当前位置:文档之家› Polarized antiquark flavor asymmetry in Drell-Yan pair production

Polarized antiquark flavor asymmetry in Drell-Yan pair production

Polarized antiquark flavor asymmetry in Drell-Yan pair production
Polarized antiquark flavor asymmetry in Drell-Yan pair production

a r

X

i

v

:h e

p

-

p

h

/

9

9

1

4

6

4v

1

2

5

O

c

t

1

9

9

9

RUB-TPII-13/99hep-ph/9910464Polarized antiquark ?avor asymmetry in Drell–Yan pair production B.Dressler a ,1,K.Goeke a ,2,M.V.Polyakov a ,b ,3,P.Schweitzer a ,4,M.Strikman c ,5,?,and C.Weiss a ,6a Institut f¨u r Theoretische Physik II,Ruhr–Universit¨a t Bochum,D–44780Bochum,Germany b Petersburg Nuclear Physics Institute,Gatchina,St.Petersburg 188350,Russia c Pennsylvania State University,University Park,PA 16802,U.S.A.Abstract We investigate the role of the ?avor asymmetry of the nucleon’s polarized antiquark distributions in Drell–Yan lepton pair production in polarized nucleon–nucleon colli-sions at HERA (?xed–target)and RHIC energies.It is shown that the large polarized antiquark ?avor asymmetry predicted by model calculations in the large–N c limit (chiral quark–soliton model)has a dramatic e?ect on the double spin asymmetries in high mass lepton pair production,as well as on the single spin asymmetries in

lepton pair production through W ±–bosons at M 2=M 2W .

Drell–Yan(DY)lepton pair production in pp or pn collisions o?ers one of the most direct ways to measure the antiquark distributions in the nucleon.In particular,such experiments have recently established a signi?cant?avor asymmetry of the unpolarized antiquark distributions,ˉu(x)?ˉd(x),see Ref.[1]for a review.Since the amount ofˉu(x)?ˉd(x) generated perturbatively is very small,this provides unambiguous evidence for an impor-tant role of nonperturbative e?ects in generating the sea distributions.Other evidence is the large suppression of the strange sea compared to the nonstrange one for Q2of the order of a few GeV2.It appears natural to invoke the chiral degrees of freedom for the explanation of these e?ects.Two competing mechanisms are currently being discussed. One is due to scattering o?pions generated via virtual processes N→N+π,N→?+π, or q→q+π[2].With this mechanism one can in principle generate a signi?cant value of ˉu(x)?ˉd(x),although this requires one to consider virtual pion momenta up to~1GeV and relies on?ne-tuning of the parameters of the model;see Ref.[3]for a discussion.An-other mechanism emerges within the large–N c limit of QCD,where the nucleon can be described as a chiral soliton[4,5,6].This approach allows for a fully quantitative descrip-tion of the antiquark distributions essentially without free parameters,and preserves all fundamental qualitative properties of the distribution functions,such as positivity,sum rules etc.It describes well the data forˉu(x)?ˉd(x)[6].

It was pointed out in Ref.[7]that a distinctive di?erence of the two mechanisms is the degree of polarization of the antiquark?avor asymmetry,?ˉu(x)??ˉd(x).In the pion cloud models polarization is absent[8].There have been some attempts to generate polarization by including spin–1resonances in this picture[9],which,however,presents severe conceptual di?culties.1In contrast to the pion cloud model the large–N c approach predicts that?ˉu(x)??ˉd(x)is much larger than the unpolarizedˉu(x)?ˉd(x);in fact,it is parametrically enhanced by a factor of N c.[The numerical results for the polarized[4,7] and unpolarized[5]antiquark?avor asymmetries obtained in this approach are shown in Fig.1at a scale ofμ2=(5GeV)2.]Thus,measurements of?ˉu(x)??ˉd(x)would provide a decisive test of the di?erent approaches to include the chiral degrees of freedom in the nucleon.

We have recently demonstrated that the current data on hadron production in semi-inclusive deep–inelastic scattering(DIS)are not sensitive to the value of?ˉu(x)??ˉd(x) [7].The purpose of this letter is to study if DY pair and W±production in polarized pp collisions,which will be possible at RHIC,allow to distinguish between the two options. Speci?cally,we investigate the role of the large polarized antiquark?avor asymmetries ob-tained in the large–N c model calculation of Ref.[4,7]on spin asymmetries in longitudinally polarized DY pair production.

Predictions for the spin asymmetries in polarized DY pair production(see e.g.Ref.[10]) have so far been made on the basis of present experimental information about the polar-

ized parton distributions in the nucleon,which comes mostly from inclusive DIS[11,12]. However,DIS probes directly only the sum of quark–and antiquark distributions,while the separation in quarks and antiquarks,as well as the gluon distribution,have to be determined indirectly through scaling violations.The?avor asymmetry of the polarized antiquark distribution is practically not constrained by the DIS data[11,12].On the other hand,the polarized antiquark?avor asymmetry contributes to DY spin asymmetries at leading order in QCD[13].A quantitative understanding of these e?ects is a prerequisite for any attempt to extract the polarized gluon distribution from NLO analyses of the data [14].

The cross section for DY pair production is a function of the center–of–mass energy of the incoming hadrons,s=(p1+p2)2,and the invariant mass of the produced lepton pair,M2,which is equal to the virtuality of the exchanged gauge boson.At the partonic level this process is described by the annihilation of a quark and an antiquark originating from the two hadrons,carrying,respectively,longitudinal momenta x1p1and x2p2,with x1x2=Q2/s.One can parametrize the momentum fractions as x1=(Q2/s)1/2e y,x2= (Q2/s)1/2e?y,where y is called rapidity.In the case of DY pair production through a virtual photon one is interested in the double spin asymmetry of the cross section

AγLL=

σγ++?σγ+?

a e2a q a(x1,M2)qˉa(x2,M2)

,(2)

where the sum runs over all species of light quarks and antiquarks in the two nucleons, a={u,ˉu,d,ˉd,s,ˉs};we neglect the small contributions due to heavy?avors.The relevant scale here for the parton distribution functions is the virtuality of the photon,M2.When the lepton pair is produced instead by exchange of a charged weak gauge boson,W±,due to the parity–violating nature of the weak interaction the cross section exhibits already a single spin asymmetry,

A W±L =

σW±

+

?σW±

?

u(x1,M2)ˉd(x2,M2)+ˉd(x1,M2)u(x2,M2)

,(4)

for W?one should exchange u?d,ˉu?ˉd everywhere here.Eq.(4)includes only u–and d–quarks,even for values of M2of the order of the W–boson mass.Contributions from

c–s transitions are negligible because of the comparative smallness of the product of c and s distributions,while contributions of type u–s and c–d are small because of Cabbibo suppression;see Ref.[16]for a more detailed discussion.

