不同测量方向评价释放的径向应变r ε(如采用三个应变片组成的应变花)。常用的应变花布置是?=0α、?=45α和?=90α(对应00ε、45ε和90ε)。 ()()20090452009000 902,1--2-B 41 A 4εεεεεεε σ+±+=

三、实验设备及器材 1. ASM1.0全自动应力、应变检测仪一台 2. 残余应力打孔装置一台 3. 焊接铝板一块 4. 应变片、瞬干胶水若干 四、实验方法与步骤 1.将待测部位用砂纸磨至表面光亮,用酒精进行清洗,清除待测部位表面的杂志和氧化物,直到准备粘贴应变片的部位干净为止。 2.将502速干胶均匀涂于应变片背面,迅速把应变片粘在所测位置,轻压使其与工件表面紧密结合,应变片与金属之间无气泡无脱胶现象。 3.将应变片末端引线与应变仪连接的导线焊接。注意应使所有应变片的导线长度保持一致,以免产生电阻值的差异导致测量不准。将应变仪调零,用万用表检查应变片与工件绝缘程度和阻值变化情况。 4.设置残余应力相应参数,用直径为2.0mm的砖头在应变片中心处打出深2.0mm的盲孔,记录残余应力数据。 五、实验数据记录 六、实验结果整理及分析 1. 焊接残余应力测试过程中哪些因素容易引起测量误差?如何减小误差? 1、应变片的粘贴质量。应变片粘贴不好会引起数据漂移和精度下降。

焊接与焊接应力

焊接与焊接应力 在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。 钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。 1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。 1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。 3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。 双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。 1.5焊接层数的影响 1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。 2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。 在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。所以,了解焊接变形产生的原因和影响因素,则可以采取以下控制变形的措施: 1)减小焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。 2)对屈服强度345MPA以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适

相关主题
文本预览
相关文档 最新文档