当前位置:文档之家› olumnar Transformations in Auditory Cortex——A Comparison to Visual and Somatosensory Cortices

olumnar Transformations in Auditory Cortex——A Comparison to Visual and Somatosensory Cortices

olumnar Transformations in Auditory Cortex——A Comparison to Visual and Somatosensory Cortices
olumnar Transformations in Auditory Cortex——A Comparison to Visual and Somatosensory Cortices

Auditory cortical columns have been studied for decades,but intra-columnar processing in auditory cortex is still poorly understood,relative to what is known about such processsing in visual cortex and somatosensory cortex.While there are certainly striking similarities in cortical structure across the modalities,investigations of auditory cortex anatomy and synaptic physiology have also found important differences from the columnar organization of other sensory

cortices.In vitro and in vivo studies of thalamocortical transformations in the auditory system have begun to reveal the functional significance of these differences,and have defined the earliest stages of auditory cortical processing.However,the question of what transformations are performed within auditory cortical columns remains unresolved.Attempts to find laminar differences in auditory cortex,which could provide the key to understanding columnar transformations,have so far produced contradictory and inconclusive results.Direct analogies to primary visual and somatic sensory cortices would suggest that response properties such as bandwidth,inhibitory sideband structure,pre-ferred modulation rate and modulation phase sensitivity might vary across layers in auditory cortex.While such analogies could prove useful as guidelines for future research,the best hope for under-standing auditory columnar transformations may lie instead with a more modality-specific,functional approach.

Introduction

Columnar structure in primary auditory cortex (AI)was described as early as 1929,when von Economo reported short chains of neurons radial to the cortical surface,now known as cortical microcolumns (Jones,2002).Physiological evidence for columnar organization followed,as investigators found that neurons along a radial electrode penetration often shared similar sensitivities to sound frequency (Oonishi and Katsuki,1965;Suga,1965;Abeles and Goldstein,1970;Merzenich et al.,1975).The relative inf luence of the two ears on auditory cortex neurons,and other response properties thought to be related to sound localization,also seem to exhibit consistent radial organization (Brugge and Merzenich,1973;Imig and Adrián,1977;Middlebrooks et al.,1980;Clarey et al.,1994),though some workcontradicts these findings (Phillips and I rvine,1983;Reser et al.,2000).Other neuronal response properties that have been reported to be relatively uniform within the cortical depth include intensity threshold (Suga,1965),intensity tuning (Clarey et al.,1994)and frequency sweep tuning (Mendelson et al .,1993).These response measures,along with others such as response latency,spectral integration bandwidth and com-plexity of frequency tuning curves,vary systematically across the cortical surface (Schreiner and Mendelson,1990;Sutter and Schreiner,1991;Mendelson et al.,1997).The relationships between these several overlapping stimulus feature maps are not yet entirely understood,but the basic functional organization of AI is now becoming clear:preferred frequency changes gradu-ally across the surface of AI to create a fundamental cochleotopic

axis,and other response properties form interleaved subregions along the orthogonal,isofrequency axis (Fig.1).Such an organization is reminiscent of the overlaid orientation,ocular dominance and spatial frequency subdomains within the visuotopic map of primary visual cortex (Hübener et al .,1997),and of the local clustering of adaptation-specific subregions for local processing in primary somatosensory cortex (Sretavan and Dykes,1983; Sur et al., 1984).

Still unresolved,however,is the question of what neuronal response properties might vary systematically within an auditory cortical column —and therefore what stimulus features might be the substrates for columnar https://www.doczj.com/doc/7a1747762.html,yer-dependent variations in minimum response latencies have been described in AI (Phillips and Irvine,1981;Mendelson et al.,1997;Sugimoto et al.,1997),but the evidence for depth-dependent variation in any other response property is not clear.In visual cortex and somatosensory cortex,laminar differences such as the layer-dependent distributions of simple and complex cells in cat visual cortex and the unique lamina-specific anatomical structures in rodent barrel cortex have inspired concrete hypotheses about intracolumnar transformations in those systems (Hubel and Wiesel,1962;Brumberg et al.,1999).The lackof consensus about laminar differences in auditory cortex seems to have constrained efforts to decipher the function of the cortical column in auditory processing,but recent developments in anatomical and physiological studies of auditory cortex have renewed interest in the subject.In this brief review,we focus on findings (primarily from cat and rodent cortex)that are most relevant to understanding columnar transformations in AI,and we discuss the lessons implicit in related studies of visual and somatosensory cortices.Through-out,we use the term ‘columnar’to refer to a unit of local cortical processing encompassing interactions between cortical layers,a level of organization that is larger than anatomically defined neocortical microcolumns but perhaps smaller than physio-logically defined functional modules.