Our aim is to study the e?ect of the large?avor asymmetry of the polarized antiquark distributions,obtained in the model calculations of Refs.[4,7]based on the large–N c limit,

on the spin asymmetries AγLL and A W±

L ,Eqs.(2)and(4).In order to make maximum

use of the direct experimental information on the polarized parton distributions available from DIS we proceed as follows.The individual polarized light quark and antiquark distributions?u(x),?ˉu(x),?d(x),?ˉd(x),?s(x),and?ˉs(x),?guring in the numerators in Eqs.(2)and(4)can be expressed in terms of the six combinations

?u(x)≡?u(x)+?ˉu(x),(analogously for?d,?s),(5)

?0(x)≡?ˉu(x)+?ˉd(x)+?ˉs(x),(6)

?3(x)≡?ˉu(x)??ˉd(x),(7)

?8(x)≡?ˉu(x)+?ˉd(x)?2?ˉs(x).(8) The combinations?u(x),?d(x)and?s(x),Eq.(5),are measured directly in inclusive po-larized DIS,so we evaluate them using the GRSV95leading–order(LO)parametrization (“standard scenario”),which was obtained by?ts to inclusive DIS data[11].2The?avor–singlet antiquark distribution,?0(x),Eq.(6),we also take from the GRSV95parametriza-tion;this distribution is known only from the study of scaling violations in inclusive DIS and depends to some extent on the assumptions made about the polarized gluon distribu-tion;however,the GRSV95parametrization for?0(x)is in good agreement with the result of model calculations in the large–N c limit[17].For the polarized?avor asymmetries of the antiquark distribution,?3(x)and?8(x),Eqs.(7)and(8),which are not constrained by DIS data,we use the results of the model calculation in the large–N c limit of Refs.[4,7], evolved in LO from the low normalization point ofμ2=(600MeV)2to the experimental scale,M2.The result for?3(x)is shown in Fig.1at a scale of(5GeV)2.The other non-singlet combination,?8(x),is obtained from?3(x)at the low normalization point by the SU(3)relation?8(x)=[(3F?D)/(F+D)]?3(x),where we use F/D=5/9,see Ref.[7] for details.Note that?3(x)and?8(x)do not mix with the other distributions under LO evolution.The“hybrid”polarized quark and antiquark distributions thus obtained, by construction,?t all the inclusive polarized DIS data in LO,while at the same time incorporating the polarized antiquark?avor asymmetry obtained in the model calculation in the large–N c limit.Finally,to evaluate the denominators in Eqs.(2)and(4)we use the GRV94parametrization of the unpolarized parton distributions.

In Fig.2(a)and(b)we compare the double spin asymmetries,AγLL,obtained with the “hybrid”distributions incorporating the antiquark?avor asymmetries,?3(x)and?8(x), calculated in the large–N c limit(solid lines),with what one obtains for?3(x)=?8(x)=0 (dashed lines).We show the results in two di?erent kinematical regions,(a):s=(40GeV)2

and M2=(5GeV)2,corresponding to a proposed?xed target experiment using the HERA proton beam[18],and(b):s=(500GeV)2and M2=M2W=(80.3GeV)2,which can be reached in the RHIC experiment.One sees that in both cases the?avor asymmetry of the antiquark distribution has a dramatic e?ect on the spin asymmetry,reversing even its sign compared to the case with?3(x)=?8(x)=0.

The results for the double spin asymmetry,AγLL,depend in principle also on the as-sumptions made about the polarized gluon distribution in the nucleon,which mixes with the singlet quark distribution under evolution,and which is practically not constrained by the present data.In order to estimate the sensitivity of our results to the polarized gluon distribution we have repeated the above comparison using instead of GRSV95the Gehrmann–Stirling LO“A”and“C”parametrizations for?u,?d,?s and?0,which pro-vide?ts to the inclusive data with widely di?erent assumptions about the shape of the input polarized gluon distributions[12].The resulting asymmetries AγLL obtained without polarized?avor asymmetry,?3(x)=?8(x)=0(dashed lines),and including the large–N c model results for?3(x)and?8(x)(solid lines)are shown in Fig.2(c)and(d).One sees that the changes of AγLL due to the inclusion of the?avor asymmetry(di?erences between corresponding solid and dashed curves)are much larger than the di?erences due to changes of the input gluon distribution(di?erences between the two dashed curves).It is not an exaggeration to say that AγLL measures the polarized?avor asymmetry of the antiquark distribution,and not the polarized gluon distribution.

Our comparison of asymmetries calculated with and without inclusion of a polarized antiquark?avor asymmetry refers explicitly to the leading–logarithmic(LO)approxima-tion,since only at this level the?avor asymmetries?3(x)and?8(x),evolve separately and can be combined with parametrizations for?u,?d,?s and?0without a?ecting the ?ts to inclusive data.It is expected that the spin asymmetry AγLL is less sensitive to NLO corrections than the polarized and unpolarized DY cross sections individually,since the K–factors partially cancel between numerator and denominator in the ratio,Eq.(2)[19]; however,this claim has been debated in Ref.[14].In any case,since the inclusion of the polarized antiquark?avor asymmetry has a very large e?ect on AγLL already at LO level,it is unlikely that higher–order corrections will reverse this situation.At least,the di?erences between our LO results for AγLL obtained with and without?avor asymmetry are much larger than those between the LO and NLO results in the case of zero?avor asymmetry quoted in Ref.[14].

The single spin asymmetries in lepton pair production through W±,A W±

L ,for proton–

proton scattering are shown in Fig.3,for s=(500GeV)2and M2=M2W=(80.3GeV)2, which can be reached at RHIC.Figs.3(a)and(b)show the results obtained using the GRSV95parametrization without antiquark?avor asymmetry(dashed lines),and includ-ing the contributions from?3(x)and?8(x)obtained in the large–N c model estimate [4,7](solid lines).One sees that also in this case the inclusion of the antiquark?avor asymmetry has a qualitative e?ect on the spin asymmetry.Again,in the case of the Gehrmann–Stirling parametrizations,Fig.3(c)and(d),the di?erences due to changes in the gluon distribution are negligible compared to the e?ect of the?avor asymmetry of the antiquark distribution.

To summarize,we have shown that the large?avor asymmetries of the polarized an-tiquark distributions predicted by model calculations in the large–N c limit(chiral quark–soliton model),have a pronounced e?ect on the spin asymmetries in Drell–Yan pair pro-duction through photons or W±bosons at HERA or RHIC energies.In particular,the e?ect of the antiquark?avor asymmetry on the spin asymmetries is much larger than their uncertainties due to the lack of knowledge of the degree of gluon polarization in the nu-cleon.The expected accuracy of the RHIC measurements[20]will certainly be su?cient to observe an e?ect of the magnitude predicted.

We are grateful to S.Heppelmann and P.V.Pobylitsa for useful discussions.This investi-gation was supported in part by the Deutsche Forschungsgemeinschaft(DFG),by a joint grant of the DFG and the Russian Foundation for Basic Research,by the German Ministry of Education and Research(BMBF),and by COSY,J¨u lich.The work of M.Strikman was supported in part by a DOE grant,and by the Alexander–von–Humboldt Foundation. References

[1]P.L.McGaughey,J.M.Moss,and J.C.Peng,Report LA-UR-99-850,hep-ph/9905409.

[2]A.W.Thomas,Phys.Lett.126B(1983)97.

L.L.Frankfurt,L.Mankiewicz,and M.I.Strikman,Z.Phys.A334(1989)343.

E.M.Henley and https://www.doczj.com/doc/7f2100140.html,ler,Phys.Lett.B251(1990)453.

W.Y.P.Hwang,J.Speth,and G.E.Brown,Z.Phys.A339(1991)383.

W.Melnitchouk and A.W.Thomas,Phys.Rev.D47(1993)3794.

H.Holtmann,N.N.Nikolaev,J.Speth,and A.Szczurek Z.Phys.A353(1996)411.

H.Holtmann,A.Szczurek,and J.Speth,Nucl.Phys.A596(1996)397,ibid.631.

[3]W.Koepf,L.L.Frankfurt,and M.Strikman,Phys.Rev.D53(1996)2586.

[4]D.I.Diakonov,V.Yu.Petrov,P.V.Pobylitsa,M.V.Polyakov and C.Weiss,Nucl.

