当前位置:文档之家› 纤维素醚的概述

纤维素醚的概述

纤维素醚的概述
纤维素醚的概述

纤维素醚的概述:

纤维素醚是一种非离子型半合成的高分子聚合物,具有水溶性和溶剂性两种,在不同行业中所引起的作用是不同的,比如在化学建材中,它具有一下复合作用:①保水剂②增稠剂③流平性④成膜性⑤粘结剂;而在聚氯乙烯行业,它就是一种乳化剂、分散剂;在医药行业,它就是一种粘结剂和缓控释骨架材料等,正因为纤维素具有多种的复合作用,所以它的应用领域也最为广泛。下面我重点介绍一下纤维素醚在各种建材中的使用方法和作用。

1、乳胶漆中:

在乳胶漆行中,要选择羟乙基纤维素中,等粘度的一般规格为30000-50000cps,它与HBR250规格相对应,参考用量一般是1.5‰-2‰左右。羟乙基在乳胶漆中的主要作用,就是增稠,防止颜料凝胶化,有助于颜料的分散,胶乳,的稳定,并可以提高组份的粘度,有助于施工的流平性能:羟乙基纤维素使用比较方便,冷水、热水都可以溶解,并且不受PH值的影响,在PI值2一12之间都可以安心使用,使用的方法是由以下三种:

I、直接在生产中加入:

此方法应该选择羟乙基纤维素延迟型的,溶解时间在30分钟以上的羟乙基纤维素,其使用步骤如下:①于备有高应切搅拌器的容器内力口人定量的纯净水②开始低速不停的搅拌,同时慢慢地把羟乙基均匀的加入溶液中③继续搅拌至所有颗粒物料湿透④加入其它助剂和碱性添加剂等⑤搅拌至所有羟乙基完全溶解,再加入配方中的其它组份,研磨到成品为止。

Ⅱ、配备母液侯用:

此方法可选择速溶型,并且具有防霉效果纤维素。此方法的优点是有较大的灵活性,可以直接加

入乳胶漆中,配制方法同①--④步骤相同。

Ⅲ、配成粥状物侯用:

由于有机溶剂对羟乙基来说是不良溶剂(不溶)因此可用这些溶剂配制粥状物。最常用有机溶剂是乳胶漆配方中的有机液体,如乙二醇、丙二醇和成膜剂(如二乙二醇丁基醋酸脂),粥状物羟乙基纤维素可以直接加入漆中,加入后仍继续搅拌至完全溶解为止。

2、刮墙腻子中:

目前,我国在大部分城市耐水、耐擦洗的环保型腻子已基本被人们所重视,在前几年间,由于用建筑胶水做成的腻子放射出甲醛气体损害人们的身体健康,建筑胶水是用聚乙烯醇和甲醛进行缩醛反应制的。所以这种材料逐渐被人们淘汰,而替代此材料的就是纤维素醚系列产品,也就是说发展环保建材,纤维素是目前唯一的一种材料。

在耐水腻子中又分为干粉腻子和腻子膏两种,这两种腻子中一般要选择甲基纤维素和羟丙基甲基两种,粘度规格一般在40000-75000cps之间最宜,在腻子中纤维素的主要作用就是保水、粘结、润滑等作用。

由于各个厂家的腻子配方不一样,有的是灰钙、轻钙、白水泥等,有的是石膏粉、灰钙、轻钙等,所以两种配方选择纤维素的规格粘度及其渗入量也不一样,一般的加入量为2‰-3‰左右。

在刮墙腻子施工中,由于墙体基面都有一定的吸水性(砖墙的吸水率为13%,混凝土为3-5%),再加上外界的蒸发,所以如果腻子失水过快,就会导致裂纹或脱粉等现象,从而使腻子的强度削弱,为此,加入纤维素醚后就会解决此间题。但是填充料的质量,特别是灰钙的质量也是极其重要的。由于纤维素具有较高的粘度,从而也增强了腻子的浮着力,也避免了施工中的流挂现象,并且刮起来之后比较舒畅、省力等。

在干粉腻子中纤维素醚要适当多加点,它的生产,使用都比较方便,填充料与助剂进行干粉均匀混合即可,施工也比较便捷,现场配水,用多少配多少。

3、混凝土砂浆:

在混凝土砂浆中,真正达到最终强度,必须使水泥完全水化反应才行,特别是在夏季施工中,混凝土砂浆水失过快,采取完全水化的措施就养护撒水,此方法一是造成水资源浪费和操作不便,关键的是水只是在表面,而内部水化仍然还是不完全,所以解决此问题的方法,在砂浆混凝土中加入保水剂纤维素一般选择羟丙基甲基或甲基纤维素,粘度规格在30000--60000cps之间,添加量为2%--3%。左右,保水率可提高到85%以上,在砂浆混凝土中的使用方法为干粉均匀混合后加入水即可。

4、粉刷石膏、粘结石膏、嵌缝石膏中:

随着建筑业的飞速发展,人们对新型建材的需求也日异增加,由于人们对环保意识的增加和施工效率的不断提高,胶凝材料石膏制品得到了飞速发展。目前最常见的石膏制品有粉刷石膏、粘结石膏、嵌石膏、磁砖粘结剂等。

粉刷石膏是一种质量优良的内墙与顶板抹灰材料,用它抹的墙面细腻光滑,不掉粉与基底粘结牢固,无开裂脱落现象,并具有防火功能;粘结石膏是一种新型建筑轻板粘结剂,是以石膏为基材,加人多种添力口剂而制成的粘体材料,它适用于各类无机建筑墙体材料之间的粘结,具有无毒、无味,早强快凝、粘结牢等特点,是建筑板、块施工配套材料;石膏填缝剂是石膏板材之间缝隙填充料以及墙面、裂缝的修补填充物。

这些石膏制品具有一系列不同功能,除了石膏和相关填料起作用外,关键的问题是添加的纤维素醚助剂起着主导作用。由于石膏分为有无水石膏及半水石膏之分,不同的石膏对产品的性能影响不同,所以增稠、保水、缓凝决定着石膏建材的质量。这些材料常见的问题就是空鼓开裂,初始强度达不到,解决这一问题,就是选择纤维素的型号与缓凝剂复合利用方法问题,在这方面一般选择甲基或羟丙基甲基30000--60000cps,加入量为1.5%--2%。之间,纤维素从中重点是保水缓凝润滑作用。

但是,在此中以靠纤维素醚作缓凝剂是达不到的,必须还要加柠檬酸缓凝剂混合使用后就不会影响初始强度。

保水率一般是指在没有外界吸水的情况下,水份自然流失的多少,如果墙体大干燥,基面吸水和自然蒸发使材料失水过快,同样会出现空鼓、开裂现象。

此使用方法为干粉混合使用,如果配制溶液可参考溶液的配制方法。

5、保温砂浆

保温砂浆是一种北方地区的新型内墙保温材料,它是由保温材料、砂浆与粘结剂合成的一种墙体材料。纤维素在此材料中,重点起粘结、增加强度作用。一般选择甲基纤维素高粘的(100000cps左右),用量一般在2‰-3‰)之间,使用方法为干粉混合法。