Cortical Circuitry

The primary auditory cortex shares with other sensory cortices the basic characteristics of koniocortex:a prominent layer I,dense and well-developed layers II and III,a somewhat granular layer IV with strong thalamic input,a relatively cell-sparse layer V populated by large pyramidal neurons,and a layer VI with smaller cell bodies (Winer,1992).The dominant con-nections are also consistent with visual and somatosensory cortices:lemniscal thalamic input ends in the middle layers,major corticocortical connections arise from layers II and III,subcortical projections originate primarily from layer V,and layer VI sends feedbackprojections to the thalamus (Mitani and Shimokouchi,1985;Mitani et al., 1985;Huang and Winer,2000).As in other sensory cortices,there are also corticocortical

Columnar Transformations in Auditory Cortex?A Comparison to Visual and Somatosensory Cortices

Jennifer F. Linden and Christoph E.Schreiner

W.M.KeckCenter for ntegrative Neuroscience, University of California —San Francisco,San Francisco,CA 94143-0732, USA

Cerebral Cortex Jan 2003;13:83–89;1047–3211/03/$4.00

? Oxford University Press 2003. All rights reserved.

at The 3rd Military Medical University on February 14, 2014

https://www.doczj.com/doc/7a1747762.html,/Downloaded from

and non-lemniscal thalamic inputs to supra-and

infragranular layers,as well as corticocortical and corticothalamic outputs from layers other than II/III and VI (Fig.2)(Winer,1992;Huang and Winer,2000).Extensive interconnections between and within the cortical layers (Fig.2)(Matsubara and Phillips,1988;Ojima et al.,1991;Wallace et al.,1991)support a primary f low of information from middle layers to supragranular and then to infragranular layers.In addition,pyramidal cells in superficial layers extend their axons laterally in a patchy distribution much like the long-range intrinsic connections in visual cortex (Gilbert and Wiesel,1979;Rockland and Lund,1983)and somatosensory cortex (DeFelipe et al.,1986;Schwarkand Jones,1989).These horizontal projections in A I are aligned along isofrequency contours,and they linkcolumns of neurons with similar func-tional properties,such as spectral integration bandwidth (Read et al.,2001).

The anatomical parallels between auditory and other sensory cortices have led to the hypothesis that there are fundamental principles of neocortical structure and connectivity common to all sensory (and other)cortex (Rockel et al .,1980).However,there are several unusual and possibly unique features of audit-ory cortex anatomy that complicate attempts to define common rules for sensory neocortical organization.Most obviously,the

auditory cortex receives binaural input from subcortical nuclei,while in the visual and somatosensory systems,the primary sensory cortex represents the earliest neural station for con-vergence of inputs from the two visual hemifields or two sides of the body.Furthermore,layer III neurons in primary visual and somatosensory cortices project predominantly to ipsilateral cortex [except in regions corresponding to midline repres-entations (Innocenti,1980,1986;Manzoni et al .,1980)],while many primary auditory cortex layer III neurons project across the corpus callosum (Imig and Brugge,1978;Winer,1992).These anatomical distinctions between auditory cortex and the visual and somatosensory cortices probably have their origins at the receptor level.Spatial information in vision and somato-sensation is inherent in the arrangement of the peripheral receptors and is preserved throughout early sensory processing,while auditory spatial information must be computed from cues extracted from the differential time-frequency representations of acoustic signals received by the ears [for a review,see (Clarey et al ., 1992)].