Phys.B480(1996)341;Phys.Rev.D56(1997)4069.

[5]P.V.Pobylitsa,M.V.Polyakov,K.Goeke,T.Watabe,and C.Weiss,Phys.Rev.D

59(1999)034024.

[6]B.Dressler,K.Goeke,P.V.Pobylitsa,M.V.Polyakov,T.Watabe,and C.Weiss,

Proceedings of the11th International Conference on Problems of Quantum Field Theory,Dubna,Russia,Jul.13–17,1998,hep-ph/9809487.

[7]B.Dressler,K.Goeke,M.V.Polyakov,and C.Weiss,Report RUB-TPII-12/99,hep-

ph/9909541.

[8]V.R.Zoller,Z.Phys.C53(1992)443;C60(1993)141.

[9]R.J.Fries and A.Sch¨a fer,Phys.Lett.B443(1998)40.

K.G.Boreskov,A.B.Kaidalov,Eur.Phys.J.C10(1999)143.

[10]J.So?er and J.–M.Virey,Nucl.Phys.B509(1998)297.

[11]M.Gl¨u ck,E.Reya,M.Stratmann and W.Vogelsang,Phys.Rev.D53(1996)4775.

[12]T.Gehrmann and W.J.Stirling,Phys.Rev.D53(1996)6100.

[13]S.Kumano and M.Miyama,Report SAGA-HE-150-99,hep-ph/9909432.

[14]T.Gehrmann,Nucl.Phys.B498(1997)245.

[15]B.Kamal,Phys.Rev.D57(1998)6663.

[16]A.D.Martin,R.G.Roberts,W.J.Stirling,and R.S.Thorne,Report DTP-99-64,hep-

ph/9907231.

[17]M.Wakamatsu and T.Kubota,Phys.Rev.D60(1999)034020.

P.V.Pobylitsa et al.,in preparation.

[18]M.Anselmino et al.,Proceedings of the Workshop“Future Physics at HERA”,

1995/96,ed.G.Ingelman,A.DeRoeck and G.Klanner,DESY,Hamburg(1996), p.837.

V.A.Korotkov and W.D.Nowak,Proceedings of the2nd“ELFE Workshop”,St.

Malo,France,1996.

[19]P.Ratcli?e,Nucl.Phys.B223(1982)45.

[20]S.Heppelmann,in Proceedings of SPIN’96,Amsterdam,Sep.10–14,1996.

00.05

0.10.0010.010.11

x x f(x)

Figure 1:The polarized and unpolarized antiquark ?avor asymmetries obtained in model calculations in the large–N c limit (chiral quark–soliton model),evolved (LO)from the low normalization point of μ2=(600MeV)2to a scale of μ2=(5GeV)2.Dashed line:

Polarized ?avor asymmetry,x [?ˉu (x )??ˉd

(x

)]≡x ?3(x ),see Refs.[4,7].

-0.10

0.1

0.2

0.3

-101GRSV95 (standard)

y M 2 = (5 GeV)2s = (40 GeV)2(a)-0.100.10.20.3-101

GRSV95 (standard)y M 2 = M W 2s = (500 GeV)2(b)-0.10

0.1

0.2

0.3

-101Gehrmann-Stirling A, C y M 2 = (5 GeV)2s = (40 GeV)2A C A C (c)-0.100.10.20.3-101

Gehrmann-Stirling A, C y M 2 = M W 2s = (500 GeV)2A C A C (d)

Figure 2:The longitudinal double spin asymmetry in DY pair production through a vir-tual photon,A γLL ,in proton–proton collisions,as a function of the rapidity,y .Shown are the results for two di?erent kinematical regions:s =(40GeV)2,M 2=(5GeV)2(HERA

proton beam ?xed–target experiment)and s =(500GeV)2,M 2=M 2W =(80.3GeV)2

(RHIC).(a),(b):Dashed lines:

Results obtained including in addition the antiquark ?avor asymmetries,?3(x )and ?8(x ),obtained in model calculations in the large–N c limit [4,7].(c),(d):same as (a)and (b),but using instead of GRSV95the Gehrmann–Stirling A and C parametrizations [12].

00.2

0.4

0.6

-101GRSV95 (standard)y W +(a)-0.8-0.6-0.4-0.20-101

GRSV95 (standard)

y W -(b)00.2

0.4

0.6

-101Gehrmann-Stirling A, C y A C

A C W +(c)-0.8-0.6-0.4-0.20-10

1

Gehrmann-Stirling A, C

y A C A C W -(d)

Figure 3:The longitudinal single spin asymmetry in lepton pair production through W +

and W ?bosons,A W +L and A W ?L ,in proton–proton collisions,as a function of the ra-

pidity,y ,for M 2=M 2W =(80.3GeV)2and s =(500GeV)2.(a),(b):Dashed lines:

Results obtained including in addition the antiquark ?avor asym-

metries,?3(x )and ?8(x ),obtained in model calculations in the large–N c limit [4].(c),(d):same as (a)and (b),but using instead of GRSV95the Gehrmann–Stirling A and C parametrizations [12].

Flavor Of Life-宇多田光日语歌词假名上标罗马音

宇多田光-生命的滋味 「ありがとう」と 君きみに言いわれると なんだか切せつない 「さようなら」の 后あとの溶とけぬ魔ま法ほう 淡あわくほろ苦にがいい the flavor of life the flavor of life 友達ともだちでも恋人こいびとでも ない中間ちゅうかん地点ちてんで あと一歩いっぽが踏み出せふみだせないせいで じれったいのはなんでbaby 「ありがとう」と 君きみにいわれると なんだか切せつない 「さようなら」の 後あとの溶けぬとけぬ魔法まほう 淡あわくほろ苦にがい the flavor of life the flavor of life 甘あまいだけの 誘さそい文句もんく 味あじっけ無いないトークとーく そんなものには興味きょうみは そそられない 重おもい通とおりにいかない時ときだって 人生じんせい捨すててたもんじゃないって 「どうしたの 」と 急きゅうに聞きかれるとううん何なん でもない

さようならの 後あとにけ消きえる笑顔えがお 私わたしらしくないない 信しんじたいと願ねがえば願ねがうほど なんだか切せつない 「愛あいしてるよ」 よりも「大だい好すき」のほうが 君きみ らしいんじゃない the flavor of life 忘わすれかけていた人の重おもいを 突然とつぜん思おもい出だす頃ころ 降ふり積つもる雪ゆきの白はくさを思うと 素直すなおに喜よろこびたいよ ダイヤモンド よりもやわらかくて あたたかな未来みらい 手てにしたいよ 限きりある時間じかんを 君きみと過すごしたい 「ありがとう」と 君きみに言いわれると なんだか切せつない 「さようなら」の 後あとの溶とけぬ魔法まほう淡あわくほろ苦にがい

