当前位置:文档之家› 维生素的理化性质

维生素的理化性质

维生素的理化性质
维生素的理化性质

维生素的理化性质、功能、来源和缺乏症

维生素A

又称视黄醇、抗干眼病维生素,是人类最早发现的维生素。淡黄色结晶,溶于脂肪及大多数有机溶剂中,不溶于水。仅存在于动物体内。

1.维持正常视觉(缺乏可引起夜盲症)

2.维持上皮组织结构的完整性(缺乏可使细胞角质化增生,机体发生障碍,抵抗力降低,

以眼睛、皮肤、呼吸道和泌尿道等上皮组织最显著)

3.促进生长发育,维持正常免疫功能(与促进蛋白质的合成与骨骼细胞的分化有关)

4.防癌作用(一定程度上抑制肿瘤细胞的生长和分化作用,能预防多种上皮组织肿瘤的发

生)

5.增强生殖力(与其对生殖器官上皮的影响有关,参与生殖功能,参与胚胎的形成,增强

机体生殖力)

缺乏症:维生素A长期不足或缺乏,首先出现暗适应能力降低及夜盲症,然后出现一系列影响上皮组织正常发育的症状,如皮肤干燥、脱屑、毛囊角化、干眼病等,严重缺乏时甚至可以导致失明。缺乏维生素A还可以引起生殖功能衰退、儿童骨骼生长不良及发育迟缓。维生素A缺乏时,致癌物质会在体内毒性猛增,可使呼吸道抵抗力降低且易感染。

来源:在动物肝脏、奶油和蛋黄含量较多;植物性食物中,维生素A原在深绿色或红黄色蔬菜、水果,如胡萝卜、甘薯、菠菜、青椒、柿子等含量较多。

过量:长期摄入过量维生素A,可发生中毒,急性表现为恶心、呕吐、嗜睡,慢性表现为食欲不振、毛发脱落、头痛、耳鸣等。

维生素D

又称钙化醇、抗佝偻病维生素,是一种白色晶体,溶于脂肪,不易氧化,在中性及碱液中较稳定,耐高温,稳定性较高,但对光敏感,脂肪酸败可使其破坏。

1.能够调节钙、磷代谢,促进人体对钙、磷的吸收利用,维持血清钙、磷浓度的稳定,促

进小肠对钙的吸收以及骨钙动员。

2.能刺激破骨细胞的形成和活性,对骨骼和牙齿的钙化和发育起重要作用。

3.具有类似固醇激素的作用。

4.对防止氨基酸通过肾脏时的丢失也有重要作用,且还具有免疫调节功能,可改变机体对感

染的反应。

缺乏:膳食摄入不足或人体缺乏日光照射时维生素D缺乏症的主要原因,严重缺乏时婴儿和儿童可使骨骼和牙齿生长发育障碍引起佝偻病,成人缺乏时可使骨骼脱钙引起骨质软化、骨质疏松手足痉挛等,常见的具体症状有脊背弯曲、胸畸形、骨骼软化、弓形腿、牙齿损坏等。

来源:主要存在于鱼肝油和酵母中,蛋黄以及动物的肝脏中,仅靠食物摄入获取足够的维生素D 不容易,所以适当的日光浴,对婴幼儿、老年人和特殊人群非常重要。

过量:长期大量摄入维生素D会引起中毒,常见症状有食欲下降、恶心、皮肤瘙痒、多尿等,进而发展成肾功能减退和心血管系统异常,严重中毒可导致死亡。

维生素E

又名生育酚、抗不育维生素,是一种浅黄色油状液体,溶于酒精、脂肪与脂溶剂,不溶于水,对酸、热稳定,易受碱和紫外线破坏,易发生氧化,脂肪酸败可加速维生素E的破坏。

1. 抗氧化作用:是一种高效抗氧化剂,与硒协同作用清除自由基,保护细胞免受自由基的损害,

维持其正常功能;以至维生素A和维生素C及不饱和脂肪酸的氧化,保证他们在体内的正常功能,还可保护神经系统、骨骼肌和眼视网膜等免受氧化损伤。

2.抗衰老作用:可延长红细胞的寿命,有抑制分解酶的作用,能预防氧化脂质的产生,减少脂

褐质(老年斑)的生成,起到抗衰老的作用,并能保护T淋巴细胞,从而保护人体免疫功能。

3.促进肌肉正常生长发育。是维护骨骼肌、心肌、平滑肌正常功能所必需的物质,能够促进肌

肉的正常生长发育、

4.治疗贫血的作用,可保持红细胞的完整性,促进红细胞的形成。

5.抑制肿瘤的发生,可阻断体内亚硝胺的形成,抑制肿瘤的发生。

6.其他,与机体的生殖功能也有关系,可防止流产。是维护外周血管正常功能所必需的物质,

具有抗动脉粥样硬化作用。

缺乏:缺乏容易导致肌肉营养不良,如老年人的肌肉萎缩。长期缺乏者血浆中维生素E浓度下降,引起红细胞寿命缩短,发生溶血性贫血。

来源:广泛存在于食物中,植物油、坚果类、种子、绿色蔬菜中含量较多,肉、鱼、禽、乳类中含量较少。

维生素E摄入过多会导致出现消化道异常、骨骼逐渐萎缩、生殖能力障碍等。

维生素K

又称凝血维生素,是甲基萘醌衍生物,为脂溶性维生素,对热、空气和水分都很稳定,易被光和碱破坏。

1. 有助于某些凝血因子在肝脏的合成,从而促进血液的凝固,具有类似激素的作用。

2.维生素K缺乏时,可使血液凝固发生障碍,轻者凝血时间延长,重者有出血现象。

来源:广泛存在于绿叶蔬菜及动物肝脏。大豆、鱼肉也是维生素K的良好来源,人体肠道正常菌群也能合成维生素K。

维生素C

又名抗坏血酸,为白色结晶,熔点是192℃,呈酸性,具有强还原性,干燥时十分稳定,但在溶液中不稳定、极易溶于水,微溶于乙醇,不溶于脂溶剂。它是最不稳定的一种维生素,遇空气、热、光、碱性物质、氧化酶及铜、铁离子时极易氧化破坏。

1. 促进胶原组织的合成。维生素C参与组织中胶原的形成,保持细胞间质的完整性,维持正常

细胞代谢,维护结缔组织、牙齿、骨骼、血管、肌肉的正常发育和功能,对血管的脆性保持正常状态极为重要,促进创伤与骨折愈合。

2.参与机体的造血机能。维生素C可使铁在消化道处于亚铁状态,并以其有利的氧化还原能力,

提高机体对铁的吸收,故可预防营养性贫血;维生素C还具有将叶酸转变为活性(四氢叶酸)的能力,对预防巨幼红细胞具有积极的意义。

3.抗氧化作用。维生素C作为体内一种主要的抗氧化剂,参与体内氧化还原反应,促进生物氧

化过程,是人体新陈代谢的必需物质;它还是一种重要的自由基清除剂,能保护生命大分子免受自由基的侵害,维持细胞膜完整性,这与还原性谷胱甘肽有密切关系。

4.解毒、抗肿瘤。维生素C对铅、苯、砷等化学物质及细菌毒素具有一定的解毒作用,故临床

上维生素C是常用的解毒剂之一。维生素C能促进机体抗体的形成,提高白细胞的噬菌能力,增强机体免疫功能,阻断致癌物亚硝胺形成,具有抗肿瘤作用。

5.影响脂肪和胆固醇的代谢。维生素C在体内参与肝脏内胆固醇的羟基化作用,促进胆固

醇转化为胆酸,减慢组织中胆固醇的积累,从而降低血清胆固醇的含量,对预防和治疗心血管疾病有一定的作用。

6.其他。肾上腺皮质激素的合成与释放夜需维生素C的参与,维生素C能增强机体的应激

能力。在工业方面也有重要的用途,可应用于抗氧化、保鲜、护色及增加风味等。

缺乏:长期缺乏会导致坏血病,早期的症状为疲劳和嗜睡,食欲减退,皮肤出现小瘀点或瘀

斑,牙龈出血、萎缩,幼儿骨骼发育异常,伤口不愈合,还可发生轻度贫血。严重的患者可发生精神异常,包括多疑症、抑郁症和癔病。重症维生素C缺乏可出现内脏出血而危及生命。

