当前位置:文档之家› 交流型微小电容测量电路的介绍

交流型微小电容测量电路的介绍

交流型微小电容测量电路的介绍
交流型微小电容测量电路的介绍

微小电容测量电路

电容式传感器是将被测量的变化转换成电容量变化的一种装置。电容式传感器具有结构简单、分辨力高、工作可靠、动态响应快、可非接触测量,并能在高温、辐射和强烈振动等恶劣条件下工作等优点已在工农业生产的各个领域得到广泛应用。例如在气力输送系统中,可以用电容传感器来获得浓度信号和流动噪声信号,从而测量物料的质量流量;在电力系统中,采用电容传感器在线监测电缆沟的温度,确保使用的安全;由英国曼彻斯特科学与技术大学(UMIST)率先开发的电容层析成像(ECT)技术是解决火电厂煤粉输送风-粉在线监测等气固两相流成分和流量检测的有效途径,其中微小电容测量是关键技术之一。 电容传感器的电容变化量往往很小。结果电容传感器电缆杂散电容的影响非常明显。特别在电容层析成像系统中被测电容变化量可达0.01pF,属于微弱电容测量,系统中总的杂散电容(一般大于100 pF)远远大于系统的电容变化值,且杂散电容会随温度、结构、位置、内外电场分布及器件的选取等诸多因素的影响而变化,同时被测电容变化范围大。因此微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。 1 充/放电电容测量电路 充/放电电容测量电路基本原理如图1所示。 由CMOS开关S1,将未知电容Cx充电至Ve,再由第二个CMOS开关S2放电至电荷检测器。在一个信号充/放电周期内从Cx传输到检波器的电荷量Q=Ve·Cx,在时钟脉冲控制下,充/放电过程以频率f=1/T 重复进行,因而平均电流Im=Ve·Cx·f,该电流被转换成电压并被平滑,最后给出一个直流输出电压 Vo=Rf·Im=Rf·Ve·Cx·f(Rf为检波器的反馈电阻) 。 充/放电电容测量电路典型的例子为差动式直流充放电C/V转换电路,如图2所示。

51单片机做电容测量仪解析

第十三届“长通杯”大学生电子设计竞赛 电容测量仪(A题) 2016年5月14日

摘要 电容测量仪装置是一种精度高、测试范围宽、操作简便、功能完善的电容测量仪。随着科技的不断发展,电容在电路中有着越来越多的应用,其容量大小直接决定着电路的稳定性和准确性。因此,电容值的的测量在日常使用中不可避免。 为了深入了解和学习52单片机的功能,本设计采用STC89C52和555振荡器为主要元件对电容进行测量。先将555设计为多谐振荡器产生输入脉冲信号,然后利用单片机对脉冲进行中断计数,再使用公式计算出电容值。在多谐振荡器终端加一个HD74LS08(二输入与门)稳定输出波形,从而使测量中更精确。多谐振荡器会因为连接电阻值的不同而产生的方波的频率不同,从而可以变换档位测量容量差距较大的电容。如果在工程问题中想寻找出符合要求的电容,便可通过矩阵键盘输入相应的电容值的范围,以方便筛选。当电容测定完以后,其数值通过LCD1602显示出来,以便阅读。 关键词:STC89C52单片机;电容测量;555定时器;LCD1602;

目录 1系统方案...................................................................................................... 错误!未定义书签。 1.1 电容测量仪的论证与选择.............................................................. 错误!未定义书签。 1.2 控制系统的论证与选择.................................................................. 错误!未定义书签。2系统理论分析与计算.................................................................................. 错误!未定义书签。 2.1 设计方案的分析............................................................................ 错误!未定义书签。 2.1.1利用电容器放电测电容实验原理................................ 错误!未定义书签。 2.1.2利用放电时间比率来测电容......................................... 错误!未定义书签。 2.1.3利用单片机测脉冲来测时间常数RC再计算电容.错误!未定义书签。 2.2 电容的计算...................................................................................... 错误!未定义书签。 2.2.1 计算振荡周期....................................................................... 错误!未定义书签。 2.2.2 计算频率............................................................................... 错误!未定义书签。 2.2.3 计算Cx ................................................................................. 错误!未定义书签。3电路与程序设计.......................................................................................... 错误!未定义书签。 3.1电路的设计....................................................................................... 错误!未定义书签。 3.1.1系统总体框图........................................................................ 错误!未定义书签。 3.1.2系统框图................................................................................ 错误!未定义书签。 3.1.3总程序框图............................................................................ 错误!未定义书签。 3.1.4电源........................................................................................ 错误!未定义书签。 3.2程序的设计....................................................................................... 错误!未定义书签。 3.2.1程序功能描述与设计思路.................................................... 错误!未定义书签。 3.2.2程序流程图............................................................................ 错误!未定义书签。4测试方案与测试结果.................................................................................. 错误!未定义书签。 4.1测试方案........................................................................................... 错误!未定义书签。 4.2 测试条件与仪器.............................................................................. 错误!未定义书签。 4.3 测试结果及分析.............................................................................. 错误!未定义书签。 4.3.1测试结果(数据) ..................................................................... 错误!未定义书签。 4.3.2测试分析与结论.................................................................... 错误!未定义书签。附录1:电路原理图...................................................................................... 错误!未定义书签。