6、界面剂

界面剂选择HPMC30000cps,磁砖粘结剂选择60000cps以上的,在界面剂中重点作增稠剂,能提高抗拉强度和抗箭强度等作用。在磁砖粘结中作保水剂、防止磁砖失水过快脱落等

纤维素醚方法

纤维素醚检验方法 1外观: 在自然散射光下目测。 2粘度: 取400 ml 高搅烧杯称重,并称取294g水置入其中,开搅拌机,然后加入称取的纤维素醚 6.0 g;并不断的搅拌直至全溶,使其溶解配制成2%溶液;放置于实验温度(20±2)℃下3-4 h后;用NDJ-1型旋转粘度计测试,测试时选择合适的粘度计转子号数与转子转速。旋上转子并放入溶液中静置3-5分钟后;打开开关,待数值稳定后,记录结果 注:(MC 4万、6万、7.5万)选择4号转子,转速6转。 3水中溶解状态: 配置成2%的溶液过程中,观察溶解的过程、速度。 4灰分: 取瓷坩埚在马费炉中灼烧后,放在干燥器中冷却,称重,直至恒重后备用。精确称取(5~10)克试样于坩埚中,将坩埚先在电炉上焙烧,达到完全碳化后,放入马费炉中灼烧约(3~4)h,再放入干燥器中冷却,称量,直至恒重。 灰分计算(X): X = (m2-m1) / m0×100 式中:m1——坩埚质量,g; m2——灼烧后坩埚与灰分总质量,g; m0——试样质量,g; 5含水量(干燥失重): 称取5.0g 样品于快速水分测定仪托盘上,精确调节至零位刻度线。升温并调节温度于(105±3)℃之间。待显示刻度不动时,记下数值m1(称量精度为 5mg )。 含水量(干燥失重X(%))计算: X = ( m1 / 5.0) ×100 高效减水剂与水泥相容性检验方法 1、主题内容与适用范围 本方法适用于在试验室内比较高效减水剂与不同水泥的相容性。当使用矿物掺合料时,本方法也可用于比较高效减水剂与不同混合胶凝材料的相容性。 2、引用标准

本方法参照《混凝土外加剂匀质性试验方法》GB8077-87规定的净浆流动度试验方法。 3、高效减水剂与水泥相容性的检测方法如下: 3.1、仪器设备 1)水泥净浆搅拌机; 2)截锥形圆模:上口内径36mm,下口内径60mm,高度60mm,内壁光滑无接缝,为金属或有机玻璃制品; 3)玻璃板(400mm×400mm); 4)钢直尺(至少400mm); 5)刮刀 6)药物天平(称量100g,感量0.1g) 7)药物天平(称量1000g,感量1g)。 3.2、试验步骤 1)调整玻璃板至水平位置,将锥模置于水平玻璃板上,锥模和玻璃板均用湿布擦过,并将湿布覆盖上面; 2)称取水泥900g,倒入用湿布擦过的搅拌锅内; 3)加入4.5g粉状高效减水剂及261g或315g水,搅拌4min; 4)将拌好的水泥浆,迅速注入锥模内并用刮刀刮平,将锥模按垂直方向迅速提起,30s时量取互相垂直的两直径(mm),取其平均值作为水泥净浆的流动度。5)30min和60min后,继续搅拌余下的水泥浆,并按上述方法测定相应时间的流动度。 3.3、试验结果处理 1)测定高效减水剂与不同水泥品种相容性,流动度值取三个试样的算术平均值,绘制流动度随时间变化的曲线,得出结论; 2)需注明所用高效减水剂和水泥的品种、标号、生产厂;如果水灰比(水胶比)或高效减水剂掺量与本规定不符,也应注明。 砂浆减水率检验方法 1、主题内容与适用范围 本方法规定了水泥胶砂流动度测定的仪器和操作步骤。 本方法适用于火山灰质硅酸盐水泥、复合硅酸盐水泥和掺有火山灰质混合材料的普通硅酸盐水泥、矿渣硅酸盐水泥及指定采用本方法的其他品种水泥的胶砂流动度测定。 2、引用标准 GB177水泥胶砂强度检验方法 GB178水泥强度试验用标准砂 JBW 01-1-1水泥胶砂流动度标准样 3、砂浆减水率的检测方法如下: 3.1、仪器设备

纤维素工艺汇总

羟丙基甲基纤维素(HPMC)生产工艺 反应原理:羟丙基甲基纤维素的生产采用氯甲烷和环氧丙烷作为醚化剂, 其化学反应方程是: Rcell –OH(精制棉)+ NaOH(片碱、氢氧化钠)+ CH3Cl (氯甲烷)+ CH2OCHCH3(环氧丙烷)→Rcell - O - CH2OHCHCH3 (羟丙基甲基纤维素)+ NaCl (氯化钠)+ H2O (水) 化学结构式为: 工艺流程:精制棉粉碎---化碱---投料---碱化---醚化---溶剂回收及洗涤---离心分离---干燥---粉碎---混料---成品包装1:生产羟丙基甲基纤维素的原料及辅料 主要原料为精制棉,辅助材料为氢氧化钠(片碱)、环氧丙烷、氯甲烷、醋酸、甲苯、异丙醇、氮气。(精制棉粉碎的目的:通过机械能破坏精制棉的聚集态结构,以降低结晶度和聚合度,增加其表面积。) 2:精确计量与原料质量控制 在设备一定的前提下,任何主副原材料的质量及加入量和溶剂的浓度比例都直接影响产品的各项指标。生产过程体系中含有一定量的水,水与有机溶剂并非完全互溶,水的分散度影响碱在体系中分布。若没有充分搅拌,则对纤维素均匀碱化与醚化不利。