Other features of auditory cortical circuitry also seem to differ substantially from the anatomy of visual and somatosensory cortices.For example, spiny stellate cells,which dominate layer IV of the visual and somatosensory cortices in most species (Jones,1975;Lund et al.,1979;Simons and Woolsey,1984)are largely absent from the middle layers of cat primary auditory cortex (Smith and Populin,2001).In their place,small pyramidal

Figure 1.Overlapping stimulus feature maps in primary auditory cortex.Schematic is based on response properties of neurons in thalamorecipient layers III/IV of cat AI [for a comprehensive review,see (Schreiner et al ., 2000)].Characteristic frequency (CF),the sound frequency that evokes a neural response at low stimulus intensities,increases systematically along one dimension of the cortical surface to create a fundamental cochleotopic map.Other neural response properties –including spectral integration range,minimum latency,binaural interaction and intensity threshold –vary along the orthogonal dimension.Thus,each isofrequency band within the cochleotopic map encompasses subdomains of neurons with broad and narrow frequency tuning,long and short latencies,EE and EI binaural interactions (excitatory/excitatory or excitatory/inhibitory responses to stimulation of the contralateral/ipsilateral ears),and high-and low-intensity thresholds.

Figure 2.Anatomical connections within a column of primary auditory cortex.Left face of cube shows thalamic and corticocortical inputs;right face displays interlaminar connections as well as thalamic,collicular,and corticocortical outputs.Shading indicates layers that receive thalamocortical input (left)or produce corticothalamic outputs (right).Lemniscal thalamic inputs (MGB 1)end only in layers III and IV,while nonlemniscal inputs also activate layer I (MGB 2)or layers I and VI (MGB 3).(MGB 1includes the ventral division of the medial geniculate body,as well as the dorsal,dorsal superficial and suprageniculate nuclei;MGB 2represents the deep dorsal and caudal dorsal nuclei;and MGB 3is the medial division.)Corticocortical inputs from the ipsilateral hemisphere (Ctx ipsi )terminate in the middle layers,but commissural inputs (Ctx contra )are widely distributed among layers II–VI.Within the column,small pyramidal cells in layer IV and lower layer III receive the major lemniscal thalamic input,initiating a flow of information into the supragranular layers and then down to the infragranular layers.Pyramidal cells in layers II and III also extend long-range lateral projections to form horizontal connections with other cortical columns (symbolized by neuronal projection on top of cube).Feedback to the auditory thalamus (MGB)originates primarily in layer VI but also in layer V,and projections to the inferior colliculus (IC)emerge from layer V.Major corticocortical projections to both the ipsilateral and contralateral hemispheres emerge from layers II and III,but layers IV–VI also provide some corticocortical output.[Adapted from (Mitani et al.,1985;Winer,1992;Huang and Winer,2000).]

84Columnar Transformations in Auditory Cortex ?Linden and Schreiner

at The 3rd Military Medical University on February 14, 2014

https://www.doczj.com/doc/7a1747762.html,/Downloaded from

cells in lower layer III and layer IV appear to be the chief thalamorecipient neuron in auditory cortex(Smith and Populin, 2001).The broader than expected laminar distribution of lemnis-cal thalamic input to auditory cortex supports this hypothesis.In contrast to visual cortex and barrel cortex,in which the primary thalamic input terminates mainly in layer IV(LeVay and Gilbert, 1976;Landry and Deschênes,1981),the lemniscal thalamic input to auditory cortex extends well into layer III(Winer,1992; Huang and Winer,2000).Another unusual feature of the auditory thalamocortical projection arises outside the lemniscal pathway:giant axons ascending from a non-lemniscal part of the auditory thalamus to layer I of auditory cortex appear to be unique to the auditory system,and may carry some of the earliest thalamic signals into auditory cortex(Huang and Winer,2000).

Like the anatomy,the intrinsic properties and synaptic physiology of auditory cortex resemble those of other primary sensory cortices,with some intriguing differences.In vitro studies of auditory cortex(Metherate and Aramakis,1999;Hefti and Smith,2000,2002)have identified classes of regular-spiking,fast-spiking and intrinsic-bursting cells seen in other cortical areas(McCormick et al.,1985;Connors and Gutnick, 1990).However,such studies have also found that inhibitory response kinetics are much faster in auditory cortex(Hefti and Smith,2002),and that auditory cortex may have a unique class of neurons that spikes very brief ly upon depolarization and then shows strong outward rectification suppressing further spiking (Metherate and Aramakis,1999).Furthermore,a recent inves-tigation of synaptic transmission found that layer II/III pyramidal neurons in auditory cortex were connected by synapses display-ing low release probability and minimal short-term depression, as well as by high-probability depressing synapses(Atzori et al.,2001);only the latter type of synaptic transmission was observed in barrel cortex.