微弱电流检测的设计

毕业设计 微电流检测器设计 指导教师讲师 学院名称工程学院专业名称自动化 论文提交日期2011年5月论文答辩日期2011年5月 答辩委员会主席____________ 评阅人____________ 摘要

近年来,微弱电流信号检测技术在信号处理、电视技术、测量技术、通信技术、信息运算多媒体技术以及一般的电子电路设计等领域得到了非常广泛的应用,并极大地促进了相关技术领域的迅速发展,例如军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等。随着科学技术的发展,对微弱信号进行检测的需要日益迫切,微弱信号检测是发展高新技术、探索及发现新的自然规律的重要手段,对推动相关领域的发展具有重要的意义。 微弱是相对于噪声而言的,所以只靠放大并不能检测出微弱信号,只有在有效地抑制噪声的条件下增大微弱信号的幅度,才能提取出有用信号。因此,必须研究微弱信号检测的理论方法和设备,包括噪声的来源和性质,分析噪声产生的原因和规律以及噪声的传播途径,有针对性地采取有效措施抑制噪声。 本设计制作的微电流检测电路,是以A T89S52芯片为核心实现对微电流信号进行检测并显示,利用两个斩波稳零式高精度运放ICL7650组成的放大模块电路,实现I/V转换,将微电流信号转换成为电压信号,而两个相同高精度运放可以实现对电压信号的一二级放大,经两级放大后的电压通过ADC0809采样、A/D转换后传送给单片机AT89S52,之后单片机经过一些运算编程后控制,将所要测得弱电流信号在LCD1602显示出来。能实现对1uA 到2500uA微电流的实时检测。 关键词:弱电流检测 AT89S52 ICL7650 ADC0809

一种高精度测量微小电容的电路

摘要:提出了一种高精度、低成本的电容的测量方法。该方法采用差动式直流充电法测量微小电容,具有功耗低、体积小、分辨率高、刷新率高的特点。同时详细阐述了测量电路的基本原理、具体实现,并且通 过测量固定电容验证了电路的性能。 关键词:电容传感器;差动式测量;直流充电 0 引言 电容式传感器是将被测量的变化转换成电容量变化的一种装置。电容式传感器具有结构简单、分辨力高、工作可靠、动态响应快、可非接触测量,及能在高温、辐射和强烈振动等恶劣条件下工作等优点,并 且已在工农业生产的各个领域得到广泛应用。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。电容式传感器输出的电容信号往往很小(1fF~10 pF),又存在传感器及其连接导线杂散电容和寄生电容的影响,这对电容信号的测量电路提出了非常高的要求,如此微小的电容信号的测量成为电容式传感器技术发展的瓶颈。 本文提出一种恒流源充电法对两个微小电容进行充电检测的方法。本设计仅由单片机和少数芯片即可以实现电容的高精度,高频率测量。由于采用了差动式测量,本设计可以有效地减小非线性误差,提高传感器灵敏度,减少干扰,减少寄生电容的影响。若选用高性能模拟开关能大大减小电荷注入效应的影响。 在检测0~5 pF的实验中,采样频率可以达到100 kHz,有效精度位最高可达12位。 1 原理分析 实现测量的电路原理如图1所示,其完整的测量过程是:单片机控制模拟开关K1,K2断路,标准电容Cl和待测电容C2由相同的两个恒流源I1和I2进行充电;在相同的时间T1内,电容C1、C2的充电电压 为U1、U2。由电容基本公式可得: 令△U=U1-U2,则电压差△U经过放大后,通过MSP430单片机的AD转换模块进行转换,数据存储的同时,单片机控制K1、K2闭合,在T2时间内,使C1,C2两端的短路,两电容两端电压降到零,此时完成 放电过程。 至此,一次完整的采样过程结束,充放电时序见图2。