来源:主要存在于新鲜水果、蔬菜,如柑橘、柠檬、山楂以及辣椒、菠菜等中,野生的水果已蔬菜如苋菜、沙朿和猕猴桃等维生素C含量尤为丰富。过多摄入维生素C对人体有害,会引起腹痛、腹泻、腹胀等,维生素C的过度摄入还会引起铁的吸收过度、降低白细胞杀菌能力、破坏红细胞及形成泌尿道结石。

维生素B1

又名硫胺素、抗脚气病维生素。白色晶体,略带酵母气味,易溶于水,微溶于乙醇,在干燥状态和酸性溶液中稳定,在中性或碱性环境中,特别是在加热时会加速其破坏分解。

1.促进能量代谢。参与三大营养素的分解代谢和产生能量。

2.促进糖类代谢。直接影响体内核酸雨脂肪酸的合成。

3.维护神经系统正常功能。参与糖代谢和能量代谢,若硫胺素不足,糖代谢受阻,丙酮酸、

乳酸等在组织中累积,造成神经组织能源不足和脑功能下降,可能出现相应的神经系统病变。

4.促进消化。参与神经递质乙酰胆碱的代谢和合成,增强神经传导性,有利于胃肠蠕动和

消化腺分泌。

缺乏:维生素B1摄入不足和酒精中毒是硫胺素缺乏的最常见的原因。硫胺素长期摄入不足而引起的营养不良性疾病称脚气病,发病早期患者表现为疲乏无力、肌肉酸痛、烦躁、头痛、失眠、食欲不振、便秘等,持续缺乏时则会出现心血管和神经系统症状。心血管系统症状有腱反射亢进、多发性神经炎、肌肉萎缩,还会出现健忘、不安、易怒或忧郁等症状,甚至影响心肌和脑组织功能,严重时可引起死亡。

来源:维生素B1多存在于种子外皮及胚芽中,在干果,硬果、动物组织以及蛋类中含量也较丰富。

维生素B2

又叫核黄素,橙黄色针状结晶,微溶于水,具有荧光性,较耐热,碱性条件下易分解,中性或酸性条件下较稳定,在自然界分布广泛的一种维生素。

1. 作为辅酶FMN(黄素单核苷酸)和FAD(黄素嘌呤二核苷酸)的前体,具有可逆的氧

化还原特性,是生物氧化过程中传递氢的重要物质,参与体内许多氧化还原反应以及能量代谢。

2.辅酶于特定蛋白质结合形成的黄素蛋白是机体生物组织氧化呼吸过程中不可缺少的物

质,同时还有维护皮肤健康及防止末梢神经炎的作用。

3.核黄素能够保证物质代谢正常进行,参与体内色氨酸转变为烟酸、维生素B6转变为磷

酸吡哆醛的过程。

4.参与体内的抗氧化防御系统,从而提高机体对环境的应激适应能力。

缺乏:可导致物质和能量代谢紊乱,表现为各种炎症,以及眼部症状。核黄素缺乏还会影响维生素B6和烟酸的正常代谢,以及铁的吸收,易出现继发缺铁性贫血。核黄素缺乏还会影响机体的正常生长发育。

来源:广泛存在于各类食物中,动物性食物中含量较植物性食物高,肝、肾、心脏、乳及蛋类中含量尤为丰富,酵母、大豆和各种绿叶蔬菜也是核黄素的重要来源。

维生素B6

包括吡哆醇、吡哆醛和吡哆胺3中天然形式,可以互相转换,且同等有效,在动物组织内吡哆醛以及吡哆胺形式存在,而植物中则以吡哆醇为主。维生素B6为白色结晶,易溶于水和乙醇,微溶于有机溶剂,对热、空气及酸稳定,但在碱性溶液中易被破坏,对紫外线敏感。

1.是机体中很多酶系统的辅酶成分,参与人体内50多种每的反应,故称为“主力维生素”

2.于蛋白质代谢关系密切,蛋白质各种氨基酸的合成与代谢均离不开它,如氨基酸的转氨

基作用。

3.与脂质代谢关系十分密切,参与不饱和脂肪酸的代谢,日辅助亚油酸转变为花生四烯酸。

4.能够以磷酸化酶的辅酶形式参与糖代谢,帮助糖原由肝脏或肌肉中释放能量。

5.参与运铁血红蛋白中二价铁离子的合成以及氨基酸在体内的运输等。

缺乏:可导致眼、鼻与口腔周围皮肤脂溢性皮炎,个别还有神经症状,如易激动、忧郁甚至精神错乱。维生素B6缺乏对幼儿的影响较成人大,儿童缺乏可出现烦躁、肌肉抽搐和惊厥、呕吐、腹痛以及体重下降等症状。

来源:普遍存在于动植物食物中,含量较高的为白色肉类(如鸡肉和鱼肉),其次为肝脏。豆类和蛋类,水果和蔬菜含量也较多。

维生素B12

又名氰钴胺素、抗恶性贫血素,是唯一一种含有金属元素的维生素,也是B族维生素中迄今为止发现最晚的一种,在化学结构上也是最复杂的一种维生素。淡红色结晶体,不溶于有机溶剂,在水的溶解度较大,其水溶液呈粉红色。维生素B12对热较稳定,在强酸、强碱以及紫外线照射下易破坏。

1.以辅酶的形式参与体内一碳单位的代谢,在代谢中于叶酸互相作用,可提高叶酸利用率

来增加核酸和蛋白质的合成,使机体的造血系统处于正常状态,促进红血细胞的发育和成熟。

缺乏:人体缺乏维生素B12可引起巨红细胞性贫血(恶性贫血)以及神经系统损伤。恶性贫血是一种慢性进行性贫血,表现为乏力、舌痛、舌炎或手足麻木。常有食欲不振、腹泻和轻度黄疸,同时伴有典型的脊髓后侧联合病变和末梢神经变性的神经系统症状等。

来源:在自然界中,维生素B12的主要来源是动物性食品,如动物内脏、肉类、鱼、禽、贝壳类等是维生素B12的丰富来源。

烟酸

即维生素PP或维生素B5,又称抗癞皮病维生素,包括烟酸和烟酸胺,在体内主要形式是具有神话里活性的烟酸胺。两种化合物都是稳定的白色针状结晶,不易吸湿,溶于水和乙醇,单不溶于乙醚、牙酸是维生素中最稳定的一种,不易被氧、热、光、高压所破坏,对酸、碱也很稳定。

在体内可转变为烟酰胺,是辅酶I(NAD)和辅酶II(NADP)的组成成分,其中的烟酰部分具有可逆地加氢和脱氢的特性,是生物化中的递氢体,在代谢过程中起重要作用,如参与葡萄糖的交接等一系列重要过程。烟酸作为葡萄糖耐受因子的组分,能够促进胰岛素反应。烟酰胺对中枢及交感神经系统也有维护作用。

缺乏:引起癞皮病,又称糙皮病,典型为皮炎、腹泻及痴呆,又称“三D”症状。轻度缺乏会出现倦怠、厌食、体重下降等、重度缺乏则表现为以下3个方面:

1.皮肤症状。皮肤粗糙,有鳞屑状皮脱落,最后残留褐色色素沉着。典型的皮肤症状为对

称性出现,多发于脸、手背、颈、膝等暴露部位。

2.消化系统症状。食欲不振、食后腹泻、胃酸缺乏、粪便量少、次数多等症状比较明显。

3.神经系统症状。严重缺乏时发生神经系统症状,且不易恢复。常见有情绪变化无常、精

神紧张、抑郁或易怒、失眠、幻觉、进一步发展成为痴呆。

来源:一部分有色氨酸转变而来,广泛存在于动植物性食物中,动物性食物以烟酰胺为主,植物性食物以烟酸为主,两者生物效价相同。含量丰富的有酵母、动物内脏、瘦肉、花生、豆类及全谷等。