3:搅拌与传质传热 纤维素碱化、醚化都是在非均相(利用外力搅拌均匀)条件下进行的。水、碱、精制棉及醚化剂在溶剂体系中的分散与相互接触是否充分均匀,都会直接影响碱化、醚化效果。碱化过程搅拌不匀,会在设备底部产生碱结晶而沉淀,上层浓度低碱化不够充分,结果是醚化结束后体系还存在大量自由碱,但是纤维素本身碱化不够充分,产品取代不均匀,从而导致透明度差,游离纤维多,保水性能差,凝胶点也低,PH值偏高。 4:生产工艺(淤浆法生产过程) (1:)向化碱釜内加入规定量的固体碱(790Kg)、水(系统总水量460Kg),搅拌升温至80度恒温40分钟以上,固态碱完全溶解(2:)向反应釜加入6500Kg的溶剂(溶剂中异丙醇与甲苯的比值为15/85左右);将化好的碱压入反应釜,压碱后向化碱釜喷淋200Kg溶剂以冲洗管道;反应釜降温至23℃,将粉碎精制棉(800Kg)加入,精制棉加入后喷淋600Kg溶剂开始碱化反应。粉碎精制棉加入必须在规定时间(7分钟)内完成(加入时间长短很重要)。精制棉一旦与碱溶液接触,碱化反应就开始了。加料时间太长,会因精制棉进入反应体系的时间不同而使碱化程度有差异,导致碱化不均匀,产品均匀性降低,同时会引起碱纤维素与空气长时间接触发生氧化降解,导致产品粘度下降。为得到不同粘度级别的产品,可在碱化过程中抽真空、充氮,也可加入一定量的抗氧剂(二氯甲烷)。碱化时间控制在120min,温度保持20-23℃ (3:)碱化结束,加入规定量的醚化剂(氯甲烷和环氧丙烷),升温至规定温度并在规定的时间内进行醚化反应。醚化条件:氯甲烷加入量950Kg,环氧丙烷加入量303Kg。加入醚化剂冷搅40分钟后升温,醚化一段温度56℃、恒温时间2.5h,醚化二段温度87℃,恒温2.5h。羟丙基的反应在30℃左右即能进行,50℃时反应速率大大加快,甲氧基化反应在60℃时缓慢,50℃以下更弱。氯甲烷和环氧丙烷的量、比例和时机以及醚化过程的升温控制,直接影响产品结构。

6种纤维素的作用及来源要点

6种纤维素的作用及来源 维生素A 维生素A:保护眼睛和全身上皮组织间接抵抗各种疾病的感染。缺乏时会造成夜盲、干眼症、角膜软化甚至穿孔、失明以及免疫力低下。维生素A来源于鱼肝油,胡萝卜,动物的肝、肾、乳类、蛋黄,有色蔬菜(南瓜、鸡毛菜、克莱、芥菜、紫菜等)及黄色水果(杏、柿等)。 维生素D 维生素D:可以促进钙、磷的吸收和骨骼正常的生长。缺乏时会患佝楼病。维生素D来源于鱼肝油、肝和蛋,以及日光照射裸露的皮肤在体内形成。 维生素E 维生素E利用它的抗氧化性质来防止心脏病。并且它增进了循环,有助于防止血凝。维生素E也能抵抗某种癌症,延缓衰老,预防白内障。而且对免疫系统正常发挥它的功能也有帮助作用。不过它也可以帮助伤口愈合。成年人的维生素E缺乏症可以通过下述症状来鉴别:过早衰老,肌肉虚弱,走路困难,容易被传染,伤口愈合能力差,容易疲劳。维生素E缺乏涉及到的疾病主要是红血球被破坏、肌肉的变性、贫血症、生殖机能障碍。尽管维生素E是一种脂肪可溶的维生素,并且储存在人体内,但是维生素E是最安全的维生素,而且毒性很小。维生素E的主要食物来源包括麦芽、大豆、植物油、坚果类、芽甘蓝、绿叶蔬菜、菠菜、有添加营养素的面粉、全麦、未精制的谷类制品、蛋。维生素E的建议每日摄入量是400-800IU,而且最好是通过α-维生素E获取。 维生素B1 维生素B1:可以预防神经炎及脚气病等,调节碳水化合物代谢,帮助消化,促进生长发育。缺乏时会引起食欲不振、健忘、不安、易怒、患脚气病,甚至出现惊厥昏迷,心力衰竭。维生素Bl来源于米糠、麦就豆类、花生等。 维生素B2 维生素B2:功用是促进细胞组织氧化,防止皮肤干燥和口、眼症状。缺乏时会发生口角炎、眼炎、舌炎。维生素B2来源于肝、蛋、乳、绿叶蔬菜。 维生素C 维生素C:调节生理机能,促进铁的吸收,提高对传染病及其他疾病的抵抗力。缺乏时会出现坏血病、骨骼生长及造血机能发生障碍,引起生长迟缓。维生素C来源于新鲜水果(以柚、橙。猕猴桃、山植含量高)和新鲜蔬菜(番茄、青椒含量高)。 水和食物纤维的作用

纤维素纳米纤维

纤维素纳米纤维 众所周知,植物的基本组成单位是细胞,其主要结构为纤维素纳米纤维,纤维素纳米纤维是拉伸纤维素链的半结晶纤维束。纤维素纳米纤维不仅纤细,而且纤维素分子链可以拉伸和结晶,所以其质量仅为钢铁的1/5,强度却是钢铁的5倍以上。另外,其线性热膨胀系数极小,是玻璃的1/50,而且其弹性模量在-200~200℃范围内基本保持不变。弹性模量约140GPa,强度2~3GPa。不同于石油基材料,作为生物基材料,更环保。 图1 纳米纤维素微观结构作为下一代工业材料或绿色纳米材料,目前已在全世界积极地开展有关制造和利用这种纤维素纳米纤维的研究。用木材浆粕等植物类纤维材料制造纤维素纳米纤维的各种方法相继被开发出来。在低浓度(约百分之几)下进行的浆粕纤维分解技术有高压高速搅拌方法、微射流法、水中逆流碰撞法、研磨机研磨法、冷冻粉碎法、超声波分丝法、高速搅拌法和空心颗粒粉碎法等。纤维素纳米纤维重要的特征是可以用所有的植物资源作为原料。除木材外,还可以从稻杆和麦杆等农业废弃物、废纸、甘蔗和马铃薯的榨渣,以及烧酒气体等的工业废弃物中制得直径为10~50nm的纳米纤维。如果有效利用轻薄且宽域分布的生物资源的特点,则可以制造和利用取自唾手可得资源的高性能纳

米纤维。日本等发达国家已经实现了纤维素纳米纤维的工业化生产。轻量、强度高的纤维素纳米纤维作为复合材料,可制造汽车零部件和家电产品外壳、建筑材料等;利用气体阻隔性可制造屏障薄膜;利用其透明性可制作显示器和彩色滤光器、有机EL基板、太阳能电池板等;利用耐热性可制造半导体封装材料和柔性基板、绝缘材料等;利用黏弹性能,可生产化妆品、药品、食品、伤口敷料如细胞培养基材、分离器和过滤器以及特殊功能纸张等。在石油工程领域,纳米纤维素凝胶可作为井下流体助剂,不发生体积收缩;可用于钻井液降滤失剂、页岩抑制剂、增稠剂等,改善相关流体的性能。《石油工程科技动态》所有信息编译于国外石油公司网站、发表的论文、专利等,若需转载,请注明出处!中国石化石油工程技术研究院战略规划研究所