电容传感器测量电路

第一部分引言 本设计是应用于电容传感器微小电容的测量电路。 传感器是一种以一定的精度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。传感器在发展经济、推动社会进步方面有着重要作用。 电容式传感器是将被测量转换成电容量变化的一种装置,可分为三种类型:变极距(间隙)型、变面积型和变介电常数型。 二、电容式传感器的性能 和其它传感器相比,电容式传感器具有温度稳定性好、结构简单、适应性强、动态响应好、分辨力高、工作可靠、可非接触测量、具有平均效应等优点,并能在高温、辐射和强烈振动等恶劣条件下工作,广泛应用于压力、位移、加速度、液位、成分含量等测量之中[1]。 电容式传感器也存在不足之处,比如输出阻抗高、负载能力差、寄生电容影响大等。上述不足直接导致其测量电路复杂的缺点。但随着材料、工艺、电子技术,特别是集成电路的高速发展,电容式传感器的优点得到发扬,而它所存在的易受干扰和分布电容影响等缺点不断得以克服。电容式传感器成为一种大有发展前途的传感器[2]。 第二部分正文 一、电容式传感器测量电路 由于体积或测量环境的制约,电容式传感器的电容量一般都较小,须借助于测量电路检出这一微小电容的增量,并将其转换成与其成正比的电压、电流或者电频率[3],[4]。电容式传感器的转换电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。电容传感器性能很大程度上取决于其测量电路的性能。

由于电容传感器的电容变化量往往很小,电缆杂散电容的影响非常明显,系统中总的杂散电容远大于系统的电容变化值[5]。与被测物理量无关的几何尺寸变化和温度、湿度等环境噪声引起的传感器电容平均值和寄生电容也不可避免的变化,使电容式传感器调理电路设计相当复杂[6]。分立元件过多也将影响电容的测量精度[3]。 微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。测量仪器应该有飞法(fF)数量级的分辨率[6]。 二、常用电容式传感器测量电路 1、调频电路 这种电路的优点在于:频率输出易得到数字量输出,不需A/D转换;灵敏度较高;输出信号大,可获得伏特级的直流信号,便于实现计算机连接;抗干扰能力强,可实现远距离测量[7]。不足之处主要是稳定性差。在使用中要求元件参数稳定、直流电源电压稳定,并要消除温度和电缆电容的影响。其输出非线性大,需误差补偿[8]。 2、交流电桥电路 电桥电路灵敏度和稳定性较高,适合做精密电容测量;寄生电容影响小,简化了电路屏蔽和接地,适合于高频工作。但电桥输出电压幅值小,输出阻抗高,其后必须接高输入阻抗放大器才能工作,而且电路不具备自动平衡措施,构成较复杂[9]。此电路从原理上没有消除杂散电容影响的问题,为此采取屏蔽电缆等措施,效果不一定理想[10]。 3、双T型充放电网络 这种电路线路简单,减小了分布电容的影响,克服了电容式传感器高内阻的缺点,适用

微电流检测资料

目录 1、设计背景 (1) 2、设计方案选择 (1) 2.1典型的微电流测量方法 (1) 2.1.1开关电容积分法[1] (1) 2.1.2运算放大器法 (2) 2.1.3场效应管+运算放大器法 (2) 2.2总体设计方案 (3) 3、具体设计方案及元器件的选择 (4) 3.1稳流信号源问题 (4) 3.2I/V转换及信号滤波放大 (5) 3.2.1前级放大 (5) 3.2.2滤波及后级放大电路 (6) 3.2.3运算放大器的选取 (6) 3.3量程自动转换 (6) 3.4信号采集处理 (7) 4、软件仿真结果 (8) 5、参考资料 (9)

微电流测试电路设计 1、设计背景 微电流是指其值小于-6 10A的电流,微电流检测属于微弱信号检测的一个分支,是一门针对噪声的技术,它注重的是如何抑制噪声和提高信噪比。该技术在军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等许多领域具有广泛的应用。我们所研究的微电流检测主要针对电力系统中的绝缘材料,因为现代国民经济对电力供应的依赖性日益增大,电力系统的规模、容量也在不断扩大。而电气设备的绝缘材料往往是电力系统中的重要组成部分,绝缘材料的漏电流情况严重会造成电力系统的重大损失。微电流检测是通过对泄漏电流的测量来评估绝缘材料状况的有效方法。近年来,针对微弱电流的信噪改善比SNIR已能达到1了,目前国内做得比较好的单位是南京大学,其独家生产的ND-501型微弱信号检测实验综合装置己被国内至少76家高等院校使用。但其产品价格昂贵,少则几千元,多则几万元,例如HB-831型pA级电流放大器、HB-834型四通道pA级电流放大器、HB-838型八通道pA级电流放大器的售价分别为4100元/台、13000元/台、22000元/台。所以,研制高精度、寿命长、成本低、电路简单的微电流检测仪具有重要的现实意义及理论参考价值。为了达成目标,我们需要重点考虑以下几个问题: 10 A(本设计要求)的稳流信号源的实现(1)如何获得实验信号,即电流为12 问题; (2)如何将微弱电流信号转换成易于操作的信号; (3)怎样将微弱信号提取放大; (4)如何实现量程的自动转换问题; (5)将实际中的模拟信号转换成数字信号; (6)实现对数字信号的处理和显示。 2、设计方案选择 2.1典型的微电流测量方法 2.1.1开关电容积分法[1] 开关电容式微电流测量方法的前级是在利用开关电容实现电流向电压转换的同时对电压信号进行调制和放大,达到微伏级;后级电路通过选频放大电路实