食品理化检验试题及答案最新版本

食品理化检验试题及答案 (每空4分,共100分) 姓名:得分: 一、填空题 1、食品检验由食品检验机构指定的检验人独立进行。 2、GB5009上的准确称取是指用天平进行的称量操作,其准确度为 ±0.0001g。 3、采样应注意样品的生产日期、批号、代表性和均匀性(掺伪和 食物中毒样品除外)。 4、食品理化实验室个人防护设施主要包括护目镜,工作服,口罩, 手套。 二、选择题: 1、食品理化检验包括(ABC) A、快检筛查 B、定性 C、定量 2、法定计量单位包括(AC) A、mol/L B、% C、kg D meq 3、食品安全标准应当包括下列内容(ABCDEFGH): A食品、食品相关产品中的致病性微生物、农药残留、兽药残留、重金属、污染物质以及其他危害人体健康物质的限量规定; B食品添加剂的品种、使用范围、用量; C专供婴幼儿和其他特定人群的主辅食品的营养成分要求; D对与食品安全、营养有关的标签、标识、说明书的要求;

E食品生产经营过程的卫生要求; F与食品安全有关的质量要求; G食品检验方法与规程; H其他需要制定为食品安全标准的内容。 4、掺伪或中毒样品采样应注意(B) A 代表性 B典型性 C普遍性 5、一般样品在检验后应保存(A)个月 A 一、 B 三、 C 六、D九 6、罐头或其它小包装食品同一批号,包装小于250克时,采样应 不少于(D)个 A 3、 B 6、 C 9 、D10 7、下列单位哪些是错误的写法?(AC) A mg/Kg、 B g/100g、 C PH 、 D mol/L 8、被测物质含量在<0.1mg/kg时回收率一般应在(D)范围内 A、95~105 B、90~110 C 80~110 D 60~120 9、需要强检的设备有(ABC) A高效液相色谱仪 B 分光光度法 C滴定管 D烧杯 10、定性检验方法的技术参数包括(ABCD)等 A适用范围 B原理 C选择性 D检测限 三、判断题: 1、食品理化检验的特点是样品组成单一,干扰小。(×)

《食品理化检验技术》课程标准

《食品理化检验技术》课程标准 课程名称:食品理化检验技术 课程类型:专业核心类 适用专业:食品营养与检测 课程学分:8 总学时:144 1 课程定位 食品理化检验技术是食品营养与检测专业的一门工学结合专业核心课程。 根据食品和农产品加工业发展的趋势及我国食品安全的现状,在充分进行专业调研的基础上,我院食品营养与检测专业以培养食品检验与质量安全控制技术人才为办学目标,主要为广东省食品及农产品加工企业培养食品检验与质量控制技术骨干,学生毕业后主要在食品检验与质量控制岗位上工作。 食品检验技术(包括感官检验、理化检验、微生物检验)属于产品质量控制范畴内的专门技术,在企业实际生产中具有十分重要的作用,它贯穿于食品产品研发、原料供应、生产和销售的全过程,是食品质量控制与安全保证不可缺少的手段。食品理化检验技术是依据食品相关标准,运用分析的手段,对各类食品(包括原料、辅料、半成品、成品及包装材料)的成分和含量进行检测,进而评定食品品质及其变化的一门实验学科。理化检验是企业检验岗位工作的主要内容,也是食品检验职业技能鉴定的核心部分。所以食品理化检验技术课程是专业课程体系中的核心课程,是一门技术性、应用性、实践性很强的课程。本课程的建设与改革对学生职业能力的培养、职业素养的养成和专业的发展起主要支撑作用。 本课程是学生在完成分析化学、生物化学、食品营养与卫生等课程的学习后再进行学习,并通过食品检验校内生产实训、顶岗实习等后续课程的强化,使学生可以逐步获得独立进行食品理化检验的工作能力,具有严谨求实的科学态度,增强食品食品质量安全的意识,提高自主学习、获取信息、团结协作、拓展创新等综合能力。 2 课程目标 本课程以“培养学生熟练掌握现代食品理化检验技术,熟悉食品相关标准,具有高水平的食品检验技能和良好的职业素养”为教学目标。

最新乙炔的理化性质知识讲解

乙炔的理化性质、毒性及安全防护 乙炔 C2J2 1.别名·英文名 电石气、亚次乙基、乙叉撑;Acetylene、Ethyne. 2.用途 金属的焊接和切割、有机合成、原子吸收光谱、标准气、校正气、合成成橡胶、照明。 3.制法 (1)甲烷的部分氧化法。 (2)电石的水解。 (3)以天然气、液化石油气为原料,用蓄热式热分解法生产。以天然气或甲烷气为原产用部分燃烧法生产。以天然气或丙烷为原料,用完全燃烧法生产。以碳氢化合物为原料用电弧法生产。 4.理化性质 分子 量:26 .038 三相点: (128kPa):—80.55℃ 沸点(170 kPa):—75.0℃ 液体密度(—80.75℃):610㎏/m3气体密度(273.15K,101.325 kPa): 1.1747 ㎏/m3 相对密度(空气=1,0℃,101.325 kPa):0.908 比容(15.6℃,101.325 kPa):0.9008m3/㎏ 气液容积比(15℃,100 kPa): 556L/L 临界温 度:35.2℃ 临界压 力: 6190 kPa 临界密 度: 230.4㎏/m3 压缩系 数: 温度压力 kPa

炸范围。然而把乙炔气加压溶解在丙酮中浸泡过的多孔性物质中则非常安全。即使有一部分引起燃烧之类的情况,也不会传播到其它部分,对整体仍然安全。但是,这种安全性与乙炔的纯度有密切的关系。乙炔气的纯度要大于:98.0%,不允许含有2%以上的助燃性气体,不允许含有硫化氢和磷化氢。 乙炔为非腐蚀性气体,可以使用通常的金属材料,但是不能用铜、银和汞。要避免使用含铜66%以上的黄铜、含铜银的焊接材料和含汞的.压力表。 可以使用醋酸纤维、尼龙、酚甲醛、酚糠醛、聚丙烯、聚氨酯、聚氯乙烯、醋酸聚氯乙烯、聚氯三氟乙烯、聚四氟乙烯,、环氧树脂、酚缩醇聚合物等。也可使用天然橡胶、丁腈橡胶、‘丁‘苯橡;胶和丁基橡胶。发生火灾时可用雾状水、二氧化碳灭火。漏气时,用强制通风使其浓度低于爆炸浓度。泄漏之容器可转移至空旷处,让其在大气中缓慢漏出,或者用管子导人燃烧炉中,或在凹地处小心点火焚烧之。 凸轮轮廓程序: >> e=20; s0=77.46; a1=0:pi/36:pi/3; s1=50*[3*a1/pi-sin(6*a1)/(2*pi)]; x1=(s0+s1).*sin(a1)+e*cos(a1); y1=(s0+s1).*cos(a1)-e*sin(a1); k1=150/pi*[1-cos(6*a1)]; >> i1=[(k1-e).*sin(a1)+(s0+s1).*cos(a1)].*[(k1-e).*(k1-e)+(s0+s1).*(s0+s1)].^(-1/2); >> j1=[-(k1-e).*cos(a1)+(s0+s1).*sin(a1)].*[(k1-e).*(k1-e)+(s0+s1).*(s0+s1)].^(-1/2); >> x10=x1-10*j1; >> y10=y1-10*i1; a2=pi/3:pi/36:pi; s2=50; x2=(s0+s2).*sin(a2)+e*cos(a2); y2=(s0+s2).*cos(a2)-e*sin(a2); k2=0; >> i2=[(k2-e).*sin(a2)+(s0+s2).*cos(a2)].*[(k2-e).*(k2-e)+(s0+s2).*(s0+s2)].^(-1/2); j2=[-(k2-e).*cos(a2)+(s0+s2).*sin(a2)].*[(k2-e).*(k2-e)+(s0+s2).*(s0+s2)].^(-1/2); x20=x2-10*j2; y20=y2-10*i2; >> a3=pi:pi/36:4*pi/3; >> s3=50*[1-3*(a3-pi)/pi+sin(6*(a3-pi))/(2*pi)]; >> x3=(s0+s3).*sin(a3)+e*cos(a3); >> y3=(s0+s3).*cos(a3)-e*sin(a3); >> k3=50*[-3/pi+3/pi*cos(6*(a3-pi))]; >> i3=[(k3-e).*sin(a3)+(s0+s3).*cos(a3)].*[(k3-e).*(k3-e)+(s0+s3).*(s0+s3)].^(-1/2); >> j3=[-(k3-e).*cos(a3)+(s0+s3).*sin(a3)].*[(k3-e).*(k3-e)+(s0+s3).*(s0+s3)].^(-1/2); >> x30=x3-10*j3; >> y30=y3-10*i3; >> a4=4*pi/3:pi/36:2*pi; >> s4=0;