Since in vitro slice experiments are typically conducted in immature animals,these apparent physiological differences between auditory cortex and other sensory cortices might be an artifact of different maturational rates for each modality(Stern et al.,2001;Zhang et al.,2001;Desai et al.,2002).However,it is also possible that the unusual electrophysiological charac-teristics of auditory cortex neurons ref lect unique features of auditory cortical processing.For example, ultra-rapid inhibition and a wide diversity of synaptic transmission characteristics might contribute to specialization of auditory cortex for fast temporal information processing(Buonomano,2000).The recent development of an auditory thalamocortical slice prepar-ation(Cruikshank et al.,2002)promises new insights into the nature of auditory cortical physiology,and further modality comparisons through parallel experiments on auditory and somatosensory thalamocortical slices(Agmon and Connors, 1991).

Thalamocortical and Intracortical Transformations Thalamocortical transformations in the auditory system have recently been characterized in some detail through simultaneous in vivo recordings of functionally connected neurons in cat auditory thalamus and cortex(Miller et al.,2001).These experiments have revealed many forms of thalamocortical trans-formation,distributed between three extremes.In‘inheritance’, cortical and thalamic excitatory receptive fields are matched in spectrotemporal extent;in‘constructive convergence’,the thalamic receptive field is a component of a larger cortical receptive field;and in‘ensemble convergence’,the cortical receptive field represents a subregion of the thalamic receptive field.Similar studies in the visual system find predominantly ‘constructive convergence’,in that the receptive fields of neurons in the visual thalamus usually cover small subregions of

the receptive fields of functionally connected visual cortex neurons(Reid and Alonso,1995;Alonso et al.,2001).In the somatosensory whisker barrel system,on the other hand,

‘ensemble convergence’may dominate thalamocortical trans-formations,since the excitatory portions of thalamic receptive

fields tend to include more whiskers than their regular-spiking cortical counterparts(Simons and Carvell,1989)[although thalamocortical transformations involving suspected inhibitory cortical interneurons may exhibit‘constructive convergence’(Swadlow and Gusev,2002)].

The various auditory thalamocortical transformations demon-strated by Miller and colleagues(Miller et al.,2001)involved primarily the excitatory portions of thalamic and cortical receptive fields.Inhibitory subregions of paired thalamic and cortical receptive fields appear to be less closely related,and

many receptive-field properties that depend on inhibitory subfield arrangements(e.g.temporal and spectral modulation preferences)are poorly conserved in auditory thalamocortical transformations(Miller et al.,2001).Perhaps the inhibitory subregions of cortical receptive fields(and associated neuronal response properties)are generated intracortically,through disynaptic interactions involving thalamic input onto inhibitory interneurons that synapse onto pyramidal cells within the same cortical layer.Such intracortical inhibition may shape cortical responses in thalamorecipient layers of auditory cortex,much as

it is thought to do so in layer IV of visual cortex(Somers et al., 1995;Hirsch et al.,1998;Troyer et al.,1998)and barrel cortex (Brumberg et al.,1996;Pinto et al.,2000;Swadlow and Gusev, 2000).

How are receptive fields in thalamorecipient layers of auditory cortex transformed by further intracortical columnar pro-cessing?As mentioned in the introduction,previous studies of laminar differences and columnar processing in auditory cortex

have failed to produce a consensus on how auditory receptive

fields might differ across cortical layers.Studies of cat auditory cortex have reported layer-dependent variations in minimum response latency,with the shortest latencies in the thalamo-recipient middle layers(Phillips and Irvine,1981;Mendelson

et al.,1997),but investigations of rodent auditory cortex find

the shortest response latencies in deeper layers[Mongolian

gerbil(Sugimoto et al.,1997);mouse(Shen et al.,1999)]. Laminar differences in frequency tuning bandwidths,intensity thresholds and other response properties have been observed in

some studies of cat,bat and rodent auditory cortex(Oonishi and Katsuki,1965;Eggermont,1996;Dear et al.,1993;Sugimoto

et al.,1997),but not in other studies of the same species(Abeles

and Goldstein,1970;Phillips and Irvine,1981;Jen et al.,1989; Clarey et al.,1994;Foeller et al.,2001).Meanwhile,investiga-

tions in awake monkey cortex have recently reported systematic

layer-dependent variations in binaural interactions(Reser et al., 2000),and have suggested that such laminar differences might

have been masked in earlier experiments by the confounding effects of anesthesia.