中华香烟鉴别真假大全

中华”卷烟在条盒正面右侧透明纸上有防伪标志,为“厂徽图案+前2位牌号拼音+10位数字”。小盒的防伪标志在正面靠底部,为“前2位牌号拼音+10位数字”;采用喷墨隐形防伪技术,在紫外光下呈银白色;条盒、小盒上防伪标志中的末位数字应与小(硬)盒底部钢印末位字码,或软盒铝箔纸上钢印末位字码相对应,末2位数值超过10时,对应底部钢印为英文a、b、c等。防伪标志出现“zhk(d)+数字……”的样式,一般为出口烟。 整条的中华在正面,也就是天安门那边,右边吸烟有害健康几个字的右上角可以看到两行暗码,通过反光可以看到,第二行的最后三位就代表几字头,如229就代表2字头,329就是329,两行暗码是竖着的,记住了,同时,小包的也是在天安门下面有一排暗码,也可以通过反光看出来,同样也是最后三位,具体你可以看看参考,带图片的!没事多看看就明白了!不管几字头,抽起来都一样,都是传说而已! 中华香烟鉴别真假2010-8-4 一、条包装: (1)真中华香烟条包装透明纸由于摩擦系数低,手感光滑,光泽好,而假烟摩擦系数大,滞手,光泽差。假烟条盒与条盒透明纸之间间隔大,尤其在条盒的两端差异明显。 (2)真中华香烟条装为无字母金拉线,拉线头为半圆型,顺时针拉开,而假中华烟头型无规则。 (3)真中华香烟透明纸粘封在有条码侧与边缘平行,呈一条直线状,宽度均匀一致,而假烟不平行、不直、不均匀。 (4)真中华香烟条盒采取欧式上开盖,条盒透明纸右上角透明纸内侧采用自动喷墨隐型防伪技术。防伪 标志在紫外灯下呈紫蓝色。防伪标志采用集团图案两个字母,十位数字(分两行)Z H为中华二字汉语拼音字头,后十位分别代表生产日期、班别、车号。 卷烟条包 一、透明纸 1、质地:一般采用聚丙烯薄膜BOPP,主要是用来延缓烟支受潮及其水分和有机加香剂的散失。 真品烟:透明纸透明度高,表面光泽好,手感光滑,声音清脆; 假冒烟:一般透明纸质地差,透明度与光滑度不够,用手推比较滞手。 2、封口: 真品烟:采用电烙铁热封,不用胶水,封口要求与条盒边缘平行,封口要成一条直线,宽度均匀一致。封口位置及宽度决定于所用的包装设备。 假冒烟:一般用手工电烫,其封口可能出现分成几段、宽度不一致等情况。 3、两端封口:

flavor of life 歌词

「a ri ga to u」to ki mi ni i wa re ru to na n da ga se tsu nai 「sa you na ra」no a to mo to ke nu ma hou a wa ku ho ro ni gai The Flavor of Life the Flavor of Life To mo da chi de mo ko i bi to de mo na i chu ka n ji ten de Syu ka ku oh i wo yu me mi te ru a o i FU RU-TSU A to i po ga fu mi da se nai se i de Ji re ta i no wa na n de 「a ri ga to u」to ki mi ni i wa re ru to na n da ga se tsu nai 「sa you na ra」no a to no to ke nu ma hou a wa ku ho ro ni gai The Flavor of Life the Flavor of Life A ma i da ke no SA so i mo n ku a ji ke no na i do ku So n Na mo no ni wa kyou mi wa so ra re nai O mo i to ri i ka nai to ki da tte Ji n sei su te ta mo n jya na i tte 「dou shi ta no ?」to kyu u ni ki ka re ru to 「u u nNa n de mo nai」Sa you na ra no a to ni ki e ru e a ga o wa ta shi ra shi ku n ai Shi n ji ta i to ne ga e ba ne ga u ho do na n da ka se tsu nai

中华烟真假辨别

“中华”卷烟一直是造假分子的“最爱”,2009年1月1日起,“中华”使用了新版包装。制假分子的动作也很快,市场上陆续发现“新版假中华”,有的稍加注意就能辨别真伪,有的仿真程度却极高。我根据发现的几款假“中华”,从条装角度,用图片告诉大家如何防范新版假“中华”。 条盒正面“中华”两字及天安门商标纸印刷是辨别真假的重点,真烟与假烟有明显的区别。

根据条盒正面商标纸天安门图案辨别。真烟印刷细致,整体图案如同相片一样,表面平整、印刷细腻;假烟商标纸印刷的图案呈现出凹凸不平现象,套色不够均匀,印刷工艺水平比较粗糙。 通过新版“中华”商标纸印刷工艺来辨别。真烟烫金准确,金镶白“中华”字样套色清晰准确,层次分明;假烟印刷比较粗糙,金色边缘多处出现缺色少漆现象,没有层次感,主次色调也不突出。

条盒正面“中华”的“华”字头放大观察,真烟与假烟有明显区别。真烟“华”字套色准确,金边干净;假烟脱漆掉色比较明显,字体边缘有明显毛边现象。 通过条盒两端透明纸密封度辨别真假。真烟透明纸密封度比较清晰透明;而假烟透明纸密封度多数较差,有雾气状。 通过商标纸侧边字母印刷工艺辨别真假。真烟字体边沿比较干净,与红色部分切换比较清晰;假烟字母印刷比较粗糙,字母边沿多处脱漆,印刷字母比较粗大。

真烟背面华表底座有防伪印刷,有清晰可见的“★”及“YC”黄色字母;假烟这个微缩防伪看不到完整无缺的图案。 根据条盒侧边“原产地标志”判断真假。真烟能看到完整无缺的八颗“★”及“中华”;假烟只能在一定角度看到靠近边沿的四颗“★”,其他的都比较模糊,看不清。

背面封口主要判断是机器封边还是电棒加热封边,真烟封边后产生的气泡均匀,假烟比较没规则,多出现大小不等片状气泡。 根据条盒拉带头形状及切口是否平整来辨别真假。真烟的条盒拉带形状相对固定,切口平整无毛茬;假烟拉带头形状不规则,切口毛茬较多。 1.从整条的外包装上看,烟草部门在封膜上打的一长串编号字体呈喷雾状,大小不一,每条的号码均不同,假冒产品号码常常是印上去的,字体一般难以呈喷雾状,而且有时会出现号码相同的情况; 2、对条包装的辨别:拿一条中华香烟,用手捏住外层塑料膜,往后用力,一般该香烟如果割包的,塑 料膜会破。真的就不会破。“割包”就是指将香烟割开后,将真的取掉,将假的替换进去。 3.条包装透明纸由于摩擦系数低,手感光滑,光泽好,而假烟摩擦系数大,滞手,光泽差。假烟条盒与条盒透 明纸之间间隔大,尤其在条盒的两端差异明显。 4.条装为无字母金拉线,拉线头为半圆型,顺时针拉开,而假烟头型无规则。 5.透明纸粘封在有条码侧与边缘平行,呈一条直线状,宽度均匀一致,而假烟不平行、不直、不均匀。 6.条盒采取欧式上开盖,条盒透明纸右上角透明纸内侧采用自动喷墨隐型防伪技术。防伪标志在紫外 灯下呈紫蓝色。防伪标志采用集团图案两个字母,十位数字(分两行)ZH为中华二字汉语拼音字头,后十位分别代表生产日期、班别、车号。 7.对回收使用的旧条盒,鉴定的注意边角处往往有磨损和玷污痕迹;往往有两次粘封或拆后封痕迹。 8、条包装透明纸摩擦系数低,手感光滑,光泽好。假烟包装透明纸摩擦系数大,滞手,光泽差。假 烟条盒与条盒透明纸之间间隔大,尤其在条盒两端差异明显。条装为无字母金拉线,拉线头为半圆形,顺时针拉开,而假烟拉线头头形无规则。透明纸粘封在有条码一侧,与边缘平行,呈一条直线状,宽度均匀一致,而假烟不平,不直,不均匀。 9、条盒采用欧式上开盖。条盒透明纸右上角内侧采用自动喷墨隐形防伪技术。防伪标志为紫光灯下呈 紫蓝色,防伪标志采用集团图案,两个字母Z H为中华二字汉语拼音字头,十位数字(分上四下六两