食品理化检测 考试重点知识(整理版)

食品理化检测 我国的食品安全标准按其发生作用的范围和审批权限可分为4级:国家食品安全标准、行业食品安全标、地方食品安全标、企业食品安全标 误差分类: ⒈系统误差: ⑴方法误差:由分析方法本身造成的误差。 ⑵仪器误差:由仪器本身不够精确造成的误差。 ⑶试剂误差:由于试剂不纯或蒸馏水不纯、含有待测物或干扰物导致的系统的误差。 ⑷操作误差:由于检测人员对检测操作不熟练或有不良的习惯,个人对终点颜色敏感性不同,对刻度读数不正确等引起的分析误差。 ⒉偶然误差 ⒊过失误差 样品的采集简称采样(又称检样、取样、抽样),是为了进行检验而从大量物料中抽取一定数量具有代表性的样品。 样品分类 按照样品采集的过程,依次得到检样、原始样品和平均样品三类 ⒈检样: ⒉原始样品: ⒊平均样品:将原始样品按规定的方法经混合均匀,分出一部分做检验用,称为平均样品。从平均样品中分出三份:一份用于全部检验项目检验;一份用于对检样结果有争议或分歧时做复检用,称为复检样品;一份作为保留样品,须封存保留一段时间(通常为1个月),以备有争议时再做检验,但易变质食品不作保存。 湿法分解样品,又称消化法,是通过加入液态强氧化剂对样品进行加热处理,是样品中的有机物完全氧化分解。 感官分5种:视觉、听觉、嗅觉、味觉、触觉;从生理学角度来看:甜、酸、苦、咸为基本味觉,人对咸味的感觉最快,对苦味的感觉最慢,但苦味比其他的味觉都敏感。 消杀现象:也称为味的掩蔽和变调现象。两种刺激同时或先后出现时,一种造成另一种刺激的感觉丧失或发生根本变化的现象,如喝了浓食盐水后再喝普通水会感到甜。 感官分析实验室,两个基本组成部分:实验区和样品制备区。 感官分析评价员分类:⒈评价员⒉优选评价员⒊专家评价员

傅献彩物理化学选择题———第七章 电解质溶液 物化试卷(二)

目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一) 第二章热力学第二定律物化试卷(二) 第三章统计热力学基础 第四章溶液物化试卷(一) 第四章溶液物化试卷(二) 第五章相平衡物化试卷(一) 第五章相平衡物化试卷(二) 第六章化学平衡物化试卷(一) 第六章化学平衡物化试卷(二) 第七章电解质溶液物化试卷(一) 第七章电解质溶液物化试卷(二) 第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用 第十章化学动力学基础(一)物化试卷(一) 第十章化学动力学基础(一)物化试卷(二) 第十一章化学动力学基础(二) 物化试卷(一) 第十一章化学动力学基础(二) 物化试卷(二) 第十二章界面现象物化试卷(一) 第十二章界面现象物化试卷(二) 第十三章胶体与大分子溶液物化试卷(一) 第十三章胶体与大分子溶液物化试卷(二) 参考答案

1. z B、r B及c B分别是混合电解质溶液中B 种离子的电荷数、迁移速率及浓度,对影响 B 离子迁移数 t B的下述说法哪个对? ( ) (A) │z B│ 愈大,t B愈大 (B) │z B│、r B愈大,t B愈大 (C) │z B│、r B、c B愈大,t B愈大 (D) A、B、C 均未说完全 2.在一定温度和浓度的水溶液中,带相同电荷数的Li+、Na+、K+、Rb+、… , 它们的离子半径依次增大,但其离子摩尔电导率恰也依次增大,这是由于:( ) (A) 离子淌度依次减小 (B) 离子的水化作用依次减弱 (C) 离子的迁移数依次减小 (D) 电场强度的作用依次减弱 3.在Hittorff 法测定迁移数实验中,用Pt 电极电解AgNO3溶液,在100 g 阳极部的溶液中,含Ag+的物质的量在反应前后分别为 a 和b mol,在串联的铜库仑计中有c g 铜析出, 则Ag+的迁移数计算式为( Mr(Cu) = 63.546 ) :( ) (A) [(a -b)/c]×63.6 (C) 31.8 (a -b)/c (B) [c-(a -b)]/31.8 (D) 31.8(b -a)/c 4.298K,当H2SO4溶液的浓度从0.01 mol/kg 增加到0.1 mol/kg时,其电导率k 和摩尔电导率Λm将:( ) (A) k减小, Λm增加(B) k增加,Λm增加

完整word版食品理化检验技术试题及参考答案

《食品理化检验技术》试题及参考答案 填空题(每小题2分,共计20分) 1.液态食品的相对密度可反应液态食品的和。 2.样品的制备是指对采集的样品进行、。混匀等处理工作。 3.食品中水的有在形式有和两种。 4.膳食纤维是指有在于食物不能被人体消化的和的总和。5.碘是人类必需的营养素之一:它是的重要组成成分。 6.食品中甜味剂的测定方法主要有、、薄层色谱法等。 7.合成色素是用人工方法合成得到的,主要来源于及副产品。 和浓缩。 8.食品中农药残留分析的样品前处理一般包括三个步聚:即、9.赭曲霉毒素的基本化学结构是由 连接到β-苯基丙氨酸上的衍生物。 10.镉是一种蓄积性毒物,主要蓄积部位是肾和。 11.丙稀酰胺由于分子中含和,具有两个活性中心,所以是一种化学性质相当活 泼的化合物。 12.雷因许氏试验是常用于和快速检验的定性实验。 多项选择题(每小题2分,共计10分) 1.关于保健食品的叙述正确的是() A.具有特定保健功能 B、可以补充维生素、矿物质 C、适宜特定人群食用 D、具有调节机体功能,不以治疗疾病为目的2.标准分析法的研制程序包括() A.立项 B、起草 C、征求意见 D、审查 3.食品样品制备的一般步骤分为() A.去除非食品部分 B、除去机械杂质 C、均匀化处理 D、无机化处理 0C())h干燥食品样品,使其中水分蒸发逸出,食品样品质量达到 4.在常压下于(恒重。 0000C C、2-4h D90、A.95C-100C-1054-6h C B、5.通常食品中转基因成分定性,PCR检测可分为以下几个步骤() A.确定待测目标序列 B、引物设计和PCR扩增 C、PCR反应体系的构建 D、电泳及结果分系 判断题(每小题2分,共计20分)

食品中维生素C含量的测定实验

实验3 食品中维生素C含量的测定(2,6-二氯酚靛酚滴定法) 一、实验原理 维生素C又称抗坏血酸,还原型抗坏血酸能还原染料2,6-二氯酚靛酚钠盐,本身则氧化成脱氢抗坏血酸。 2,6-二氯酚靛酚的钠盐水溶液呈蓝色,在酸性溶液中呈玫瑰红色,当其被还原时就变为无色,因此,可用2,6-二氯酚靛酚滴定样品中的还原型抗坏血酸。当抗坏血酸完全被氧化后,稍多加一点染料,使滴定液呈淡红色,即为终点。如无其他杂质干扰,样品提取液所还原的标准染料量与样品中所含的还原型抗坏血酸量成正比。 二、试剂和器材 偏磷酸醋酸溶液:取15g(用时研细)溶于40mL醋酸及20mL水的混合液中,然后用水稀释至500mL,过滤后储入试剂瓶中。 标准2,6-二氯酚靛酚溶液:取0.25g2,6-二氯酚靛酚溶于700mL蒸馏水中(用力 搅动),加入300mL磷酸缓冲液(预先配制9.078g/L KH 2PO 4 -11.867g/L Na 2HPO 4 ·2H 2 O水溶液,用时以KH 2 PO 4 :Na 2 HPO 4 ·2H 2 O=4:6的比率将其混合,pH 值为6.9-7.0),翌日过滤,滤液储于棕色瓶中,临用时,以抗坏血酸溶液标定。 标准维生素C溶液:以少量偏磷酸醋酸溶液溶解0.1g维生素C于100mL容量瓶中,再以该液稀释至刻度。 2,6-二氯酚靛酚液的标定:在3个100mL锥形瓶中,各置5mL偏磷酸醋酸液,再各加2mL标准维生素C溶液,摇匀。用上面所制的标准2,6-二氯酚靛酚液滴定,呈玫瑰红色保持30s不褪色为止。记下所用2,6-二氯酚靛酚溶液体积平均值,再以同样方法做一空白实验,取7mL偏磷酸醋酸液加水若干毫升(相当于以上所用的2,6-二氯酚靛酚溶液的低定量),仍用2,6-二氯酚靛酚溶液滴定。将第一次滴定的量减去空白实验的量,即为标准维生素的反应量,求出1mL 2,6-二氯酚靛酚对应于维生素C的质量(mg)。 研钵、容量瓶、剪刀、锥形瓶、微量滴定管 三、实验步骤 1、用自来水冲洗果蔬样品,再以蒸馏水清洗,用纱布或吸水纸吸干表面水分,然后