Even if effects of anesthesia explain some of the discrepancies

in the literature,the lackof a consensus regarding laminar differences in auditory cortex contrasts markedly with the situation for visual and barrel cortex.Although controversies

about the nature of intracolumnar transformations in those systems are far from resolved,the existence of laminar differences

in stimulus sensitivities is beyond dispute.Indeed,laminar differences in visual cortex and barrel cortex(of both anesthetized and awake animals)have inspired many hypotheses

Cerebral Cortex Jan2003, V13N185

at The 3rd Military Medical University on February 14, 2014

https://www.doczj.com/doc/7a1747762.html,/

Downloaded from

about columnar function in those modalities.For example,the layer-dependent distribution of simple and complex cells in cat visual cortex,with simple cells predominating in the input layers and complex or hypercomplex cells more prevalent in super-ficial or deep layers,prompted Hubel and Wiesel to propose that complex cell receptive fields emerge through convergence of simple cell inputs within a column (Hubel and Wiesel,1962).Their hypothesis has received experimental support from recent studies (Alonso and Martinez,1998;Martinez and Alonso,2001),although the inf luences of nonlinear dendritic interactions and recurrent connections on complex receptive-field structure are still much debated (Mel et al .,1998;Chance et al .,1999).In barrel cortex,the anatomical and physiological differences between layer IV and superficial or deep layers have also inspired hypotheses regarding columnar computation in this system.For example,the superficial and deep layers,which contain neurons with complex multi-whisker receptive fields,may construct dynamic representations of behaviorally relevant stimuli from the more precise single-whisker representations that predominate in layer IV (Simons,1978;Brumberg et al.,1999).A complementary hypothesis is that the different layers of barrel cortex support parallel processing of spatial and temporal tactile information (Ahissar et al .,2000,2001),

Is auditory cortex inherently more homogeneous across cortical layers than these other sensory cortices?As discussed previously,auditory cortical circuitry does have some unique features,but the fundamental similarities with other sensory cortices seem far more striking than these differences.Studies in which auditory thalamocortical pathways are modified experi-mentally (‘rewired’)to receive visual signals further suggest that auditory cortex is capable of supporting the thalamocortical and intracolumnar transformations that produce laminar differences in other modalities.When retinal inputs are routed into the auditory thalamus after deafferentation of the normal brainstem inputs to the structure (Sur et al ., 1988; Angelucci et al ., 1998),auditory cortical cells develop visual response properties such as direction selectivity,orientation tuning and simple/complex receptive-field structure (Roe et al .,1992).Retinotopic maps of orientation tuning,complete with lateral connectivity between orientation domains,emerge in superficial layers of the rewired auditory cortex (Roe et al .,1990;Sharma et al .,2000).While laminar differences in rewired AI have not yet been sys-tematically explored,the observed physiological parallels with VI suggest similar underlying intracolumnar transformations,and provide compelling evidence for common principles of columnar organization linking sensory cortical structures in different modalities.

If laminar organization in auditory cortex is not inherently more homogeneous than that in other sensory cortices,then what is the explanation for the lackof consensus regarding laminar differences?It is possible that auditory stimuli,record-ing methods or experimental conditions in previous studies

have

Figure 3.Examples of spectrotemporal receptive fields (STRFs)for neurons in thalamorecipient layers of mouse primary auditory cortex.Extracellular recordings were obtained from AI of CBA/CaJ mice anesthetized with ketamine and medetomidine.The STRFs were derived from neural responses to spectrally complex and temporally dynamic random chord stimuli,using a Bayesian estimation procedure related to reverse correlation [details are given elsewhere (Sahani and Linden,2002;Linden et al.,2002)].Light and dark areas in each plot correspond respectively to excitatory and inhibitory subregions of the receptive field,and mid-gray background implies zero stimulus sensitivity (i.e.regions outside the receptive field).Negative time axis indicates time preceding the time-bin in which spikes evoked by the auditory stimulus would occur.Each STRF may therefore be viewed as a spectrogram-linear estimate of the preferred stimulus for the neuron.Note that although all four STRFs suggest tuning to sound onsets near 16kHz,the receptive fields differ greatly in the arrangement of excitatory and inhibitory subfields,and also in overall spectral and temporal extent.The diversity of auditory receptive fields within thalamorecipient layers of auditory cortex complicates efforts to define systematic differences in receptive-field structure across cortical layers.[Adapted from (Linden et al.,2002)and (Linden et al.,submitted for publication).]