纤维素醚的种类详细介绍

纤维素醚的种类及作用机理 保水剂是改善干混砂浆保水性能的关键外加剂,也是决定干混砂浆材料成本的关键外加剂 之一,其主要来源是纤维素醚。 1.1羟丙基甲基纤维素醚 羟丙基甲基纤维素是碱纤维素与醚化剂在一定条件下反应生成一系列产物的总称。碱纤维 素被不同的醚化剂取代而得到不同的纤维素醚。按取代基的电离性能,纤维素醚可分为离 子型(如羧甲基纤维素)和非离子型(如甲基纤维素)两大类。按取代基的种类,纤维素 醚可分为单醚(如甲基纤维素)和混合醚(如羟丙基甲基纤维素)。按可溶解性不同,可 分为水溶性(如羟乙基纤维素)和有机溶剂溶解性(如乙基纤维素)等,干混砂浆主要用 水溶性纤维素,水溶性纤维素又分为速溶型和经过表面处理的延迟溶解型。 纤维素醚在砂浆中的作用机理如下: (1)砂浆内的纤维素醚在水中溶解后,由于表面活性作用保证了胶凝材料在体系中有效 地均匀分布,而纤维素醚作为一种保护胶体,“包裹”住固体颗粒,并在其外表面形成一 层 润滑膜,使砂浆体系更稳定,也提高了砂浆在搅拌过程的流动性和施工的滑爽性。 (2)纤维素醚溶液由于自身分子结构特点,使砂浆中的水份不易失去,并在较长的一段 时间内逐步释放,赋予砂浆良好的保水性和工作性。 1.1.1甲基纤维素(MC)分子式\[C6H7O2(OH)3-h(OCH3)n\]x 将精制棉经碱处理后,以氯化甲烷作为醚化剂,经过一系列反应而制成纤维素醚。一般取 代度为1.6~2.0,取代度不同溶解性也有不同。属于非离子型纤维素醚。 (1)甲基纤维素可溶于冷水,热水溶解会遇到困难,其水溶液在pH=3~12范围内非常 稳定。与淀粉、胍尔胶等以及许多表面活性剂相容性较好。当温度达到凝胶化温度时,会 出 现凝胶现象。 (2)甲基纤维素的保水性取决于其添加量、粘度、颗粒细度及溶解速度。一般添加量大,细度小,粘度大,则保水率高。其中添加量对保水率影响最大,粘度的高低与保水率的 高低不成正比关系。溶解速度主要取决于纤维素颗粒表面改性程度和颗粒细度。在以上几 种纤维素醚中,甲基纤维素和羟丙基甲基纤维素保水率较高。 (3)温度的变化会严重影响甲基纤维素的保水率。一般温度越高,保水性越差。如果砂 浆温度超过40℃,甲基纤维素的保水性会明显变差,严重影响砂浆的施工性。 (4)甲基纤维素对砂浆的施工性和粘着性有明显影响。这里的“粘着性”是指工人涂抹 工具与墙体基材之间感到的粘着力,即砂浆的剪切阻力。粘着性大,砂浆的剪切阻力大, 工 人在使用过程中所需要的力量也大,砂浆的施工性就差。在纤维素醚产品中甲基纤维素粘 着力处于中等水平。 1.1.2羟丙基甲基纤维素(HPMC)分子式为\[C6H7O2(OH)3-m-

纤维素醚生产制备工艺技术要点

1. 200880112852 包括2-丙烯酰氨基甲基丙烷磺酸的两亲性共聚物和任选的纤维素烷基醚和/或烷基纤维素烷基醚的加香组合物 2. 86101979 采用新型羟丙基甲基纤维素醚作为悬浮剂聚合氯乙烯的方法 3. 88104545 3-烷氧基-2-羟丙基纤维素醚衍生物的组合物及其在建筑胶料中的应用 4. 89102682 一步法合成交联羧甲基羟丙基纤维素复合醚工艺 5. 89102657 非离子型纤维素醚用于添加剂、缝密封材料及涂层材料 6. 89101622 用作氯乙烯悬浮聚合的悬浮剂及有机液体增稠剂的**丙基甲基纤维素醚类 7. 91100348 一步法合成交联羧烷基羟烷基纤维素复合醚工艺 8. 93120890 高度取代的羧甲基磺乙基纤维素醚及其用途 9. 93120888 高度取代的羧甲基磺乙基纤维素醚及其生产工艺和在纺织品印花油墨中的应用 10. 95190826 含有纤维素醚的热凝胶药物转运载体 11. 96114639 快速混媒法生产食(药)用级羧甲基纤维素醚的工艺 12. 96101672 聚阴离子纤维素醚防伪线及其在商品防伪包装上应用 13. 98808434 纤维素醚和涂敷过的片状载体材料上固定生物分子的方法 14. 98805409 纤维素醚淤浆 15. 98107714 含有2-丙烯基的纤维素醚及其在聚合中作为保护胶体的用途 16. 99808663 增稠性能改善的非离子纤维素醚 17. 99800835 改性纤维素醚 18. 99813715 制备低粘性水溶性的纤维素醚的方法 19. 00118796 把纸浆粉碎为粉末的方法和制造纤维素醚的方法 20. 00111228 高取代羟丙基纤维素醚及其制备方法 21. 00811009 包含疏水改性的纤维素醚的头发调理组合物 22. 00108603 水溶性纤维素醚组合物及胶料

纤维素对人体的作用

纤维素对人体的作用 姓名:陈钊学号:2010210101 班级:信息管理504班一、生理作用 纤维素的主要生理作用是吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的、排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少,从而可以预防肠癌发生。 二、膳食纤维 人类膳食中的纤维素主要含于蔬菜和粗加工的谷类中,虽然不能被消化吸收,但有促进肠道蠕动,利于粪便排出等功能。食纤维可提高胰岛素受体的敏感性,提高胰岛素的利用律;膳食纤维能包裹食物的糖分,使其逐渐被吸收,有平衡餐后血糖的作用,从而达到调节糖尿病患者的血糖水平,治疗糖尿病的作用。 三、预防和治疗冠心病 血清胆固醇含量的升高会导致冠心病。胆固醇和胆酸的排出与膳食纤维有着极为密切的关系。膳食纤维可与胆酸结合,而使胆酸迅速排出体外,同时膳食纤维与胆酸结合的结果,会促使胆固醇向胆酸转化,从而降低了胆固醇水平。 四、降压作用 膳食纤维能够吸附离子,与肠道中的钠离子、钾离子进行交换,从而降低血液中的钠钾比值,从而起到降血压的作用。 五、抗癌作用 自七十年代以来,膳食纤维在抗癌方面的研究报道日益增多,尤其是膳食纤维与消化道癌的关系。肠道中的有益菌能够利用膳食纤维产生丁酸,丁酸能抑制肿瘤细胞的生长增殖,诱导肿瘤细胞向正常细胞转化,并控制致癌基因的表达。 六、减肥治疗肥胖症 膳食纤维取代了食物中一部分营养成份的数量,而使食物总摄取量减少。膳食纤维促增加唾液和消化液的分泌,对胃起到了填充作用,同时吸水膨胀,能产生饱腹感而抑制进食欲望。膳食纤维与部分脂肪酸结合,这种结合使得当脂肪酸通过消化道时,不能被吸收,因此减少了对脂肪的吸收率。 七、治疗便秘 膳食纤维具有很强的持水性,其吸水率高达10倍。它吸水后使肠内容物体积增大,