《食品理化检测技术》课程标准

食品营养与检测专业核心课程标 准

《食品理化检测技术》课程标准 1.前言 1.1 课程类别 专业必修课 1.2 适用专业 高职高专食品营养与检测专业 1.3 课程性质 本课程是食品营养与检测专业的一门核心课程,是从事食品理化检测岗位工作的一门必修课程。其功能是使学生掌握理化检验检测的方法和操作技术,适应岗位要求。 1.4 设计思路 本课程总体设计思路是以食品营养与检测专业相关工作任务和职业能力分析为依据确定课程目标,设计课程内容,以工作任务为线索构建任务引领型课程。 课程设计以样品中成分含量测定为线索,设置水分测定、灰分测定、酸度测定、脂肪测定、糖测定、蛋白质测定、维生素C测定、添加剂测定、金属离子测定、农药残留量测定等工作任务。课程内容的选取以工作任务为中心,融合专业理论知识和食品检验工职业资格标准的要求,以达到培养学生具备从事食品检测工作能力的目的。 每个工作任务的学习都以检测操作方法为载体,以工作任务为中心设计相应教学活动,引出相关专业理论知识,使学生在各项目活动中强化专业技能与实践操作能力。 2.课程目标 通过本课程的学习,掌握食品一般营养成分及添加剂分析的基本原理及相关方法和实验操作技能,能完成本专业相关岗位的工作任务,养成良好的职业道德和文明生产习惯,胜任理化检验检测岗位工作。 知识目标:熟悉食品理化检验的程序及相关标准;理解项目检验的原理,掌握操作要求; 能力目标:培养学生具有制定检验方案的能力、独立操作的能力、正确处理

检验数据的能力; 素质目标:具有严谨求实、拓展创新、团结协作综合职业素养。同时,通过食品检验工技能考证检验学生岗位实践操作能力。 3.课程内容和要求 序 号 模块项目工作任务知识技能和要求学时 一食品检测 的基本知 识 检验前期 准备 理化检测必 备的基础技 能和知识 了解理化检验检测任务和内容;熟悉理化检验检 测方法国家标准;掌握理化检测必备的基础技能 和知识。 2 二食品的物 理检验 比重测定 酒精、牛乳密 度的测定 掌握密度法、折光法的原理、检验方法、常见仪 器的使用方法;掌握常见仪器的使用方法、数据 处理方法。 2 比体积和 膨胀率 麦乳精比体 积、冰激凌膨 胀率的测定 了解比体积、膨胀率定义,熟悉测定方法。 三食品一般 成分的检 验 水分的测 定 乳粉、鲜肉、 饼干水分的 测定 熟悉食品中水分存在状态;掌握称量瓶、天平、 干燥器、干燥箱选择和使用;会样品的恒重;掌 握干燥法、蒸馏法测定水分的操作技能;能正确 填写原始记录并判定单项检验结果。 40 灰分的测 定 面粉、茶叶灰 分的测定 熟悉灰分测定的内容;会高温炉、坩埚使用方法; 掌握样品灼烧、灰化、恒重的操作技能;掌握总 灰分测定的操作技能;能正确填写原始记录并判 定单项检验结果。 酸度的测 定 果汁、酸奶、 食醋中酸度 的测定 熟悉食品中酸类物质存在的状态;掌握酸碱滴定 的相关概念和知识;会酸碱滴定;掌握总酸度测 定、pH计的使用方法及操作技能;能正确填写原 始记录并判定单项检验结果。 脂肪的测 定 午餐肉、鲜乳 脂肪含量的 测定 熟悉食品中脂肪存在状态的相关概念和知识;会 使用电热恒温干燥箱、恒温水浴锅、掌握乙醚、 石油醚、乙醇等有机溶剂的安全使用方法;会对 有机溶剂的提取、萃取、回流、回收及分离技术; 掌握索氏抽提法的检测技能;对检测结果作出正 确的评价。 糖的测定 水果硬糖、蔬 菜中还原糖 的测定 了解碳水化合物、醛糖、酮糖、还原糖等概念和 相关知识;掌握氧化还原滴定法的操作;掌握样 品制备的基本操作和技能;会配制和标定标准葡 萄糖液、碱性酒石酸铜溶液;能进行样品水解转 化的操作技能;掌握用直接法测定总糖的原理及 操作技能;分析结果数据处理与撰写实验报告。 蛋白质的乳饮料中蛋了解蛋白质、氨基酸、含氮量、蛋白质消化等概

第八章 铝电解质的物理化学性质

第八章铝电解质的物理化学性质 电解质,它主要是以冰晶石为熔剂,氧化铝为熔质而组成。 冰晶石熔剂的特性 1. 熔融的冰晶石能够较好的熔解氧化铝,而且所构成的电解质可在冰晶石的熔点1008℃以下(一般950~970℃)进行电解,从而也降低了氧化铝的还原温度。(溶铝性) 2. 在电解温度下,熔体状态的冰晶石或冰晶石-氧化铝熔液的比重比铝液的比重还小约10%,它能更好地漂在电解出来的铝液上面。(分离性:密度差,不相溶) 3. 冰晶石-氧化铝熔体具有较好的流动性。 4. 具有相当良好的导电性。 一、NaF-AlF3二元系相图 ?两个稳定化合物 ?两个共晶点(L=NaF+ Na3AlF6,L=AlF3+ Na5Al3F14)一个包晶点(L+ Na3AlF6= Na5Al3F14) ?在氟化铝的摩尔百分含量为25~46%时,电解质的初晶温度随着氟化铝含量的增加而降低,但是氟化铝的摩尔百分数在25~33%时,变化率较小,表明电解质分子比的变化对初晶温度变化的影响较小。分子比在2.0~1.5时,温度变化较大,意味着分子比的轻微变化将会使初晶温度发生很大的变化,这对电解过程极其不利。 密度:冰晶石组成点密度最大 导电率:导电率随AlF3浓度的增高而线性减小。 粘度:冰晶石组成点黏度最大 蒸气压:随着A1F3含量的增加而迅速增大 迁移数:n Na+=0.58~ 二、Na3AlF6-Al2O3系相图 ?共晶点在21.1%氧化铝浓度处,温度为962.5℃,L=Al2O3+ Na3AlF6 ?共晶点右侧的液相线为氧化铝从熔体中析出α-Al2O3的初晶温度,在该液相线中任意一点所对应的温度和氧化铝浓度,就是该温度下的电解质熔体中氧化铝的饱和浓度。 密度:随Al2O3含量增多而减小 导电度:随Al2O3含量增多而减小 粘度:随Al2O3浓度增高而升高 蒸气压:随氧化铝浓度的升高而降低 迁移数: n Na+= 1.0~ 三、Na3AlF6-AlF3-Al2O3系相图 1: 冰晶石初晶区; 2: 氟化铝初晶区; 3: 亚冰晶石初晶区; 4: 氧化铝初晶区。 P:Lp+N3AF6(晶)=N5A3F14(晶)+A(晶) E: L E ======N5A3F14(晶)+AF3(晶)+A(晶)(p132有误) 初晶点:随AlF3等浓度增大而减小; 密度: 随AlF3和Al2O3浓度增大而减小; 导电率:随AlF3和Al2O3浓度增大而减小; 蒸气压:随AlF3浓度增大而增大。