雅思OG test 2 passage 1

READING READING PASSAGE 1 ( 35 points) You should spend about 20 minutes on Questions 1-13 which are based on Reading Passage 1 below. The Flavor of Pleasure When it comes to celebrating the flavor of food, our mouth gets all the credit. But in truth, it is the nose that knows. No matter how much we talk about tasting our favorite flavors, relishing them really depends on a combined input from our senses that we experience through mouth, tongue and nose. The taste, texture, and feel of food are what we tend to focus on, but most important are the slight puffs of air as we chew our food - what scientists call ‘retronasal smell’. Certainly our mouths and tongues have taste buds, which are receptors for the five basic flavors: sweet, salty, sour, bitter, and umami, or what is more commonly referred to as savory. But our tongues are inaccurate instruments as far as flavor is concerned. They evolved to recognize only a few basic tastes in order to quickly identify toxins, which in nature are often quite bitter or acidly sour. All the complexity, nuance, and pleasure of flavor come from the sense of smell operating in the back of the nose. It is there that a kind of alchemy occurs when we breathe up and out the passing whiffs of our chewed food. Unlike a hound’s skull with its extra long nose, which evolved specifically to detect external smells, our noses have evolved to detect internal scents. Primates specialise in savoring the many millions of flavor combinations that they can create for their mouths. Taste without retronasal smell is not much help in recognizing flavor. Smell has been the most poorly understood of our senses, and only recently has neuroscience, led by Yale University’s Gordon Shepherd, begun to shed light on its workings. Shepherd has come up with the term ‘neurogastronomy’ to link the disciplines of food science, neurology, psychology, and anthropology with the savory elements of eating, one of the most enjoyed of human experiences. In many ways, he is discovering that smell is rather like face recognition. The visual system detects patterns of light and dark and, building on experience, the brain creates a spatial map. It uses this to interpret the interrelationship of the patterns and draw conclusions that allow us to identify people and places. In the same way, we use patterns and ratios to detect both new and familiar flavors. As we eat, specialized receptors in the back of the nose detect the air molecules in our meals. From signals sent by the receptors, the brain understands smells as complex spatial patterns. Using these, as well as input from the other senses, it constructs the idea of specific flavors.

鉴别软、硬中华烟的方法

鉴别软、硬中华烟的方法 软中华最为国烟,质量好名气大,1959年时年产1万箱,一直作为中南海的招待用烟,市面上是看不到的,解放后才慢慢有,所以你想想中华烟的地位就知道怎么样了。 软中华分123字头,软中华1字头,从烟草直接出来到店铺是550元一条,软中华3字号是570元一条,现在一般买不到,因为五星级的烟店(烟店现在烟草公司有评级,五星为最高级)一般几个月开一条,现在在外面烟店拿要预定,现在的售价3字头的软中华670元/条,普通的软中华570元/条,市场上的零售价3字头有时候会涨到800,3字头最贵,一般情况下比1或2头的贵100左右。只有软中华1、2、3字头价格不同,硬中华是不分的。不过其实1.2.3字头质量都是一样,只不过代表生产车间不同而已,3字头即3车间生产的中华,由于3车间以前担负着给领导人生产专供中华烟的责任,所以市面上很多都认为3字头的最好!其实一样!都是传说!!! 怎样识别真假软“中华”香烟 1.从整条的外包装上看,烟草部门在封膜上打的一长串编号字体呈喷雾状,大小不一,每条的号码均不同,假冒产品号码常常是印上去的,字体一般难以呈喷雾状,而且有时会出现号码相同的情况; 2.拿起一包烟在手上轻轻地捏一下,真品的包装和烟之间留有少许空隙,一般比较柔软,假冒产品则包装严实,摸上去有点紧绷的感觉; 3.在每包烟包装正面的底部有一行编号,肉眼难以看到,在紫外线照射下,正品的号码非常整齐,每个号码间隔均匀,假冒产品编号用肉眼观察则较为明显,而且号码间隔和大小不很均匀; 4.再看看每包烟底部封膜的封口,真品在黏合处皱褶较多,假冒产品一般比较平整和光滑.

关于硬盒中华卷烟的鉴别 1、条包装: (1)条包装透明纸由于摩擦系数低,手感光滑,光泽好,而假烟摩擦系数大,滞手,光泽差。假烟条盒与条盒透明纸之间间隔大,尤其在条盒的两端差异明显。 (2)条装为无字母金拉线,拉线头为半圆型,顺时针拉开,而假烟头型无规则。 (3)透明纸粘封在有条码侧与边缘平行,呈一条直线状,宽度均匀一致,而假烟不平行、不直、不均匀。 (4)条盒采取欧式上开盖,条盒透明纸右上角透明纸内侧采用自动喷墨隐型防伪技术。防伪标志在紫外灯下呈紫蓝色。防伪标志采用集团图案两个字母,十位数字(分两行)ZH为中华二字汉语拼音字头,后十位分别代表生产日期、班别、车号。 (5)对回收使用的旧条盒,鉴定的注意边角处往往有磨损和玷污痕迹;往往有两次粘封或拆后封痕迹。 2、小盒包装 (1)盒装透明纸手感光滑光泽好,假烟滞手。 (2)盒装为无字母拉线,拉线头为方型,顺时针拉开;而假烟无规则。 (3)透明纸粘封在有警句的条码侧,粘封平、直、匀;而假烟不够平行、不够直、不够匀。(4)防伪标志在盒正面下缘,“中国上海卷烟厂出品”在下边透明纸内侧,除呈一行排列和无集团图案外,与条盒防伪技术、内容一致。 (5)小盒粘封拆开后,左右两侧有规则的三条胶线,而假烟为片状。小盒与内衬纸粘封左右为一条胶线,呈八字形,前后为两条胶线,而假烟采取不粘或无规则片状。 (6)小盒底打有一个字母二位数字的密码钢印,代表年、月、车号。 3、烟支 (1)烟支排列顺序为7、7、6,而假烟一般为7、6、7。 (2)烟支长度、圆周、外观、钢印规范,而烟支无小号;假烟不规范,且有的有小号。4、烟丝 (1)烟丝由烟丝、膨胀烟丝、少量梗丝构成。 (2)烟丝颜色桔黄至金黄光泽油润,而假烟颜色和光泽差。 (3)膨胀烟丝采取CO2干冰膨胀法,数量比例为5-8%,将烟丝倒入丙酮溶液中,有漂浮的烟丝为膨胀烟丝;而假烟无漂浮烟丝。 5、评吸中华牌卷烟与云南卷烟相比香精味较浓,香气浓郁醇和而谐调,无刺激性,余味干净舒适劲头适中;而假烟香气茶,刺激较大,余味不干净。 6、鉴别中华烟的要点: (1)看三处最后一位数字是否一致,即:条盒防伪标志的最后一位数字、小盒防伪标志最后一个数字、小盒底部所打的一个字母和两位数字的最后一位数字,三处后一位数字是否相同。 (2)看条盒拉线头是否是半圆型,小盒拉线头是否是方型。 (3)看小盒粘封是否是三条胶线。烟支排列是否是7、7、6。 (4)看烟丝中是否有膨胀烟丝(采用丙酮分离法)。 以上四方面要点完全符合的卷烟为真品,否则为假冒卷烟。 参考资料:https://www.doczj.com/doc/7f2100140.html,/viewthread.php?tid=18&extra=page=1