纤维素醚的区分

目前国内的羟丙基甲基纤维素质量良莠不齐,价格相差悬殊,令客户难以作出正确的选择。同外公司的改性HPMC,是多年研究的成果,掺加微量物质可以改善施工性能,提高操作性,当然会影响一些其它性能,但是总体来说它是高效的;而国内厂家的HPMC大量掺加其它成分,唯一目的就是降低成本,造成产品的保水性、粘结性等性能大大降低,造成许多建筑质量问题。 一.纯净的HPMC与掺假的HPMC存在下列差异: 1.纯净HPMC目视状态蓬松,堆积密度较小,范围是:0.3-0.4g/ml;掺假的HPMC流动性更好,手感更加沉,与正品外观存在明显差异。 2.纯净HPMC水溶液澄清、透光率高,保水率≥97%;掺假的HPMC水溶液较混浊,保水率很难达到80%。 3.纯净HPMC不应该嗅到氨气、淀粉和醇类的味道;掺假的HPMC往往可以嗅到各类味道,即使无味,也会手感较沉。 4.纯净HPMC粉末在显微镜或放大镜下是纤维状;掺假的HPMC在显微镜或放大镜下可以观察到颗粒状固体或晶体。 二.20万难以逾越的高度? 国内很多专家、学者发表论文认为,HPMC生产受国内的设备安密封性、浆液法工艺以及低压生产的制约,普通的企业无法生产20万粘度以上的产品。进入夏季甚至无法生产8万粘度以上的产品。他们认为,所谓的20万产品一定是假产品。 专家的论点不无道理,按照国内以前的生产状况,确实能得出以上结论。 提高HPMC粘度的关键是,反应器高度密封性和高压反应以及优质的原材料。高度密封性避免氧气对纤维素的降解,高压反应条件促进醚化剂向纤维素内部的渗透并保证产品的均匀性。 200000cps羟丙基甲基纤维素的基本指标: 2%水溶液粘度200000cps 产品纯度≥98% 甲氧基含量19-24%

hpmc纤维素用途

hpmc羟丙基甲基纤维素主要用于聚氯乙烯生产中的分散剂,此外在其他石油化工、涂料、建材、除漆剂、造纸、化妆品等产品生产中作增稠剂、稳定剂、乳化剂、成膜剂等。那么,hpmc纤维素用途是什么?为此,安徽金水桥建材有限公司为大家总结了相关信息,希望能够为大家带来帮助。 本品为工业级HPMC,主要用途为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、农业化学品、油墨、纺织印染、陶瓷、造纸、化妆品等产品生产中作增稠剂、稳定剂、乳化剂、赋形剂、保水剂、成膜剂等。在合成树脂方面的应用,可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点,从而基本上取代了明胶和聚乙烯醇作分散剂。另外,在建筑工业施工过程中,主要用于砌墙,灰泥粉饰,嵌缝等机械化施工中;特别在装饰性施工中,用做粘贴瓷砖、大理石、塑料装饰,粘贴强度高,还可以减少水泥用量。用于涂料行业中做增稠剂,可使图层光亮细腻,不脱粉,改善流平性能等。

安徽金水桥建材有限公司是年产3000吨羟丙基甲基纤维素(羟丙甲\hpmc纤维素)的高新技术企业。羟丙基甲基纤维素品型号有kh60和kh75,羟丙基甲基纤维素的粘度有:5万、10万、15万、20万分类;广泛应用于建筑、乳胶涂料、聚氯乙烯、陶瓷以及纺织生产中。产品质量先进,畅销国内、国际市场,深受用户好评。 公司占地面积45亩,厂房面积19.8亩,办公楼3.75亩,位于安徽省宿州市经济技术开发区,距市中心2公里。京浦铁路,206国道,310省道纵穿开发区,合徐高速公路沿开发区西缘穿过。宿州市位于安徽省最北部,史有“皖北大门”之称,宿州市居中靠东、承东启西、连南接北,是贯通华东、华南、华中、华北地区的重要交通枢纽,铁路、公路、水路交通十分便捷。连霍高速、京福高速在宿州市纵横贯穿,京沪、陇海两大铁路干线呈“十”字状贯穿全境,已建成的京沪高速铁路经过宿州市,并设有车站,从宿州市3个小时可到北京、2个小时到上海。水路运输主要航线由宿州港经洪泽湖至长江中下游各港口城市,经大运河至江、浙、沪等地或经淮河到淮河沿岸

纳米纤维素的表征-制备及应用研究

纳米纤维素的表征\制备及应用研究 1、前言 纤维素主要由植物的光合作用合成,是自然界取之不尽,用之不竭的可再生天然高分子,除了传统的工业应用外,任何交叉结合纳米科学、化学、物理学、材料学、生物学及仿生学等学科进一步有效地利用纤维素资源,开拓纤维素在纳米精细化工、纳米医药、纳米食晶、纳米复合材料和新能源中的应用,成为国内外科学家竞相开展的研究课题。 在纳米尺寸范围操纵纤维素分子及其超分子聚集体,设计并组装出稳定的多重花样,由此创制出具有优异功能的新纳米精细化工品、新纳米材料,成为纤维素科学的前沿领域[1]。 1.1 纳米纤维素的特性 纳米纤维素是令人惊叹的生物高聚物,具有其它增强相无可比拟的特点:其一,源于光合作用,可安全返回到自然界的碳循环中去;其二,既是天然高分子,又具有非常高的强度,杨式模量和张应力比纤维素有指数级的增加,与无机纤维相近。纳米管是迄今能生产的强度最高的纤维,纳米纤维素的强度约为碳纳米管强度的25%,有取代陶瓷和金属的潜质;其三,比表面积巨大,导致其表面能和活性的增大,产生了小尺寸、表面或界面、量子尺寸、宏观量子隧道等效应[2]。 1.2 纳米纤维素分类 纳米纤维素超分子以其形貌可以分为以下3类:纳米纤维素晶体(晶须)、纳米纤维素复合物和纳米纤维素纤维。 1.2.1 纳米纤维素晶体 利用强酸水解生物质纤维素,水解掉生物质纤维素分子链中的无定形区,保留结晶区的完整结构,可以制得纳米微晶纤维素。这种晶体长度为10nm~1μm,而横截面尺寸只有5~20nm,长径比约为1~100,并具有较高的强度。若再进一步对纳米微晶纤维素进行强酸水解处理或高强度超声处理,将会得到形态尺寸更加精细的纤维素纳米晶须[3],纳米晶须具有比纳米微晶纤维素更高的比表面积和结晶度,使其在对聚合物增强方面可发挥出更大的作用。 1.2.2 纳米纤维素复合物 纳米尺寸的纤维素用于复合物性能增强,归因于纳米纤维索高的杨氏模量和微纤丝的均匀分布。纳米纤维素复合物的强度高,热膨胀系数低,透光率高,环境友好,完全降解,源于可持续性资源,废弃后不伤害环境,同时能够容易处置或堆肥[4]。