南京大学《物理化学》考试第七章电解质溶液

第七章电解质溶液 物化试卷(一) 1. 离子电迁移率的单位可以表示成: (A) m·s-1 (B) m·s-1·V-1 (C) m2·s-1·V-1 (D) s-1 2.水溶液中氢和氢氧根离子的电淌度特别大,究其原因,下述分析哪个对? (A) 发生电子传导(B) 发生质子传导 (C) 离子荷质比大(D)离子水化半径小 3.电解质溶液中离子迁移数 (t i) 与离子淌度 (U i) 成正比。当温度与溶液浓度一定时,离子淌度是一定的,则25℃时,0.1 mol·dm-3 NaOH 中 Na+的迁移数 t1 与0.1mol·dm-3 NaCl 溶液中 Na+ 的迁移数t2,两者之间的关系为: (A) 相等(B) t1> t2 (C) t1< t2 (D) 大小无法比较 4.在 Hittorff 法测迁移数的实验中,用 Ag 电极电解AgNO3溶液,测出在阳极部AgNO3的浓度增加了 x mol,而串联在电路中的 Ag 库仑计上有 y mol 的 Ag 析出, 则Ag+离子迁移数为: (A) x/y (B) y/x (C) (x-y)/x (D) (y-x)/y

5.298 K时,无限稀释的 NH4Cl水溶液中正离子迁移数t+= 0.491。已知Λm(NH4Cl) = 0.0150 S·m2·mol-1 ,则: (A)λm(Cl-) = 0.00764 S·m2·mol-1 (B) λm(NH4+) = 0.00764 S·m2·mol-1 (C) 淌度 U(Cl-) = 737 m2·s-1·V-1 (D) 淌度 U(Cl-) = 7.92×10-8 m2·s-1·V-1 6.用同一电导池分别测定浓度为 0.01 mol/kg和 0.1 mol/kg的两个电解质溶液,其电阻分别为 1000 W 和 500 W,则它们依次的摩尔电导率之比为: (A) 1 : 5 (B) 5 : 1 (C) 10 : 5 (D) 5 : 10 7. CaCl2 摩尔电导率与其离子的摩尔电导率的关系是: (A) Λ∞(CaCl2) = λm(Ca2+) + λm(Cl-) (B)Λ∞(CaCl2) = 1/2 λm(Ca2+) + λm(Cl-) (C)Λ∞(CaCl2) = λm(Ca2+) + 2λm(Cl-) (D)Λ∞(CaCl2) = 2 [λm(Ca2+) +λm(Cl-)] 8. 在10 cm3 浓度为1 mol·dm-3 的KOH溶液中加入10 cm3水,其电导率将: (A) 增加(B) 减小(C) 不变(D) 不能确定

电石乙炔的性质(一)..

电石、乙炔等材料的物化性质 一.产品及原料的物化性质 1.产品(乙炔) 1.1物理性质 1.1.1在常温常压下,纯乙炔为无色芳香气味的易燃气体,工业品因含硫化氢,磷化氢等杂质而有毒,并且具有特殊刺激性臭味。微溶于水,溶于乙醇、苯、丙酮等许多有机溶剂中,溶解度随温度升高而降低,比空气略轻。乙炔与空气能在很宽的范围内( 2.3-81)×10-2形成爆炸混合物,爆炸迟滞时间只有0.017秒。 1.1.2主要物理常数 密度:(0℃,100kpa) 1.17㎏∕m3 比重:(对空气) 0.9056 (对氧气) 0.8194 自燃点:305℃ 沸点:(或冷凝点) -83.66℃ 熔点:(或凝固点) -85℃ 临界温度:35.7℃ 1.2 化学性质 1.2.1乙炔是最简单的炔烃,又称电石气,分子式C2H2,结构式H-C≡C-H,乙炔中心C原子采用sp杂化。分子量26.4,纯乙炔在空气中燃烧2100度左右,在氧气中燃烧可达3600度。 1.2.2乙炔分子中碳与碳是三键相连,所以化学性质非常活泼。易发

生加成、氧化、聚合、金属取代等各种反应,还能与许多有机物进行反应。 a、加成反应: 可以跟Br?、H?、HX等多种物质发生加成反应。例如与Br?的加成,现象:可以使溴水褪色或Br?的CCl?溶液褪色。利用乙炔与HCL加成,在加热和催化剂的作用下,就可以得到氯乙烯单体,再通过聚合反应就能得到通常所说的聚氯乙烯(PVC)。 b、氧化反应: 可燃性:2C?H?+5O?→4CO?+2H?O(条件:点燃),现象:火焰明亮、带浓烟,燃烧时火焰温度很高(>3000℃),用于气焊和气割。其火焰称为氧炔焰。 被KMnO4氧化:能使紫色酸性高锰酸钾溶液褪色。 c、聚合反应:由于乙炔与乙烯都是不饱和烃,所以化学性质基本相似。在适宜条件下,三分子乙炔能聚合成一分子苯。但苯的产量不高,副产物又多。如果利用钯等过渡金属的化合物作催化剂,乙炔和其他炔烃可以顺利地生成苯及其衍生物。 在一定条件下,乙炔也能与烯烃一样,聚合成高聚物-----聚乙炔。 d、金属取代反应(可用于乙炔的定性鉴定): 将其通入硝酸银或氯化亚铜氨水溶液,立即生成白色乙炔银(AgC≡CAg)和棕红色乙炔亚铜(CuC≡CCu)沉淀,可用于乙炔的定性鉴定。 其他化学特性:

乙炔的理化性质及危险特性表

标识中文名: 乙炔;电石气英文名: acetylene;ethyne 分子式: 分子量: CAS号: 74-86-2 化学类别: 危险性类别: 第2.1类易燃气体UN编号:1001;3374 理化性质性状与用途: 无色无味气体,工业品有使人不愉快的大蒜气味。是有机合成的重要原料之一。亦是合成橡胶、合成纤维和塑料的单体,也用于氧炔焊割。 临界温度(℃):35.2 临界压力(MPa):6.19 饱和蒸汽压(kPa):4460(20℃) 燃烧热(kj/mol)]:1298.4 熔点(℃)]:-81.8(119kPa) 沸点(℃)]:-83.8 相对密度(水=1):0.62 [相对密度(空气=1)]:0.91 自燃温度(℃): 燃爆物性与消防燃烧性: 闪点(℃):<-50 爆炸下限(V%):2.5 爆炸上限(V%):100.0 稳定性:稳定 聚合危害:聚合 建筑火险分级: 燃烧(分解)产物:碳、氢。 禁忌物:强氧化剂、碱金属、碱土金属、重金 属尤其是铜、重金属盐、卤素。 危险特性:极易燃烧爆炸。与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。 与氧化剂接触猛烈反应。经压缩或加热可造成剧烈爆炸。与氟、氯等接触会发生剧烈的化学反应。能与铜、银、汞等的化合物生成爆炸性物质。 灭火方法:用雾状水、泡沫、二氧化碳、干粉灭火。 毒性毒性:空气中浓度为60%~80%时,几分钟动物出现麻醉;吸入浓度为20%时,发生嗜睡、呕吐、呼吸困难。 健康危害侵入途径:吸入 健康危害:具有弱麻醉作用。高浓度吸入可引起单纯窒息。 暴露于20%浓度时,出现明显缺氧症状;吸入高浓度,初期兴奋、多语、哭笑不安,后出现眩晕、头痛、恶心、呕吐、共济失调、嗜睡;严重者昏迷、紫绀、瞳孔对光反应消失、脉弱而不齐。当混有磷化氢、硫化氢时,毒性增大,应予以注意。 急救皮肤接触:不会通过该途径接触 眼睛接触: 不会通过该途径接触。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:不会通过该途径接触。 防护措施安全卫生标准:MAC(mg/m3):未制定标准PC-TWA(mg/m3):未制定标准PC-STEL(mg/m3):未制定标准TLV-C(mg/m3):未制定标准 TLV-TWA(mg/m3): TLV-STEL(mg/m3): 工程控制:生产过程密闭,全面通风。 呼吸系统防护:一般不需要特殊防护,但建议特殊情况下,佩戴过滤式防毒面具(半面罩)。眼睛防护:一般不需特殊防护。 身体防护:穿防静电工作服 手防护:戴一般作业防护手套。 其他防护:工作现场严禁吸烟。避免长期反复接触。进入罐、限制性空间或其它高浓度区作业,须有人监护。 泄漏消除所有点火源。根据气体的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器,穿防静电服。作业时使用的所有设备应接地。禁止接