中华香烟……鉴别大全

《中华香烟……鉴别大全》 最强大、最专业的鉴别方法请看:烟草公司用的中华烟真假识别方法 (一)原产地标志 原产地标志侧光看会有“华表天安门轮廓”和清晰明显的“中华”字样; 原产地标志中国地图上的“海南岛”和“台湾岛”是空心的; 英文“THE PEOPLE'S REPUBLIC OF CHINA”的上面侧光看会有“8个五角星”; (二)观察包装 软中华每小包包装的黏合采用的是机器“三点条型”涂胶,并非完全刷上胶,可撕开看下。 硬中华每小盒正反两面的“天安门”“华表”浮雕感强烈、细腻,有明显层次。 软中华和硬中华上面字体(如健康警示标语)为双色套印清晰、整

齐。 小盒上“中华”二字采取“金、黄、白”三色套印放大镜下看颜色分界边缘有齿轮感觉,并非平滑。 (三)将烟支放入水中检验烟支: 烟支在水中吸水浸泡,很快滤咀散开,中间棉棒脱落。烟体由于采取充分膨化处理无破裂。 可与其他多种烟同时放入水中测试,只有正品中华才脱落烟嘴。 (四)开盒观察、嗅味 软中华开盒烟支排列为“767”

硬中华开盒烟支排列为“776” 靠近闻味会闻到“中华第一味——淡淡的话梅味” 可与其他烟对比 闻一下。 (五)包装玻璃纸 包装上玻璃纸拉线上有自然的波浪感觉。 软中华玻璃纸薄而脆(整条、小包均如此),上面有自然的条纹空隙。手感顺滑与其他烟(包括硬中华)的不同尤其是手感。 硬中华新版硬中华与之前有所改进,玻璃纸包装整齐到位,整条包装上的玻璃纸侧光看,还有特殊工艺做的极细拉丝处理。除了两头,四个面都有。

(六)DNA防伪 用验钞灯(紫色光)照看条装和盒装如下位置,有DNA出厂编码显示。 (七)三码合一 硬中华底部的钢印码(软中华无)和烟盒前面的DNA防伪码以及整条大盒上的DNA 防伪码的最后一位数字应相同! (八)烟丝 烟丝色泽金黄,燃烧后,烟灰白且收缩,档次不够的烟达不到的效果。

Java打印最

Java打印最大的改变来自于J2SE的发布带来的Java打印服务API。这个第三代Java打印支持接口突破了先前提到的使用javax.print包的PrintService和DocPrintJob接口的局限性。因为新的API就是以前两种旧的打印机制定义的功能函数的一个父集,它是目前我们常用的方法并且是这篇文章的焦点。 更深入来说,以下的步骤包含了怎么使用这个新的Java打印服务API: 1.定义打印机,限制那些返回到提供你要实现功能的函数的列表。打印服务实现了PrintService接口. 2.通过调用接口中定义的createPrintJob()方法创建一个打印事件,作为DocPrintJob 的一个实例。 3.创建一个实现Doc接口的类来描述你想要打印的数据, 你也可以创建一个PrintRequestAttributeSet的实例来定义你想要的打印选项。 4.通过DocPrintJob接口定义的printv()方法来初始化打印,指定你先前创建的Doc,指定PrintRequestAttributeSet或者设为空值。 现在你可以检查每一步并且试着完成它们。 注意 在这篇文章里,我将交替使用打印机和打印服务,因为在大部分情况下,打印服务不亚于一台真实的打印机。一般的打印服务反映了理论上可以发送到不仅仅是打印机的的输出。举例来说,打印服务也许根本不能打印东西但是可以往磁盘上的文件写数据。换句话说,所有的打印机可以看成是特殊的打印服务,但是并不是所有打印服务和打印机有联系。就像你一般把你的文本送到打印机那里一样,我有时候使用更为简便的打印机这个名词来代替技术上更精确的打印服务。 定义打印服务 你可以使用在PrintServiceLookup类中定义的三种静态方法中的一种来定义。最简单的一种就是lookupDefaultPrintService(),正如它的名字一样,它返回一个你默认的打印机: PrintService service = PrintServiceLookup.lookupDefaultPrintService(); 虽然用这个办法很简单也很方便,用它来选择你的打印机意味着用户的打印机一直都支持你的程序所要精确传输的数据输出。实际上,你真正想要的是那种可以处理你想要的数据的类型并且可以支持你要的特征例如颜色或者两边打印。为了从列表中中返回你所要求的特殊功能支持的打印机,你可以使用剩下两个方法中的lookupPrintServices() 或者lookupMultiDocPrintServices()。

如何辨别软中华的真伪

问题:如何辨别软中华烟真假? 整条中华烟真假鉴别 1、条包装透明纸摩擦系数低,手感光滑,光泽好。假烟包装透明纸摩擦系数大,滞手,光泽差。假烟条盒与条盒透明纸之间间隔大,尤其在条盒两端差异明显。 条装为无字母金拉线,拉线头为半圆形,顺时针拉开,而假烟拉线头头形无规则。 透明纸粘封在有条码一侧,与边缘平行,呈一条直线状,宽度均匀一致,而假烟不平,不直,不均匀。2、条盒采用欧式上开盖。条盒透明纸右上角内侧采用自动喷墨隐形防伪技术。防伪标志为紫光灯下呈紫蓝色,防伪标志采用集团图案,两个字母Z H为中华二字汉语拼音字头,十位数字(分上四下六两行) 分别代表生产日期、班别、车号。对回收使用过的旧条盒,鉴别时注意过角处往往有磨损和玷污痕迹,或有两次粘封或拆后重封痕迹。 条盒底打有一个字母二位数字的密码钢印,代表年、月、车号. 3、小盒包装透明纸手感光滑,光泽好,假烟滞手。 盒装为无字母拉线,拉线头为方形,顺时针拉开,假烟无规则。 透明纸粘封在有警句的条码侧,粘封平、直、匀。防伪标记在盒正面下缘,“中国上海卷烟厂出品”右下面透明纸内侧,除呈一行排列和无集团图案外,与条盒防伪技术、内容一致。小盒底打有一个字母二位数字的密码钢印,代表年、月、车号。 4、小盒粘封打开后,左右两侧只有规则三条胶线,而假烟为片状。 小盒与内衬纸粘封左右为一条胶线,呈八字形,前后为两条胶线,而假烟采取小粘胶或无规则片状。原胶痕为透明胶,现染成黑色。 5、烟支排列顺序为7、7、6,而假烟一般为7、 6、7。 烟支长度、圆周、外观、钢印规范,烟支无小号;假烟不规则,而且有小号。 6、烟丝:由烟丝、膨胀烟丝、少量梗丝构成,颜色金黄或桔黄、光泽油润,膨胀烟丝采用C O 2干冰膨胀法,数量比例为5%一8%。将烟丝倒入丙酮溶液中,有飘浮的烟丝为膨胀梗丝,而假烟无飘浮烟丝。 7、评吸:中华牌卷烟与云南卷烟相比,香精味较浓,香气浓郁醇和而谐调,无刺激性,余味干净舒适、劲头适中,而假烟香气差、刺激较大、余味不干净。 8、鉴别中华烟的要点主要看三处最后一位数字是否一致,即:条盒防伪标志的最后一位数字,小盒防伪标志最后一位数字,小盒底部所打的一个字母和两位数字的最后一位数字,三个数字是否相同怎么辨别真假中华烟 软中华烟真假鉴别图RT--海洋﹎2008-07-31 21:36 一摸 香烟,无论软包装还是硬包装,都外包有透明薄膜。消费者购烟时,最开始接触的就是这层外包装。 真烟:塑料膜摸起来手感光滑,透明度较好,光泽度好,是一种特殊的薄膜,这种薄膜只用于香烟包装。拆开再摸,会感觉这层外包装薄膜较薄,手感较柔软。 假烟:用的是一般性薄膜,光泽较差,透过薄膜看烟盒会感觉透明度较差,用手摸有滞手感,拆开后再摸,会感觉这种薄膜较厚且硬。 二看 从色泽上鉴别。经常抽一种香烟的消费者,购烟时请注意比较烟盒的颜色。如果可能在下次购烟时,不妨将真的空烟盒带上。假烟盒再逼真,与真烟盒还是有颜色上的差异。 从烟丝上鉴别。有些人误以为烟丝越黄表明香烟质量越好,其实这是误解。 真烟:真烟的烟丝色泽自然,黄中偏黑。烟丝中一般没有未经处理的烟梗,因为未处理的烟梗不易燃烧,容易熄火。正规厂家在制作时,对烟梗进行了膨化处理。 假烟:为迷惑消费者,一般会采用硫磺熏制烟叶,烟丝显得黄亮。假烟中经常会看到烟梗,其制造者不可能花力气去对烟梗做膨化处理,那是一种专门的工艺,且需要购买高档设备。从烟灰上鉴别。一般消费者吸烟后,看到烟灰较白,便认为是好烟。其实这也是一种误解。实际上,烟灰的色泽受烟叶的干燥程度影