微电容测量研究

微小电容测量电路 时间:2007-12-07 来源: 作者:邱桂苹于晓洋陈德运点击:995 字体大小:【大中小】 电容式传感器是将被测量的变化转换成电容量变化的一种装置。电容式传感器具有结构简单、分辨力高、工作可靠、动态响应快、可非接触测量,并能在高温、辐射和强烈振动等恶劣条件下工作等优点已在工农业生产的各个领域得到广泛应用。例如在气力输送系统中,可以用电容传感器来获得浓度信号和流动噪声信号,从而测量物料的质量流量;在电力系统中,采用电容传感器在线监测电缆沟的温度,确保使用的安全;由英国曼彻斯特科学与技术大学(U MIST)率先开发的电容层析成像(ECT)技术是解决火电厂煤粉输送风-粉在线监测等气固两相流成分和流量检测的有效途径,其中微小电容测量是关键技术之一。 电容传感器的电容变化量往往很小。结果电容传感器电缆杂散电容的影响非常明显。特别在电容层析成像系统中被测电容变化量可达0.01pF,属于微弱电容测量,系统中总的杂散电容(一般大于100 pF)远远大于系统的电容变化值,且杂散电容会随温度、结构、位置、内外电场分布及器件的选取等诸多因素的影响而变化,同时被测电容变化范围大。因此微小电容测量电路必须满足动态范围大、测量灵敏度高、低噪声、抗杂散性等要求。 1充/放电电容测量电路 充/放电电容测量电路基本原理如图1所示。 由CMOS开关S1,将未知电容C x充电至V e,再由第二个C MOS开关S2放电至电荷检测器。在一个信号充/放电周期内从C x传输到检波器的电荷量Q=V e·C x,在时钟脉冲控制下,充/放电过程以频率f=1/T重复进行,因而平均电流Im=V e·C x·f,该电流被转换成电压并被平滑,最后给出一个直流输出电压V o=Rf·Im=Rf·V e·C x·f(Rf为检波器的反馈电阻) 。 充/放电电容测量电路典型的例子为差动式直流充放电C/V转换电路,如图2所示。 C s1和C s2分别为源极板和检测极板与地间的等效杂散电容(通过分析可知,它们不影响电容C x的测量)。S1-S4是C MOS开关,S1和S3同步,S2和S3同步,它们的通断受频率f的时钟信号控制,每个工作周期由充/放电组成。分析可得电路输出为

利用Multisim设计电容测量电路

精心整理 一、概述 随着科学技术的不断发展,人类社会进入高科技时代,而以电子元件组成的电器在生活中被运用的越来越广泛,大至航空航天技术,小到手机、电子手表等等。而这些电器都是由一些电容、电阻等元器件组成。特别是电容在这些电路中的作用,因此电容的大小的测量在电容使用过程中必不可少,测量电容的大小的办法也越来越多,并且多样化、高科技化。当然,测量的结果应该保持较高的精确度和稳定性,不仅如此,还应兼顾测量速度快等要求。 目前应用比较普遍的方法有电桥法测电容、容抗法测电容、基于NE555的RC 充放电原理等等,在这个脉(0.2uF —20uF 杂。 路、确的脉冲个数N ,而准确的数值大小为显示稳定后的数值。

由于本方案大多采用的是数字元器件,因此对外界的干扰信号有着很强的抵抗能力,而用容抗法测电容由于采用许多模拟元器件,只要外界存在有一定强度的干扰信号,就会使测量结果发生较 大的改变。不仅 如此,外界的温 度也会对模拟 元器件产生很 大的影响,而在 实际生活中的 多外界环境不 5V直流