水溶性纤维素醚

赫达纤维素醚介绍 低取代羟丙基纤维素(L-HPC) 一.名称: 1.化学名称:低取代2-羟丙基醚纤维素 2.英文全称:Low-Substituted Hydroxyproxyl Cellulose 3.英文简称:L-HPC 二.分子组成与结构式: 三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭,无味。 2.性状:L-HPC在水中溶胀成澄清或微浑浊的胶体溶液;在乙醇、丙酮或乙醚中不溶。高取代羟丙基纤维素(H-HPC) 一.名称: 1.化学名称:高取代2-羟丙基醚纤维素 2.英文全称:High-Substituted Hydroxyproxyl Cellulose 3.英文简称:H-HPC 二.分子组成与结构式:

三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭无味. 2.颗粒度:20目过筛率不小于99%;30目过筛率不小于95%。 3.假比重:0.5~0.6克/立方厘米,比重1.2224。 4.热稳定性: 变色温度:195~210℃ 碳化温度:260~275℃ 软化温度:130℃ 38℃以下在水中呈清晰透明的溶液。 凝胶温度:40℃以上。 五.特性: 1.常温下溶于水和多种有机溶剂。如:无水甲醇、乙醇、异丙醇、丙二醇、二氯甲烷、也可

溶于丙酮、氯仿、和溶碱剂,溶液均透明。 2.H—HPC是良好的热塑性物质,具有优良的成膜性,所成膜非常坚韧,光泽性良好弹性充分。 3.灰份极低,使本产品具有优良的粘结性,作为乳液增粘用,十分稳定,而且分散性好。 4.H—HPC本身无药理作用,无毒,对生理无害。 5.H—HPC呈化学惰性,难与其它物质发生化学反应。 6.取代基分布比较均匀,充分,H—HPC抗菌强。 7.平衡湿含量较低。 8.由于本身是非离子性质本品在酸性溶液中不会凝胶.在广泛PH值中显示优良稳定性。 9.H—HPC的浓溶液可形成正规取向的液晶。 10.H—HPC水溶液具有表面活性作用。 11.其水溶液随温度的升高和降低,能历次经过凝胶和溶解的可逆过程。 六.溶解方法: 1.溶解于水: 1).将H-HPC慢慢加入到剧烈搅拌的水中,直到完全溶解为止.如果将全部物料加入将难于溶解; 2).取预定水量的20~30%加热到60℃以上,在充分搅拌的条件下将H-HPC慢慢加入,待所有H-HPC入后,再将剩余的80—70%的水加入,可完全溶解。 2.溶解于有机溶剂: 在充分搅拌下将H—HPC慢慢加入到有机溶剂中,若一次性加入溶解很困难。 羟丙基甲基纤维素(HPMC) 一.名称: 1.化学名称:2-羟丙基醚甲基纤维素 2.英文全称:Hydroxypropyl Methyl Cellulose 3.英文简称:HPMC 二.分子组成与结构式: 三.技术要求:

纤维素在沥青混合料中的作用

纤维素在沥青混合料中的作用 摘要:介绍了纤维素的分类和其在沥青混合料中的主要作用,以及使用方法、质量指标和检测方法。最后介绍了木质素、合成聚合物、聚丙烯腈和聚酯等常用纤维素的质量指标与参考价格。在沥青混合料中添加纤维素后能大大提高沥青路面的路用性能,适宜在修筑优质沥青道路时采用。 关键词:沥青路面纤维素强度稳定性耐久性 随着我国公路交通的发展,交通运输量特别是重载车辆运输量的增加,在行车产生的疲劳荷载和冲击荷载作用下,沥青路面出现较为严重的破损现象。沥青路面混合料的性能及级配不同,路面的使用性能也有差别。近年来,在对提高沥青路面的耐久性深入研究后,发现在沥青混合料中添加纤维稳定剂,既可在生产、运输、摊铺和碾压过程中保证混合料的均匀性及稳定性,又是提高路面耐久性和稳定性的有效措施。由于国内外对纤维素的研究起步不久,各品牌的纤维素质量、价格相差颇大,设计、施工单位在选择时较难取舍;因此有必要对纤维素的性能、质量标准、检验方法以及其在沥青混合料中的作用作一介绍,为使用者提供决策依据。 1 纤维素的分类及在沥青混合料中的主要作用 1.1 纤维素的分类 目前,应用在沥青工程中的纤维,按其化学成分,主要有木质素纤维、有机化学合成纤维和无机矿物纤维;按其产品形状,可分为絮状(纯纤维素)和颗粒状(纤维素通过添加部分沥青预制而成)。 1.2 纤维素在沥青混合料中的主要作用 根据工程实践和权威部门测定数据证实,在沥青混合料中添加0.3%的路用工程纤维,马歇尔稳定度明显提高;混合料的流值有所降低,使路面处于不易蠕动状态,结构的稳定性大大提高;劈裂强度增长幅度显著;在高温高湿度条件下,残留稳定度仍保持较高数值,从而阻止了沥青和胶浆的涌出。因此,路用工程纤维已被广泛应用于新建及修建沥青玛蹄脂碎石路面(SMA路面)、纤维加强型沥青路面,以及透水沥青混合料。其主要作用可归纳为: 1)加筋作用,增强路面的抗低温开裂能力。在添加纤维素的混合料中,纤维与纤维间搭接成三维立体结构,犹如在灰泥中掺加草筋一样,起到加筋增强作用,有效地减少路面低温开裂。 2)分散作用,提高路面的抗车辙能力。纤维素具有良好的分散性,SMA路面混合料在拌和时加入适量的纤维素后,沥青和矿粉就能均匀地分散在集料之间,避免结为胶团而使路面出现油斑。 3)吸附作用,提高路面耐久性。纤维素对液体具有良好的吸附力,其吸油率可达自身质量的5倍以上。在混合料中能吸附沥青,使沥青的用量增加,集料表面的结构沥青膜增厚,从而提高路面的耐久性。 4)粘附作用,提高路面抗水损害能力。纤维素能增加沥青和集料的粘附性,提高沥青混合料的黏度,加强集料间的粘结能力,从而增大路面与轮胎之间摩擦力,增加沥青混合料的抗疲劳强度,提高抗水损害的能力。