The Flavor Of Life 中日 平假名 歌词

The Flavor Of Life 「ありがとう」と君(きみ)に言(い)われるとなんだか切(せつ)ない当你对我说了「谢谢」之后总觉得难过 「さようなら」の后(あと)の溶(と)けぬ魔法(まほう) 淡(あわ)くほろ苦(にが)い即使说「再见」之后魔法仍未消失有点些许苦涩 The Flavor Of Life The Flavor Of Life 友达(ともだ)でも恋人(こいびと)でもない中间地点(ちゅんかん)で在既非朋友又非恋人的中间点 収获(しゅかく)の日(ひ)を梦(ゆめ)みてる青(あお)いフルーツ(FURU-TSU) 梦想收获的那一天未成熟的水果 あと一歩(いっぽ) が踏(ふ)み出(だ)せないせいで结果都是因为无法踏出这步 じれったいのはなんで有所迟疑到底是为什么 同第一段......The Flavor Of Life The Flavor Of Life 甘(あま)いだけの诱(さそ)い文句(もんく) 味気(あじけ)のない毒(どく) 甜蜜诱惑的字句是枯燥乏味的毒药 そんなものには兴味(きょみ)はそそられない那样的东西对我来说是无法引起我的兴趣的 思(おも)い通(き)りにいかない时(とき)だって即便在无法照我心中想法去做的时候 人生(じんせい)舍(す)てたもんじゃないって并非要舍弃人生 「どうしたの?」と急(きゅう)に闻(き)かれると「ううん。何(なん)でもない」当你问我「怎么了?」我赶紧回说「没...没有...没事喔」さようならの后(あと)に消(き)える笑颜(えがお) 私(わたし)らしくない说「再见」之后消失的笑脸并不像我 信(しん)じたいと愿(ねが)えば愿(ねが)うほどなんだか切(せつ)ない越是希望让自己相信总觉得有点伤心难过 「爱(あい)してるよ」よりも「大好(だいす)き」のほうが君(きみ)らしいじゃない比起说「我爱你」说「最喜欢你了」才更像你不是吗? The Flavor Of Life 忘(わす)れかけていた人(ひと)の思(おも)いを突然(とつぜん)思(おも)い出(だ)す顷(ころ) 突然回忆那个快被忘记的人时 降(ふ)り积(つ)もる雪(ゆき)の白(しろ)さを思(おも)うと素直(すなお)に喜(よろこ)びたいよ想起片片积雪的白老实说开心不起来 ダイヤモンド(DAIYAMONDO)よりもやわらかくてあたたかな未来(みらい) 比起钻石更想将柔软的温暖的未来放在手心喔手(て)にしたいよ限(かぎ)りある时间(じかん)を君(きみ)と过(す)ごしたい有限时间内只想与你共处

中华烟辨别真假

中华烟辨别真假 中华分辨真假方法步骤 1、顶端透明纸与条盒硬纸不紧贴,硬纸呈凹状,中间有很大的空隙,假烟基本是紧 贴着的,或者空隙很小。 2、顶端英文一侧有数字“200”其中2个0呈椭圆型,中间有不规则的细小锯齿,假 烟大多都是圆圈,中间是平滑的,没有锯齿,或者是规则锯齿。 3、原产地标志采用中国地图图案细看海南岛和台湾岛为空心,在某些角度和光线下 图案背景会呈现“中华”字样。防伪编码ZH为中华二字汉语拼音字头,后十位中的部分 数字代表生产日期、班别、车号。老版的中华没有小孔,假冒中华大多都是没有小孔的。 4、微缩印刷特征,条盒及小盒在华表的中下位置有黑色“★”和黄色“YC”字母, 用5倍的放大镜就能看到。假烟在这方面的制作远远不足,五角星大多是残缺不全的,或 者颜色不均匀。 5、条盒及小盒的天安门图案细节,天安门图案第一个门左下角两条黑色虚线间应为 无色,假烟常为黄色。 6、烟支 1烟支排列顺序为7、7、6,而假烟一般为7、6、7。 2烟支长度、圆周、外观、钢印规范,而烟支无小号;假烟不规范,且有的有小号。 7、烟丝 1烟丝由烟丝、膨胀烟丝、少量梗丝构成。 2烟丝颜色桔黄至金黄光泽油润,而假烟颜色和光泽差。 3膨胀烟丝采取CO2干冰膨胀法,数量比例为5-8%,将烟丝倒入丙酮溶液中,有漂浮 的烟丝为膨胀烟丝;而假烟无漂浮烟丝。 8、评吸中华牌卷烟与云南卷烟相比香精味较浓,香气浓郁醇和而谐调,无刺激性, 余味干净舒适劲头适中;而假烟香气茶,刺激较大,余味不干净。 硬中华其它鉴别方法: 1、硬中华条盒顶端透明纸压痕,条盒顶端至少有一边有2-4个小长方形的压痕。 2、大部分硬中华条盒侧面有两个小凹痕,就在有原产地标志这一边上面。 3、条盒透明纸粘封宽度为11mm,假烟为20mm。而烟支排列真品7-7-6,假品7-6-7。