首先是测量电路部分,电路图如图3所示,此部分由2片555定时器连成的单稳态触发器和多谐振荡器 定时器为单稳态振荡器。端输出 的单位脉发器2端2C 为待测电器中。由单稳 态触发器电容大小这个信号经存器的时的输出单产生的脉后作为计计数。 图3 单稳号的脉宽 当R 与2C 的 2C 与4 C 出信号、单稳态触发器输出信号、非门输出信号、与门输出信号如图4所示。

图4待测电容为1uF 时各输出信号波形 上图中的波形自上至下分别为单稳态输出信号、非门输出信号、多谐振荡器输出信号、与门 74L S 160N

电化学分析系统中pA_A微电流测量

第25卷 第11期 电子测量与仪器学报 Vol. 25 No.11 · 972 · JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 2011年11月 本文于2011年9月收到。 DOI: 10.3724/SP.J.1187.2011.00972 电化学分析系统中pA~μA 微电流测量 王 俊 (福州大学 至诚学院, 福州 350002) 摘 要: 为了提高电化学分析系统的分析速度和测量的准确度。探究如何对电化学分析系统中,既有慢变化又有快变化的pA~μA 范围的微电流进行快速、准确的测量。基于定阻式I/V 转换的方法,对pA~μA 范围的微电流,设置了由微机控制的多个电流量程及自动调零电路,以及从软?硬件上进行抗工频干扰的设计。实现对宽范围微电流测量的量程快速搜索?转换,提高了电化学分析系统中pA~μA 范围微电流测量的准确度? 关键词: 微电流; 测量; pA~μA; 电化学分析系统 中图分类号: TH399 文献标识码: A 国家标准学科分类代码: 460.40 pA~μA micro-current measurement in electrochemical analysis system Wang Jun (Zhicheng College, Fuzhou University, Fuzhou 350002, China) Abstract: In order to improve the speed of analysis and the accuracy of measurement in electrochemical analysis system, the fast-speed and accurate measurement of micro current of pA~μA range in both slow and fast change was researched. Based on the constant resistance I/V conversion method, for the pA~μA micro-current measurement range, a number of current computer control and automatic zero-adjusting circuit was set up, and anti-frequency interference design of software and hardware were carried out. The fast search and conversion in wide micro current measurement range were realized. Thereby the scope of pA~μA micro-current measurement accuracy is enhanced. Keywords: micro-currents; measurements; pA~μA; Electrochemical analysis system 1 引 言 应用在电化学、生物电化学和生命科学等作为物质组分分析和测量的电化学分析系统。随着超微电极技术的突破性进展, 使用具有信?噪比高、反应速度快等优良电化学特性的微电极、超微电极作为电化学分析系统的传感器, 大大提高了该系统对微小量测量的准确度[1-2]。微电极、超微电极由于化学反应所生成的微电流(极化电流), 其范围为pA~μA, 对该范围的微电流测量, 正是文中要讨论的。 把反映被测物质含量的微电流信号, 经过电流—电压转换, 形成相应的电压信号。 利用计算机技术对产生的电压信号进行一系列的数据处理, 电化学分析系统可以较容易实现最优化选择, 实现数据处理过程的全部自动化, 但系统的分析速度和测量的准确 度之关键在于对微电流的测量。 鉴于微电极、超微电极其尺寸及表面形状、测试它们的化学反应体系及其控制电位(电压)的波型、扫描速度以及电化学分析方法等不同, 其极化电流峰值大小差别很大, 达几个数量级[3]。微电极一般为nA~μA, 超微电极一般为pA~nA, 极化电流的时间曲线和电位曲线也不同。有的变化较缓慢, 有的变化较快, 有的曲线的频谱还包含工频50 Hz 频率分量, 而且测试环境往往是高阻抗, 工频干扰尤显严重, 对测量小至pA 级微电流的元器件的温、湿度影响很大。因此, 要快速、准确地测量电化学分析系统中pA~μA 微电流难度较大[9]。 电化学分析系统中测量的微电流可小至pA 级, 要实现对既有慢变化的, 又有快变化的pA~μA 宽范围微电流量程自动地快速搜索、转换有以下难点:

微弱电容测量电路设计

毕业设计题目微弱电容测量电路设计 学生姓名 学号 院系电子与信息工程学院 专业电子科学与技术 指导教师 二O一四年四月一日

目录 1绪论 (6) 1.1 目前的研究现状 (6) 1.2 常见的电容检测设计 (6) 1.3 设计任务与要求 (7) 2电容检测系统 (7) 2.1 设计框架 (8) 2.2检测系统基本原理 (8) 2.3电容检测系统的杂散性分析 (9) 2.4 T形电阻网络 (9) 2.5 电容检测电路Multisim仿真 (11) 3交流信号发生器电路设计 (12) 3.1信号发生电路 (12) 3.1.1 信号波形选择 (12) 3.1.2 常见的信号产生电路 (12) 3.2 晶体振荡电路 (13) 4 全波整流电路设计 (15) 4.1 全波整流电路 (15) 4.2 全波整流电路的Multisim仿真 (16) 5 低通滤波电路设计 (18) 5.1 低通滤波器的选择 (18) 5.1.1低通滤波器的类型选择 (18) 5.2.2低通滤波器级数的选择 (18) 5.2 低通滤波电路及其仿真 (18) 6 AD转换电路及MCU控制电路 (20) 6.1 AD转换电路 (20) 6.2 MCU控制电路 (22) 6.2.1 MSP430超低功耗单片机 (22) 6.2.2 电源电路 (23) 6.2.3 晶振电路 (23)

6.2.4 复位电路和JTAG接口电路 (24) 6.2.5 串口通信电路 (25) 6.3电源电路 (25) 6.4 硬件电路的抗杂散设计 (26) 7电容检测系统的性能分析 (27) 7.1 性能指标 (27) 7.2 信号发生器的波形测试 (27) 7.3 检测电路的性能检测分析 (28) 7.3.1 检测分析的目的 (28) 7.3.2 检测内容 (28) 7.4 附图 (30) 8 总结与体会 (30) 8.1 本系统存在的问题及改进措施 (30) 8.2 心得体会 (31) 参考文献 (31) 致谢 (32)

微小差分电容检测电路设计

微小差分电容检测电路设计 摘要 电容式传感器广泛应用于位移、振动、角度、加速度等物理量的精密测量中。由于受结构限制,其输出电容信号很小,一般为几pF至几十pF,精密测量其值更小,因此其后续测量电路的选择与设计非常关键。本文简要介绍了传统及现有小电容测量方法,重点设计了一种用于微小差分电容检测的交流放大电路,阐述了此方法的基本原理及参数的选取原则。实验结果和理论分析具有良好的一致性,并仿真出了实验结果,该电路具有抗寄生电容能力强、容易实现、成本低等优点。 关键词:差分电容,高频信号,电容传感器,抗寄生电容

Design of measured circuit about micro differential capacitive Abstract The capacitive sensor widely used in precision measuring physical quantity such as displacement, vibration, angle and acceleration. For the structure limit, the output of capacitance sensor is very small, about several pF to several dozens pF, and smaller in the precision measurement, so it is important to select and design the capacitance measurement circuit. Several techniques for measuring of small capacitance including methods with tradition are briefly overviewed. A kind of AC amplifier circuit for micro differential capacitance sense is introduced in the text.The experiment results show a good correspondence with the theoretical analysis. The basic principle of the method and the principle of choose the parameters in the circuit are provided and test conclusion is given. The measurement is free of stray immune capacity, low-cost and easy for realization. Key word: differential capacitance, high frequency signal, capacitive sensor, stray-immune capacitance

微电流测量

微电流测量(nA级交流、直流) 一、直流微电流测量 基于I-V变换的弱电流测量方法是常用的弱电流检测方法,其中的反馈电流放大型测量电路结构较简单,转换的线性较好,电路频率响应特性较好,在加入有效的硬件和软件抗干扰措施后,可以提高测量精度和稳定性。因此测量的电路是按照基于反馈式电流放大器型I-V转换原理进行设计,其基本电路如图1所示。 图1 I/V转换原理图 假定运放为理想运放,利用运算放大器的虚地概念和结点电流代数和为0的定律得出 (1) 输出电压V o与测量电流I s成线性比侧关系,比例系数为R f,因此根据放大要求选取R f值即可获得所需的放大倍数。 电流测量电路整体框架如图2,其中反馈电流放大电路采用的是两级放大方式。 图2 电路整体框图 由于待测电流信号为10-9A,所需放大倍数较高,若采用一级放大,则需要R f约为1010Ω。当R f过大时会产生较大的电阻热噪声电流,增大了分布电容,同时要求运放的输入电阻更大以减小分流;根据式(1),一级放大后信号与输人为反相,所以采用两级放大电路,这样可以通过调整每一级放大倍数,来选择阻值适当的R f,减小由R f引起的误差;并通过两次电压反相,使放大电路的最终输出电压与输入信号同相,两级放大电路如图3。