86Columnar Transformations in Auditory Cortex ?Linden and Schreiner

at The 3rd Military Medical University on February 14, 2014

https://www.doczj.com/doc/7a1747762.html,/Downloaded from

not usually been sufficient or consistent enough to reveal compelling laminar differences,and that further progress awaits the use of new and more sophisticated stimulus sets,novel experimental techniques for recording simultaneously within a column,or simply more data from more species under awake as as well as anesthetized conditions.Another possibility, however,is that cortical processing of auditory information drives functional organization in cortex that obscures laminar differences.Most previous studies of laminar differences in auditory cortex have examined sequential recordings from single-electrode penetrations,but then pooled data taken from penetrations at different sites across cortex in attempting to identify systematic laminar differences.Perhaps the substantial variability in response properties within thalamorecipient layers of auditory cortex(Fig.3)greatly exceeds the variability in response properties across cortical layers.Definition of sys-tematic laminar differences in auditory cortex may be possible only within small subregions of the overlapping stimulus feature maps(Fig.1)in which variability within each cortical layer is minimized.

Future Directions

How might receptive-field properties in auditory cortex relate to those observed in visual cortex and somatosensory cortex?If valid analogies can be drawn at the level of the sensory receptors, then the one-dimensional frequency map in the cochlea would be the analog of two-dimensional spatial maps in the retina or on the body surface.Preferred frequency and spectral integration bandwidth in the auditory system would correspond to preferred stimulus location and receptive-field size in the visual and somatosensory systems.Sensitivity to sound intensity would be analogous to sensitivity to brightness or contrast in the visual system,and to the amplitude of skin indentation or whisker def lection in the somatosensory system. Inhibitory sidebands in frequency tuning curves(or equiva-lently,inhibitory subregions offset spectrally from the excitatory subregions of spectrotemporal receptive fields)might be functionally similar to the inhibitory spatial surrounds of visual or somatosensory receptive fields.Amplitude modulation rate or repetition rate sensitivity in the auditory system would corres-pond to f licker sensitivity in the visual system,and to tap rate or whisker vibration sensitivity in the somatosensory system. Finally,frequency-sweep tuning in auditory receptive fields might be analogous to visual or somatosensory motion sensitivity, since these forms of response tuning all relate to movement of an auditory,visual or somatosensory stimulus across the receptor surface.

To the extent that such direct receptor-level analogies to the visual and somatosensory systems are appropriate,then one would expect several stimulus features to vary in their representation across layers in auditory cortex. Visual and somatosensory receptive-field sizes tend to be smallest in layer IV(Gilbert,1977;Simons,1978;Sur et al.,1985;Métin et al., 1988),suggesting that the spectral integration bandwidths of auditory cortical neurons should be narrowest in the middle layers.Neurons sensitive to high speeds of visual motion are found most often in supra-and infragranular layers of visual cortex(Gilbert, 1977;Mangini and Pearlman,1980), so perhaps a similar laminar distribution would be expected for auditory cortex neurons sensitive to fast frequency https://www.doczj.com/doc/7a1747762.html,minar differences in temporal frequency tuning in barrel cortex (A hissar et al.,2001)imply that receptive fields in different layers of auditory cortex could have distinct preferences for rates of amplitude modulation.Variations with cortical depth in the strength of orientation tuning in visual cortex(Mangini and Pearlman,1980; Martinez et al.,2002;Ringach et al., 2002) and somatosensory cortex(Simons,1978;Chapin,1986;DiCarlo and Johnson,2002)might have an auditory parallel in the laminar distribution of auditory receptive fields with pronounced and/or asymmetric inhibitory sideband structure.Finally,the layer-dependent distribution of simple and complex cells in visual cortex(Hubel and Wiesel,1962;Gilbert,1977)suggests that a similar distribution of linear and nonlinear response types might

be found in auditory cortex. Simple and complex visual neurons

are distinguished by their relative sensitivity to the spatial phase

of an oriented stimulus;auditory cortex analogs might show varying sensitivity to the phase of spectral ripple,or perhaps to

the phase of frequency and amplitude modulations.