怎样使食品中的维生素保持稳定

怎样使食品中的维生素保持稳定 人们通常在计算食品中的维生素含量时,只注意到了食品在加工前原料中的含量或者强化食品时所添加的量,但是食品在加工、贮藏过程中其含量往往有所降低,这样便不能满足人们对维生素的摄取量,还造成经济损失。各种复杂的因素如光、热、酸、碱、氧等都能引起维生素的损失。比如鲜牛奶中每升含维生素C5.1mg,杀菌后只含3.8mg,制成奶粉只含2.2mg,已损失了54%。强化脱脂奶粉在加工中损失维生素A6%,在室温中贮藏2年又损失65%。采用适当方法提高食品中维生素的稳定性有很重要的意义。那么常用的方法有哪些呢? 改变维生素的结构是一种有效的方法。研究表明,某些维生素变为其衍生物后,可以提高稳定性。如天然食品中的维生素正在空气中不稳定,而生育酚的酯类(如醋酸酯)对空气的氧化作用有较强的抵抗力,在油脂烹调时的高温中也很稳定。维生素A的熔点为62~64~C,而维生素A的衍生物熔点高,如维生素A—苯腙熔点为181~182~C,这样就提高了其稳定性。在常用的添加剂中,维生素A 棕榈酸酯比维生素A醋酸酯更为稳定。维生素E1是一种很易损失的维生素,过

去人们用维生素B1的盐酸盐作强化剂,添加到食物中,但效果也不理想。后来试制合成了10多种各有特点的维生素B1衍生物,它们的生理效果与维生素El 的盐酸盐相同,但更加稳定适用。如用二苄基硫胺素强化面粉,贮藏11个月后,面粉中仍保留维生素B197%,在烤制面包时,尚保存80%左右;而用维生素B1(即硫胺素)的盐酸盐,贮藏2个月后其含量就减至60%以下。维生素C是最易分解的一种维生素,在金属离子铜、铁存在下煮沸30分钟就要损失约70%~80%,而维生素C的磷酸酯在同样情况下基本无损失,因而常用于饼干、面包等的加工过程。比如当强化压缩饼干时,将饼干置于马口铁罐内充氮,在40~C、相对湿度85%的条件下贮存6个月,维生素C磷酸酯镁或钙保存率为80%~100%,而普通维生素C保存率仅为4%。通过改变维生素结构的方法,其营养健康功效并无改变,又增强了维生素的稳定性,故很受人们欢迎。 添加稳定剂也是保护维生素稳定性的一个重要方法。比如维生素A和维生素C等对氧气极为敏感,遇氧很易破坏损失,加上抗氧剂、螯合剂等物质作为稳定剂后便可减少其损失。据克洛次等报道,维生素A贮藏4个月,未加稳定剂的损失为30%~40%,而加上果糖、甘油、蔗糖或其他物质后,仅损失5%一10%。有

食品理化检验实验指导书

食品理化检验实验指导书 适用课程: 食品理化检验(实验) 食品理化检验实训 食品检验技术(实验) 食品检验技术实训 食品卫生与营养检测(实验) 食品卫生与营养检测综合实训

目录 实验部分 实验一常压干燥法测定面粉的水分含量 (1) 实验二面粉总灰分的测定 (3) 实验三果汁饮料中总酸及pH的测定 (5) 实验四牛乳中还原糖的测定 (8) 实验五酱油中氨基酸态氮的测定 (10) 实验六索氏提取法测定花生中粗脂肪的含量 (12) 实验七牛奶粗脂肪含量的测定 (14) 实验八酱油中氯化钠含量的测定 (16) 实验九酸水解法测定火腿肠中脂肪含量 (19) 实验十油脂酸价、过氧化值测定 (21) 实验十一分光光度法测定火腿肠中亚硝酸盐的含量 (23) 实验十二硫代巴比妥酸比色法测定食品中的山梨酸含量 (24) 实验十三水果中维生素C含量的测定 (28) 实验十四果胶的提取 (33) 实验十五果胶的测定 (35) 实验十六高效液相使用技能训练(色谱法测定茶叶中提取物) (36) 实验十七银耳中SO2(漂白剂)的含量测定 (40) 选做实验 实验一比重瓶法测定酱油的相对密度 (42) 实验二酶水解法测定食品中淀粉含量 (43) 实验三乳化剂—蔗糖脂肪酸酯中游离蔗糖的测定 (45) 实验四白酒中甲醇的测定——品红亚硫酸比色法 (47) 实验五紫外分光光度法测定鸡蛋中的维生素A (49) 实验六薄层层析法测定果酱中苯甲酸、山梨酸的含量 (51) 实验七纸层析法测定β-胡萝卜素 (53) 实验八分光光度法测定海带中碘的含量 (55) 实训部分 模块一基本技能训练 (57) 实训一常用电器的使用技能 (57) 实训二常用的物理检验仪器使用技能训练 (60) 实训三酸度计和电动磁力搅拌器的使用技能 (68) 实训四索氏提取器的安装和使用技能训练 (73) 实训五微量凯氏定氮仪的安装和使用技能训练 (75) 实训六薄层板的制备技术和薄层分析的点样技术训练 (77) 模块二综合实训 (78) 实训一糕点产品的理化检测 (78) 实训二酱菜类产品的理化检测 (79) 实训三肉制品的理化检测 (80)

保健食品中9种脂溶性维生素的测定BJS201717

附件5 保健食品中9种脂溶性维生素的测定 BJS 201717 1范围 本方法规定了营养素补充剂类保健食品中维生素A、维生素A醋酸酯、维生素D2、维生素D3、维生素E、维生素E醋酸酯、维生素K1、维生素K2、β-胡萝卜素含量的液相色谱-串联质谱测定方法。 本方法适用于营养素补充剂类保健食品中维生素A、维生素A醋酸酯、维生素D2、维生素D3、维生素E、维生素E醋酸酯、维生素K1、维生素K2、β-胡萝卜素含量的测定。 2原理 试样经混合溶液(异丙醇:二氯甲烷:甲醇=10:10:80,v:v:v)提取后,采用液相色谱-串联质谱仪检测,外标法定量。 3试剂和材料 除非另有规定,本方法所用试剂均为分析纯,水为GB/T 6682规定的一级水。 3.1 试剂 3.1.1甲醇:质谱级。 3.1.2乙腈:质谱级。 3.1.3异丙醇:色谱纯。 3.1.4丙酮。 3.1.5二氯甲烷。 3.1.6提取溶液(异丙醇:二氯甲烷:甲醇=10:10:80,v:v:v):取异丙醇50mL、二氯甲烷50mL,用甲醇稀释至500 mL,混匀。 3.1.7 0.1%甲酸水溶液:取甲酸1 mL用水稀释至1 000 mL,用滤膜(3.4)过滤后备用。 3.1.8 0.1%甲酸甲醇溶液:取甲酸1 mL用甲醇稀释至1000mL,用滤膜(3.4)过滤后备用。 3.2标准品 维生素A、维生素A醋酸酯、维生素D2、维生素D3、维生素E、维生素E醋酸酯、维生素K1、维生素K2、β-胡萝卜素标准品的中文名称、英文名称、CAS登录号、分子式、相对分子量见附录A表A.1,纯度≥98%。 3.3标准溶液配制 3.3.1标准储备液(100μg/mL) —41 —

实验七--维生素C注射液稳定性实验

实验七维生素C注射液稳定性实验 一、实验目的 1.掌握延缓药物氧化分解的基本方法. 2.通过维生素C处方稳定性的考察,熟悉注射剂处方设计的一般思路. 二、实验仪器与材料 仪器:721型可见分光光度计,pH计,水浴锅,电炉,量瓶等. 材料:维生素C,碳酸氢钠,注射用水,硫酸铜,硫酸铁,依地酸二钠,浓硫酸,蒸馏水等. 三、实验内容? (一)处方稳定性影响因素的考察 1.加热时间的影响 取购买的20支安瓿放入沸水中煮沸, 间隔一定时间取出5支安瓿,放入冷水中冷却后,将每次取出的5支安瓿内的样液于小烧杯中混合均匀,以蒸馏水作空白,用721型可见分光光度计,在420nm波长处测定各样液的透光率,按下式计算透光率比,将结果记录于表格1中. 表4-1 加热时间对维生素C溶液稳定性的影响 煮沸时间(min) 透光率(%) 透光率比(%)加热前加热后 15 30 60 2.重金属离子的影响 配成250g/L维生素C溶液80ml,精密量取15ml置25ml量瓶中,共5份,按下表所示,加入各种试剂,用注射用水稀释至刻度,立即测定每一份样液的透光率。然后将每份溶液放入沸水中煮沸40min后取出,以蒸馏水作空白测定透光率,并按上式计算透光率比,将结果填于表格3中。 表4-2 重金属离子对维生素C溶液稳定性的影响