常识积累:纤维素的制法及作用

常识积累:纤维素的制法及作用 纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。棉花的纤维素含量接近100%,为天然的最纯纤维素来源。一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。 纤维素是植物细胞壁的主要结构成分,通常与半纤维素、果胶和木质素结合在一起,其结合方式和程度对植物源食品的质地影响很大。而植物在成熟和后熟时质地的变化则由果胶物质发生变化引起的。人体消化道内不存在纤维素酶,纤维素是一种重要的膳食纤维。 一、纤维素的制法 生产方法一:纤维素是世界上蕴藏量最丰富的天然高分子化合物,生产原料来源于木材、棉花、棉短绒、麦草、稻草、芦苇、麻、桑皮、楮皮和甘蔗渣等。我国由于森林资源不足,纤维素的原料有70%来源于非木材资源。我国针叶材、阔叶材的纤维素平均含量约43-45%;草类茎秆的纤维素平均含量在40%左右。纤维素的工业制法是用亚硫酸盐溶液或碱溶液蒸煮植物原料,主要是除去木素,分别称为亚硫酸盐法和碱法。得到的物料称为亚硫酸盐浆和碱法浆。然后经过漂白进一步除去残留木素,所得漂白浆可用于造纸。再进一步除去半纤维素,就可用作纤维素衍生物的原料。

生产方法二:用纤维植物原料与无机酸捣成浆状,制成α-纤维素,再经处理使纤维素作部分解聚,然后再除去非结晶部分并提纯而得。 生产方法三:将选好的工业木浆板疏解,然后送入已加1%~10%的盐酸(用量为5%~10%)的反应釜进行升温水解,温度为90~100℃,水解时间0.5~2h,反应结束后经冷却送人中和槽,用液碱调至中性,过滤后滤饼在80~100℃下干燥,最后经粉碎得产品。 生产方法四:由木浆或棉花浆制成的纤维素。经漂白处理和机械分散后精制而成。 二、纤维素的作用 纤维素是地球上最古老、最丰富的天然高分子,是取之不尽用之不竭的,人类最宝贵的天然可再生资源。纤维素化学与工业始于一百六十多年前,是高分子化学诞生及发展时期的主要研究对象,纤维素及其衍生物的研究成果为高分子物理及化学学科的创立、发展和丰富作出了重大贡献。 (一)生理作用 人体内没有β-糖苷酶,不能对纤维素进行分解与利用,但纤维素却具有吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少的作用,从而可以预防肠癌发生。

纤维素醚的生产工艺及流程图解版

纤维素醚的生产工艺及流程图解版 注:根据以下文字描述来源做成的图解,仅代表个人理解,若有偏差,请多包涵。 设备生产工艺生产流程

纤维素醚的生产工艺及流程 传统的纤维素醚生产工艺是:将精制棉用氢氧化钠在一定的条件下进行碱化生成纤维素钠,再 由环氧丙烷、环氧乙烷、氯甲烷或氯乙酸等醚化剂进行醚化,在一定条件下反应生成不同类型 品种纤维素醚,再通过中和、回收溶剂、洗涤、干燥、粉碎最终得到粉末状的成品;因醚化剂 的不同,取代基就不同,所以纤维素醚的名称就不同,这种工艺存在的不足是:生产出来的纤 维素醚成本高,尤其是近几年棉花的价格不断上涨,导致了精制棉的价格飞速上涨,最终各种 纤维素醚产品成本价格也在提高,直接影响了销售及其推广。 1.一种纤维素醚的制备方法,其特征在于:包括如下反应步骤: 第一步:木浆的粉碎 首先利用木浆开松机,将木浆进行开松,开松后的木浆再经过开棉粉碎机进行粉碎,得到与精 制棉一样松密度(≥130g/L)的木浆粉,达到生产纤维素醚的指标要求; 第二步:木浆的碱化 将氢氧化钠800份投入反应釜内,升温至65℃,将碱溶解,然后降温至20℃,投入粉碎后的木浆850份,在22℃的条件下,碱化2.5小时,生成纤维素钠,反应过程中,每反应10分钟,静置15分钟; 第三步:纤维素钠的醚化 在碱化后生成的纤维素钠中加入醚化剂环氧丙烷400份、氯甲烷900份,在22℃的条件下恒 温反应20分钟,使其醚化剂充分搅拌均匀,然后升温至50±1℃,恒温反应1小时,然后立刻升温至90℃,恒温反应2小时反应结束,降温至40℃加入乙醇溶液中和洗涤,然后加入醋酸 中和调节PH值5-7之间,然后将物料压入回收釜,用100℃以上的软水将溶剂置换回收,回 收完后,通过离心机将物料与软水分离,然后物料再用无轴螺旋输送至闪蒸干燥机,干燥后得 到最终的产品,羟丙基甲基纤维素醚。 技术总结 本发明涉及一种木浆纤维素醚的制备方法,包括如下反应步骤:第一步:木浆的粉碎;第二步:木浆的碱化;第三步:纤维素钠的醚化。本发明工艺制备的羟丙基甲基纤维素醚与传统工艺用 精制棉制备生产的羟丙基甲基纤维素醚在同等条件下进行对比试验,发现本发明用木浆制备生 产的羟丙基甲基纤维素醚,质量高于用精制棉制备生产的羟丙基甲基纤维素醚质量,但成本价 格却要低40%以上;本发明采用氢氧化钠和水为反应介质,不添加任何惰性有机溶剂,显著降低了生产成本。

纳米纤维概述

纳米纤维概述 1.纳米纤维的概念 纳米纤维是指直径处在纳米尺度范围(1~100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质[1]。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料、聚合物增强、电子和光学设备和酶及催化作用等方面。 2.纳米纤维的制备方法 随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。 2.1静电纺丝法 静电纺丝法是近年来应用最多、发展最快的纳米纤维制备方法[2-4],其原理是聚合物溶液或熔体被加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力,随着电场力的增大,毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,即泰勒锥。当外加静电压增大且超过某一临界值时,聚合物溶液所受电场力将克服其本身的表面张力和黏滞力而形成喷射细流,在喷射出后高聚物流体因溶剂挥发或熔体冷却固化而形成亚微米或纳米级的高聚物纤维,最后由接地的接收装置收集。利用静电纺丝法可制备得到多种聚合物纳米纤维,而采用不同的装置可收集获得无序排列的纳米纤维毡或定向排列的纳米纤维束,也可制备空心结构、实心结构、芯--核结构的纳米纤维,满足其在不同领域的应用需要。 2.2双组份复合纺丝法 双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主[5-7],其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维[8]。Fedorova等[9]以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA 复合纤维,然后选择溶剂将作为“海”组分的PLA基体相去除,最终获得尺寸为微纳米级的PA6纤维。研究发现,当“岛”的数量增加至360个时,制备所得纳米纤维的直径为360nm。 海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。