图3 两级放大电路图 为减小噪声干扰和运算放大器负担,通常要求输出电压应比运算放大器的噪声电压值至少大两个数量级或更高;但输出电压太大,必然要增大R f,同时增大对运算放大器性能的要求。所以第一级放大器输出电压应设计为50~100mV,由式(1),R f应为100MΩ。图3中C f表示R f引入的杂散电容,通常为0.5pF。当R f为100MΩ时,电路的截止频率约为0.3kHz,严重影响放大电路的频率响应特性。为改进频率响应,可以引入补偿电容C来消除C f的影响。根据运算放大器以及流入节点电流与流出节点电流相等特性,得出 (2)由于R f1为kΩ级电阻,其杂散电容可忽略,可得 (3)代入式(2),拉式变换并消去V x(s)后,得出传递函数为 (4)为消除C f影响,取RC=R f C f,得 (5)由式(3)可知,截止频率为无穷大,理论上频带已经扩展到整个区域,因此频率响应得到改善。通过RC网络补偿可改善系统的动态特性,实际中100kHz 的带宽完全可以达到。但因为电路中还有其他的杂散电容,不可能被简单的RC 网络完全补偿。为减小由大电阻引入的噪声电流和分布电容,R f可采用T型网络结。 第二级放大电路将第一级输出电压信号进一步放大,并反向输出,保证最终电压输出与检测的电流输入同相。第二级放大倍数为10倍,由式(1),取R f/R1为10。 为消除背景噪声影响,在运放输出端和A/D转换电路之问加入双T型50Hz 信号带阻滤波器将这个主要干扰谐波成分滤除,其电路如图4。

大电容测量仪模拟信号部分电路设计

大电容测量仪模拟信号部分电路设计 1.方案论述 方案一:把待测电容量转化成脉冲的宽窄,图一为其组成框图。根据电容放电规律,利用充放电开关、电压比较器和与门构成的电路可以把待测电容量转化为脉冲的宽窄。只要把此脉冲和频率固定不变的方波相遇,便可得到计数脉冲,将它送给计数器,便可实现对电容的测量。设计包括方波发生电路、充放电开关电路、电压比较器及衰减整形电路。这样的电路设计使得电容的测量更加精确,更方便后续电路的测量。 方案二:把电容量转化为直流电压量,图二为其族正框图。把三角波输入给微分电路(把电容作为微分电路的一部分),在电路参数合适的条件下,输出幅度与Cx成正比,再经过峰值检测电路或精密整流电路及滤波电路,可得到与Cx成正比的直流电压Vx,这样电容量就被转化为直流电压量,从而很容易被后续电路测量。 据以上所示,综合考虑以上两方案,虽然方案一比较简单,但是所用到的原理和其中使用的电子元件涉及到梳子电路所学课程,目前还很难将其涉及到的知识全面掌握。方案二所用知识均为本学期模拟电路所学内容,实验结果简单直观,方便后续电路测量,因此我选择方案二。 2.电路工作原理及说明 此电路由三部分组成:三角波发生器、含被测电容的微分电路、整流电路、滤波电路。 电路框图如图二所示。 2.1三角波发生器 在方波电路中,将方波电压作为积分运算电路的输入,其输出就得到三角波电路如图三所示:

图三三角波发生器 2.2含被测电容的微分电路 微分电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C 有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的上升而下降。电路如图四所示: 图四含被测电容的微分电路 2.3整流电路 整流电路将交流电转换为直流电。本次课设电路我用的是精密整流电路。

微电流测量总结

直流微电流前置放大器的研究 Ib是运放的偏置电流,当Ib大于Is,则Is信号被淹没,将无法测量,由以上分析可以看出,影响微电流测量的首要因素是运放的偏置电流Ib,其次是噪声电压和零点漂移。 微电流放大器要满足以下两个条件: (1)放大器输入阻抗要足够大,即Ri要远远大于Rf,Ri表示运放输入阻抗,Rf表示反馈电阻 (2)噪声和漂移要小于被测信号电流,即信噪比要高,否则输出的噪声电压或漂移电压将使输出的信号电压淹没或使输出信号难以辨别 放大器的灵敏度:直流微电流放大器能有效放大的最小电流。 I-V变换式直流微电流放大器的灵敏度一般能达到10-15 因此可知电阻Rf的数值越大,放大器的灵敏度越高。但是由于电阻本身的热噪声及分布电容跟电阻阻值成正比,Rf增大时漂移及噪声亦随之上升。所以当Rf足够大时,再继续增加Rf的数值,并不能使放大器的灵敏度继续提高。 增大Rf还受到下面两方面的限制: (1)当Rf过大时,要求放大器的输入阻抗更大,否则将对信号有很大的分流作用。由于放大器的输入阻抗是有限的,所以当Rf大到一定程度后,将不会有效的增加灵 敏度。 (2)Rf过大时,放大器的响应时间要增长。在I-V变换式直流微电流放大器中,输入待测电流后,放大器的输出电压不是立刻就达到稳定值,而是需要一定的时间, 这就是放大器的响应时间Tc。决定响应时间的因素有:放大器的输入电容、反馈 电阻Rf、反馈电阻Rf两端的电容C等