的影响 称取维生素C 15g,配成125g/L溶液120ml。精密量取溶液20ml置50ml烧杯中,共量取6份。分别加碳酸氢钠粉末,,,,,左右,调节pH为,,,,,(用pH计测定),立即测定每一份样液透光率,然后将它们放入沸水中煮沸40min后取出,冷却,以蒸馏水为空白,测定透光率,按上式计算透光率比,并将结果填于表格4中. 表4-4 pH对维生素C溶液稳定性的影响 样品编号pH 透光率(%) 透光率比(%)加热前加热后 1 2 3 4 5

食品理化检验的所有检验项目

一、果汁中可溶性固形物的含量 1实验原理:果汁中可溶性固形物的含量与折光率在一定条件下形成正比例,通过测定其折光率而计算出其含量 2仪器与试剂:阿贝尔折光仪/果汁样品 3步骤: A使用(1)将棱镜和打开,用擦镜纸将镜面拭洁后,在镜面上滴少量待测液体,并使其铺满整个镜面,关上棱镜。 (2)调节反射镜7使入射光线达到最强,然后转动棱镜使目镜出现半明半暗,分界线位于 十字线的交叉点,这时从放大镜2即可在标尺上读出液体的折射率。 (3)如出现彩色光带,调节消色补偿器,使彩色光带消失,明暗界面清晰。 (4)测完之后,打开棱镜并用丙酮洗净镜面,也可用吸耳球吹干镜面,实验结束后,须使 镜面清洁外,尚需夹上两层擦镜纸才能扭紧两棱镜的闭合螺丝,以防镜面受损。B蒸馏水在棱镜上校准~~清洁~~过滤果汁液~棱镜上测折光率~~读数~记录==复测两次 4数据处理 单位样品名称果粒橙果汁生产2013.7.19验讫日期:2013.9.16检测温度:28 许可证编号QS4406.0601.1210标准号Q/MAED0004S样品状况良好 生产单位广东省佛山市三水工业园区西南园B区105—10号(F0) 样品○1○2○3平均值实测值 果汁浓度10.09.8510.310.510. 果汁折光率 1.3478 1.3465 1.3485 1.3476 可溶性含量查表可得出结果:固形物含量为10% 5注意:果汁样品需要过滤,防止果汁沉淀物影响检测结果;做温度校准. 二、味精谷氨酸钠的含量 1原理:谷氨酸钠结构分子中有一个不对称碳原子,具有光学活性,能是偏振光面旋转一定角度,因此用旋光仪测其溶液旋光度,即可计算器含量 味精是由大豆蛋白、小麦面筋或其它含蛋白较多的物质中提炼的,也有用淀粉发酵制成。国家规定,商品名称为味精或味素的,其谷氨酸钠含量应在99%以上。 按规定,加盐味精产品的谷氨酸钠含量应不小于80%,食用盐添加量应小于20%,铁含 小于等于每千克10毫克;对于增鲜味精,则要求:谷氨酸钠含量不小于97%,增鲜剂呈 核苷酸二钠不小于1.5%,铁含量小于等于每千克5毫克等。普通味精 2仪器试剂: 旋光仪(精度0.01。)备有钠光灯(钠光谱D线589.3nm)/分析天平;奥桑味精; 盐酸溶液(1+1) 3步骤: 5g味精于(20-30ml水中溶解)、盐酸16ml溶解后移于500ml容量瓶定容冷却至20度装液于1dm的旋光管(不得有气泡)~测旋光度(同时测管中试样夜温度,复测2次)注意:主要是为了使维持溶液的PH,使得谷氨酸钠完全电离,稳定谷氨酸钠! a a 4计算X=L*c*[25.16+/-0.047(20-t)]*100=m*1*[25.16+/-0.047(20-t)]*100 a=旋光度,L=管长度,C=1ml试样液中含谷氨酸钠的质量,单位为g/ml,

氢气、氧气、乙炔、六氟化硫物理和化学特性培训2

氢气、氧气、乙炔、六氟化硫物理和化学特性培训 氢气 物理特性:在通常情况下,氢气是一种无色、无味、无嗅的气体。比空气轻,难溶于水,也难液化。具有最大的扩散速度和导热性,它的导热率比空气大7 倍。氢气在水中的溶解度很小。而在镍、钯、钼中的溶解度很大。一体积的钯能溶解几百体积的氢。氢的渗透性很强,在常温下,可透过橡皮和乳胶管,高温下可透过钯、镍、钢等金属薄膜。 化学特性:氢在常温下性质稳定,在点燃或加热条件下,能跟许多物质发生反应。1、氢气可燃性氢气在空气里燃烧,实质上与空气中的氧气发生反应,生成水,这一反应过程中有大量热放出。是相同条件下,汽油的3 倍。因此可用作高能燃料。不纯的氢气点燃时会发生爆炸。爆炸极限是:当空气中所含氢气的体积占混合体积的4%—74.2%时,点燃都会产生爆炸。当氢气的纯度达到74.2% 以上时,点燃只会发生燃烧,不会发生爆炸。2、氢气还原性氢气可以与氧化物发生反应,夺取氧化物中的氧。进行还原反应。因此氢气是还原剂具有还原性。 氧气 物理特性:在通常状况下,氧气是一种没有颜色、没有气味的气体。在标准状况下,氧气的密度是1.429g/L,比空气略大(空气的密度是1.293g/L)。它不易溶于水,1L水中只能溶解约30mL 氧气。液化温度为-183 摄氏度,液化后为淡蓝色液体,凝固后为雪花状淡蓝色固体。在压强为101kPa时,氧气在约-183℃时变为淡蓝色液体,在约-218℃时变成雪花状的淡蓝色固体。工业上使用的氧气,一般是加压贮存在钢瓶中。

化学特性:氧可以与除了稀有气体以外的所有其它元素直接化合。然而,在这些情况下氧的反应性有很大的差别。一些元素—-碱金属或碱土金属可以自燃。大多数元素在常温下不容易被氧化。碳必须加热才会着火。贵金属只有在非常高的温度下才会被氧化。借助石油燃料、煤和天然气的燃烧,可以产生热能、光能和电能。这些物质在温度低于1120℃(2050℉)的过量空气中燃烧时,生成的产品是二氧化碳、水、氮和未反应的氧在温度高于1650℃(3000℉)和所用的氧少于所需要的量时,还会生成氢和一氧化碳。在较低温度下,氧也可以与有机化合物反应,如由苯制酚,由萘生产苯酐,由烷烃制取各种醇、醛、酸和酮。氧在受到静电放电时能够转变为臭氧,但产率很低。 乙炔 物化性质:无色,略带乙醚气味,大多数市售商品因含有磷化氢、硫化氢和氨等杂质,而有蒜样臭气。相对密度1.175,凝点-81.8℃,蒸气密度0.9,微溶于水,溶于乙醇,易溶于丙酮。化学性质很活泼,能起加成反应和聚合反应。化学特性:极易着火、爆炸,闪点-32℃,自燃点305℃,气体能与空气形成爆炸性混合物,爆炸极限2.8%~81%;必须使乙炔溶解于丙酮和二基甲酰氨中,才能在高压下保持稳定,否则容易分解成氢和碳,产生爆炸。乙炔能与铜、银、汞等化合物生成爆炸性混合物。受撞击、摩擦或干状态下升温可导致强裂分解,并能与氟、氯发生爆炸性反应,遇热、明火和氧气化剂有着火、爆炸危险;有毒、麻醉作用,甚至引起昏迷,人吸入10%,轻度中毒反应,吸入20%显著缺氧、昏睡、发绀,吸入30%,动作不协调,步态蹒跚。通常危险性主要有爆炸性、燃烧性( 包括自燃性、遇湿易燃性)、氧化性、毒害性(包括中毒性、刺激性、麻醉性、致敏性、窒息性、致癌性等)、腐蚀性、放射性、高压气体

相关主题
文本预览
相关文档 最新文档