纤维素醚分类

近年来,随着坚持科学发展观和建设资源节约型社会的相关政策的逐步落实,我国建筑砂浆正面临着从传统砂浆到干混砂浆的一场变革,建筑干混砂浆行业已驶入快速发展的轨道。纤维素醚作为建筑干混砂浆产品中的最主要外加剂,对于干混砂浆的性能和成本起着关键性的作用。那么,纤维素醚分类有哪些?为此,安徽金水桥建材有限公司为大家总结了相关信息,希望能够为大家带来帮助。 纤维素醚有两种类型:一种是离子型,如羧甲基纤维素钠(CMC),另一种是非离子型,如甲基纤维素(MC),羟乙基纤维素(HEC),羟丙基纤维素(HPMC)等。目前,全球纤维素醚产品大多用于建筑材料。随着干混砂浆行业的快速发展,我国纤维素醚基本实现了国产化,国外产品控制市场的局面已经打破。随着干混砂浆产品应用的日益普及,我国将会成为世界上最大的干混砂浆生产国,纤维素醚的应用量会进一步增加,其生产厂家和产品品种也会越来越多,因此用于干混砂浆中纤维素醚的产品性能如何成为生产方与使用方关注的焦点。

安徽金水桥建材有限公司是年产3000吨羟丙基甲基纤维素(羟丙甲\hpmc纤维素)的高新技术企业。羟丙基甲基纤维素品型号有kh60和kh75,羟丙基甲基纤维素的粘度有:5万、10万、15万、20万分类;广泛应用于建筑、乳胶涂料、聚氯乙烯、陶瓷以及纺织生产中。产品质量先进,畅销国内、国际市场,深受用户好评。 公司占地面积45亩,厂房面积19.8亩,办公楼3.75亩,位于安徽省宿州市经济技术开发区,距市中心2公里。京浦铁路,206国道,310省道纵穿开发区,合徐高速公路沿开发区西缘穿过。宿州市位于安徽省最北部,史有“皖北大门”之称,宿州市居中靠东、承东启西、连南接北,是贯通华东、华南、华中、华北地区的重要交通枢纽,铁路、公路、水路交通十分便捷。连霍高速、京福高速在宿州市纵横贯穿,京沪、陇海两大铁路干线呈“十”字状贯穿全境,已建成的京沪高速铁路经过宿州市,并设有车站,从宿州市3个小时可到北京、2个小时到上海。水路运输主要航线由宿州港经洪泽湖至长江中下游各港口城市,经大运河至江、浙、沪等地或经淮河到淮河沿岸

第二章纤维素醚的基本知识

‘第二章纤维素醚的基本知识 第一节:纤维素醚得分类及概念 纤维素醚是天然纤维素经化学改性得到的纤维素衍生物,是工业上最重要的水溶性聚合物之一,目前正在迅速发展和变化。纤维素醚的生产原料丰富,品种繁多,具有很多独特的优良性质,在建筑、外墙保温、干混砂浆、石油、食品、纺织、造纸、涂料、化妆品、医药、陶瓷以及电子元件等工业生产中得到广泛的应用,已成为世界范围内生产的工业品,所以了解除主要纤维素醚产品的基本知识,对于生产和科研是有益的。 1、纤维素醚的分类 纤维素醚的品种繁多,目前还在不断增加,现有品种已近千种,可按五种不同的方法进行分类,即: ①按标准水溶液的粘度 ②按取代基的类型 ③按取代度 ④按物理结构(电离性)) ⑤按溶解性能 按照取代基的类型,纤维素醚可分为单一醚和混合醚,单一醚中只有一种类型的取代基,混合醚中,纤维素醚分子链可以有两种或两种以上的取代基。主要的品种举例如下: 1、1.单一醚类: 甲基纤维素(MC)

乙基纤维素(EC) 羟乙基纤维素(HEC) 羟丙基纤维素(HPC) 羧甲基纤维素(CMC) 聚阴离子纤维素(PAC) 氰乙基纤维素(CEC) 1、2.混合醚类: 羟丙基甲基纤维素(HPMC) 甲基羟乙基纤维素(MCEC) 羟乙基甲基纤维素(HEMC) 羧甲基羟乙基纤维素(CMHEC) 羧甲基羟丙基纤维素(CMHPC) 羧甲基甲基纤维素(CMMC) 羧甲基乙基纤维素(CMEC) 羟丁基甲基纤维素(HBMC)_ 乙基羟乙基纤维素(EHEC) 乙基甲基纤维素(EMC) 1、3按电离性分为: ①离子型醚,如CMC、PAC ②非离型醚,如HPMC、MC、HPC、HEC ③离子型和非离子型混合醚,如CMHEC、CMHPC、CMMC、CMEC 按溶解性能分为:

纳米纤维素晶体

南京林业大学 课程设计报告 题目:纤维素纳米晶的制备与性能 学院:理学院 专业:材料化学 学号:101103227 学生姓名:朱一帆 指导教师:郭斌 职称:副教授 二0一三年十二月三十日

摘要 纤维素是自然界中最丰富的天然高分子聚合物之一,不仅是植物纤维原料主要的化学成分,也是纸浆和纸张最主要、最基本的化学成分。由于其天然性和生物可降解性,在现在能源缺乏的时代,纤维素有很大的发展空间。纳米纤维素是直径小于100nm 的超微细纤维,也是纤维素的最小物理结构单元元;与非纳米纤维素相比,纳米纤维素具有许多优良特性,如高结晶度、高纯度、高杨氏模量、高强度、高亲水性、超精细结构和高透明性等,加之具有天然纤维素轻质、可降解、生物相容及可再生等特性,其在造纸、建筑、汽车、食品、化妆品、电子产品、医学等领域有巨大的潜在应用前景。 本文介绍了纳米纤维素晶体(NCC)及其一些制备方法、性质、研究现状和应用,展望了NCC作为一种纳米材料的美好前景,是21世纪可持续发展研究的重要课题。 关键词:纳米纤维素晶体;制备方法;性质;应用

Abstract Cellulose is one of the nature's most abundant natural polymers,not only the main chemical components of the plant fiber materials , pulp and paper but also the most important and basic chemical composition of the pulp and paper. Due to its natural and biodegradable cellulose has much room for development in the era of the lack of energy. Nano-cellulose is ultra-fine fibers of less than 100 nm in diameter, the smallest physical structure of the cellulose unit Dollar;compared with non-nano-cellulose, nano-cellulose has many excellent characteristics such as high crystallinity, high purity, high Young's modulus, high strength, high hydrophilicity, the hyperfine structure, and high transparency, https://www.doczj.com/doc/721837754.html,bined with the characteristics of natural cellulose lightweight, biodegradable, biocompatible and renewable, so it has huge potential applications in the field of paper, construction, automotive, food, cosmetics, electronic products and medical. This article describes what's the NCC and some preparation methods, nature, current research and applications. And looking up theNCC as a prospect of a better future nanomaterials. This research is an important issue for sustainable development in the 21st century. Key words: Nanocrystallinecellulose; preparation methods; properties;applications

相关主题
文本预览
相关文档 最新文档