减小噪声及干扰的措施 (1)在I-V变换式直流微电流放大器的设计中,运放的选择至关重要,主要考虑以下几个参数。 一、偏置电流Ib足够小; 二、失调电压Vos要足够小; 三、输入阻抗要足够大; 四、温漂及噪声系数要尽量小。 (2)电路设计工艺 一、引线合理 二、屏蔽密封 三、电源及接地 提高测量精度的措施及电路设计 (1)基流补偿电路 在许多情况下,输入电流包含有较大的本地电流(基流或初始电流),如运算放大 器的偏置电流等。常用的基流补偿电路有两种:串联补偿和并联补偿电路 串联补偿:

电容传感器新型微弱电容测量电路

New S mall Capacitance M easur i n g C i rcuit for Capacitance Sen sor W A N G L ei,W A N G B aoliang,J I H aif eng,H UA N G Z h iy ao,L I H aiqing (N ational K ey L aboratory of Ind ustrial Control T echnolog y,Institute of A uto m ation Instrum entation, D ep art m ent of Control S cience and E ng ineering,Z hej iang U niversity,H ang zhou310027,P.R.China) Abstract: A ne w s m all capacitance m easuring circuit based on charge a mp lifier p rinci p le w as devel oped for ca2 pacitance sen s o r.T he advantages of th is circuit are stray2i m m une,h igh res oluti on because of no effect of charge in jecti on and h igh data acquisiti on rate because of no filter in th is circuit.T est results show that the linearity of th is circuit is good,the sensitivity of4.8mV fF and res oluti on of0.5fF can be ach ieved. Key words: capacitance;m easure m ent;sen s or;circuit 电容传感器新型微弱电容测量电路① 王 雷,王保良,冀海峰,黄志尧,李海青 (工业控制技术国家重点实验室 浙江大学控制系自动化仪表研究所,杭州,310027) 摘要:基于电荷放大原理提出了一种新型的用于电容传感器的微弱电容测量电路。该电路具有较强的抗杂散电容性能;较好的解决了电子开关的电荷注入效应对测量分辨率的影响问题;该电路无需滤波器,基于该新型电路的电容数据采集系统可以达到很高的数据采集速度。试验测试表明该电路线性度好,灵敏度为4.8mV fF,分辨率可达到0.5fF。 关键词:电容;测量;传感器;电路 中图分类号:T P212 文献标识码:A 文章编号:1004-1699(2002)04-0273-05 1 引 言 电容传感器广泛的应用于多种检测系统中,用以测量诸如液位、压力、位移、加速度等物理量。在某些场合,例如电容层析成像系统中,传感电容的变化量小至fF级,这就对电容测量电路提出了更高的要求。在现阶段测量飞法级的电容主要有以下几方面的困难:①杂散电容往往要比被测电容高的多,被测量常被淹没在干扰信号中;②测量电路一般要使用一定量的电子开关,但电子开关的电荷注入效应对测量系统的影响难以消除;③由于测量对象的快速多变性,需要较高的数据采集速度,但采集速度和降低噪声的矛盾难以解决,滤波器存在成为提高数据采集速度的瓶颈等问题[1,2]。 目前,用于解决测量微弱电容的方法主要有电荷转移法和交流法。这两种电路的基本测量原理是通过激励信号连续对被测电容进行充放电,形成与被测电容成比例的电流或电压信号,从而测量出被测电容值。但是由于连续充放电测量信号中具有脉动噪声,需要先进行滤波除去其中的脉动成分,但滤波器的引入却成为提高数据采集速度的一个瓶颈。另外,电荷转移法是利用电子开关网络控制电路的充放电,电了开关的电荷注入效应对测量结果的影响还难以完全消除;交流法需要考虑相位补偿,电路结构相对复杂,成本也较高[3~5]. 2002年12月 传 感 技 术 学 报 第4期 ①来稿日期:2002207204 基金项目:浙江省自然科学基金资助项目(600094);国家自然科学基金重大资助项目(59995460-5);国家“八六三”计划专项经费资助项目(2001AA413210)。

相关主题
文本预览
相关文档 最新文档