咖啡杯品(杯测)术语

You guys may have read this article. But here is my version of translation from English into Chinese. Let's check it out to see what the differences are. I'm sure there are mistakes. 咖啡杯品术语 杯品(杯测)咖啡时,我们要区分咖啡的风味、醇厚度、酸度和湿香气是否宜人。多数杯品师采用以下的标准来评判咖啡。 While tasting the coffee, you should try to discern whether the flavor, body, acidity and aroma of the coffee is pleasant, or unpleasant. Here are the criteria that most tasters use to judge coffee: 酸度Acidity : 酸度是咖啡的必备特征,是咖啡在舌下边缘和后腭产生的干的感觉。咖啡酸度的作用与红酒的口感类似,具有强烈而令人兴奋的质感。没有足够的酸度,咖啡就趋于平淡。酸度与酸味不同,酸味是令人不快的不好的口味特征。 Acidity is a desirable characteristic in coffee. It is the sensation of dryness that the coffee produces under the edges of your tongue and on the back of your palate. The role acidity plays in coffee is not unlike its role as related to the flavor of wine. It provides a sharp, bright, vibrant quality. With out sufficient acidity, the coffee will tend to taste flat. Acidity should not be confused with sour, which is an unpleasant, negative flavor characteristic. [B]湿香气Aroma 湿香气很难与风味分开。如果没有嗅觉,我们的基本味觉就只是:甜、酸、咸和苦。湿香气丰富了软腭对风味的辨别。一些微妙、细腻的差别,比如“花香”或“酒香”的特性,就来自于煮泡咖啡的湿香气。 Aroma is a sensation which is difficult to separate from flavor. Without our sense of smell, our only taste sensations would be: sweet, sour, salty, and bitter. The aroma contributes to the flavors we discern on our palates. Subtle nuances, such as "floral" or "winy" characteristics, are derived from the aroma of the brewed coffee. [B]醇厚度 B ody : 醇厚度是咖啡在口中的感觉,即咖啡作用于舌头产生的粘性、厚重和丰富度的感觉。喝全脂牛奶与喝水的感觉不同,就是一个很好的例证。我们对咖啡的醇厚度的感觉与咖啡萃取的的油质和固形物有关。比较典型的事,印尼咖啡比南美洲、中美洲咖啡的醇厚度要高。如果你无法确定几种咖啡的醇厚度差异,可以试着将咖啡加入等量的牛奶。醇厚度高的咖啡用牛奶稀释后会保留更多的风味。

中华烟真假鉴别(转)

中华烟真假鉴别(转) 一、软中华烟: 上海卷烟厂生产,是36种名优烟之一。软中华烟是用改造的意大利6000型包 装机生产的,其真伪鉴别方法如下: 1、条盒粘封侧封三点式,圆心间的距离是115mm,端封两点式,侧封端封都采 用热溶胶。而假烟不规范,且采用普通液态胶。 2、小盒端封为四段式胶痕,商标纸无针眼,切有30度角,另一边出一个小角。 3、烟支有小号。 4、烟丝中有膨胀烟丝。[大中华-1937] 5、防伪标记6处(两个三处一致):条盒上面防伪标号尾数与小盒面上防伪 标号尾数、烟支小号尾数三处一致;条盒端面钢印两个阿拉伯数字的尾数和小 盒铝纸两个阿拉伯数字的尾数及烟支暗藏的两位数的一位数三处一致。 二、硬中华烟 上海卷烟厂生产,是36种名优烟之一。硬中华烟是用德国进口的佛克包装机 生产的,其真伪鉴别方法如下: 1、条盒透明纸粘封宽度为11mm,假烟为20mm。 2、真烟小盒粘封左右两侧呈有规则的三条胶痕,而假烟为无规则片状;铝纸 与小盒粘封前后各两条8mm宽的平行胶痕,左右铝纸与小盒粘封各为一条胶痕,拆开后呈八字形;而假烟为无规则片状胶痕。 3、烟支排列真品7.7.6,假品7.6.7。 怎样识别真假软“中华”香烟 1.从整条的外包装上看,烟草部门在封膜上打的一长串编号字体呈喷雾状,大小不一,每条的号码均不同,假冒产品号码常常是印上去的,字体一般难以呈 喷雾状,而且有时会出现号码相同的情况; 2.拿起一包烟在手上轻轻地捏一下,真品的包装和烟之间留有少许空隙,一般比较柔软,假冒产品则包装严实,摸上去有点紧绷的感觉; 3.在每包烟包装正面的底部有一行编号,肉眼难以看到,在紫外线照射下,正

咖啡杯品术语

咖啡杯品术语 杯品(杯测)咖啡时,我们要区分咖啡的风味、醇厚度、酸度和湿香气是 否宜人。多数杯品师采用以下的标准来评判咖啡。 While tasting the coffee, you should try to discern whether the flavor, body, acidity and aroma of the coffee is pleasant, or unpleasant. Here are the criteria thatmost tasters use to judge coffee: 酸度Acidity: 酸度是咖啡的必备特征,是咖啡在舌下边缘和后腭产生的干的感觉。咖啡 酸度的作用与红酒的口感类似,具有强烈而令人兴奋的质感。没有足够的酸度,咖啡就趋于平淡。酸度与酸味不同,酸味是令人不快的不好的口味特征。 Acidity is a desirable characteristic in coffee. It is the sensation of dryness that the coffee produces under the edges of your tongue and on the back of yourpalate. The role acidity plays in coffee is not unlike its role as related to the flavor of wine. It provides a sharp, bright, vibrant quality. With out sufficient acidity,the coffee will tend to taste flat. Acidity should not be confused with sour, which is an unpleasant, negative flavor characteristic. 湿香气Aroma 湿香气很难与风味分开。如果没有嗅觉,我们的基本味觉就只是:甜、酸、咸和苦。湿香气丰富了软腭对风味的辨别。一些微妙、细腻的差别,比如“花香”或“酒香”的特性,就来自于煮泡咖啡的湿香气。 Aroma is a sensation which is difficult to separate from flavor. Without our sense of smell, our only taste sensations wouldbe: sweet, sour, salty, and bitter.The aroma contributes to the flavors we discern on our palates. Subtle nuances, such as "floral" or "winy" characteristics, are derived from the aroma of thebrewed coffee. 醇厚度Body: 醇厚度是咖啡在口中的感觉,即咖啡作用于舌头产生的粘性、厚重和丰富 度的感觉。喝全脂牛奶与喝水的感觉不同,就是一个很好的例证。我们对咖啡的醇厚度的

Task A-2 A New Flavor to Our Life学生作文示例(5篇)

学生作文示例 Task A-2 : A new flavor to our life (1) 05级Andrew Stories of the Telephone When we didn’t have a telephone When I was a little girl, we didn?t have a telephone. But my neighbour did. The ting of the telephone hit on my heart every time it rang. How I expected that I could talk with someone through the telephone! One day, when I was drawing, my neighbour?s telephone rang. Then, I heard my neighbour call my mother. I replied,“She?s out. What?s up?” “Would you come and receive a call of you?” She said. I was as happy as a butterfly at that moment! My dream became true! Great! I ran out of my house without closing the door, rushed at the telephone. It just like a box with many buttons on it and there was a handle. My neighbour told me to pick up the handle and then I could listen and talk. I followed her instruction. But I heard nothing. My neighbour burst into laughter, for I made it up-side down! My face turned red immediately. I was so shy that I made such a big mistake! When the telephone came to us I remember that it was in my grade two in primary school. One day after school, my sister and I went home normally. We didn?t know something surprising would happen to us. When we were having supper, suddenly a telephone rang. We thought it was from my ne ighbour?s. But the ting was different and it sounds very loud. “Is it in our house?” My young sister asked. “But we don?t have a telephone!” I replied. “But, listen, it is from the living room,” she insisted. We went to the living room to find the source of the ting with uncertainty. The ting pervaded the air and made us excited and nervous. Finally , my sister screamed,“Look! A new telephone!” Her eyes were shiny with excitement. I picked up the handle and said.“Hello?” “Hello, girls! It is a big surprise to you. Isn?t it?” My father …s voice came through the telephone. We all laughed happily. Through the telephone, we shared the same happiness. After we had the telephone, life was more colourful, especially for us children. Every time the telephone rang, we would guess who was that. And the one who made a mistake must have a punishment. My sister always preempted the chance of receiving the phone call. In those days, we lived an interesting life because of the telephone. Through it, I became mature I grew up to be a lovely and excellent girl when I was in junior high school. Many boys liked me and they always chased chances to talk to me. The important way was to phone me. My telephone calls became more and more. Often, they asked me about the homework or invited me to some parties. I was very glad to receive this kind of calls. And I made a lot of friends through

相关主题
文本预览
相关文档 最新文档