Ultimately,however,these receptor-level analogies may prove

less useful as a guide to understanding columnar transformations

in auditory cortex than a more functional,modality-specific approach inspired by another obser vation from studies of

visual and somatosensory cortices:the apparent relevance of columnar structure to experience-dependent sensory process-

ing.Experience-dependent plasticity in receptive-field structure follows layer-dependent time courses in both visual cortex(Daw

et al.,1992;Trachtenberg et al.,2000;Desai et al.,2002)and

barrel cortex(Diamond et al.,1994;Stern et al.,2001).These findings suggest that experience may shape and underlie the function of cortical columns in any cortical structure.Indeed, experiments in congenitally deafened cats have already demonstrated that auditory experience plays a crucial role in development of normal patterns of laminar activation in auditory cortex(Kral et al.,2000).Other studies of experience-dependent plasticity in auditory cortex(Recanzone et al.,1993; Weinberger,1998;Kilgard et al.,2001;Zhang et al.,2001)have documented profound changes in frequency tuning,repetition-

rate tuning and other auditory receptive-field properties after behavioral training or other manipulations of auditory experi-ence,but such studies have largely omitted any systematic exploration of the effects on a laminar basis.Critical insights into

the function of cortical columns in auditory cortex may come,

not from strict receptor-level analogies to the roles of cortical columns in visual and somatosensory processing,but from a natural extension of the rich history of workon cortical plasticity to pinpoint the roles of different cortical layers in auditory learning.

Notes

We thankM.M.Merzenich for his support and advice,R.C.Liu and M. Sahani for their assistance with the collection and analysis of mouse data reprinted in Figure3,and J.A.Winer for helpful comments on the manuscript. Supported by NIH DC00399and NIH DC02260 .

Address correspondence to Dr Jennifer F.Linden,KeckCenter for Integrative Neuroscience,University of California — San Francisco, Room

HSE804,513Parnassus Avenue,San Francisco,CA94143–0732,USA. Email:linden@https://www.doczj.com/doc/7a1747762.html,.

References

Abeles M,Goldstein MH(1970)Functional architecture in cat primary auditory cortex: columnar organization and organization according to

depth. J Neurophysiol33:172–187.

Agmon A,Connors BW(1991)Thalamocortical responses of mouse somatosensory(barrel)cortex in vitro. Neuroscience41:365–379.

Ahissar E, Sosnik R,Haidarliu S. (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway.Nature

406:302–306.

A hissar E,SosnikR,Bagdasarian K,Haidarliu S(2001)Temporal

frequency of whisker https://www.doczj.com/doc/7a1747762.html,minar organization of cortical

representations. J Neurophysiol86:354–367.

Cerebral Cortex Jan2003, V13N187

at The 3rd Military Medical University on February 14, 2014

https://www.doczj.com/doc/7a1747762.html,/

Downloaded from

Alonso JM,Martinez LM(1998)Functional connectivity between simple cells and complex cells in cat striate cortex. Nat Neurosci 1:395–403. Alonso JM,Usrey WM,Reid RC(2001)Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex.J Neurosci 21:4002–4015.

Angelucci A, Clasca F,Sur M(1998)Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus.J Comp Neurol 400:417–439.

Atzori M,Le S,Evans DI,Kanold PO,Phillips-Tansey E,McIntyre O, McBain CJ(2001)Differential synaptic processing separates stationary from transient inputs to the auditory cortex.Nat Neurosci 4:1230–1237.

Brugge JF,Merzenich MM(1973)Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation.

J Neurophysiol36:1138–1158.

Brumberg JC,Pinto DJ,Simons DJ(1996)Spatial gradients and inhibitory summation in the rat whisker barrel system.J Neurophysiol76:130–140. Brumberg JC,Pinto DJ,Simons DJ(1999)Cortical columnar processing in the rat whisker-to-barrel system. J Neurophysiol82:1808–1817. Buonomano DV(2000)Decoding temporal information:a model based on short-term synaptic plasticity.J Neurosci 20:1129–1141.

Chance FS,Nelson SB,Abbott LF(1999)Complex cells as cortically amplified simple cells. Nat Neurosci 2:277–282.

Chapin JK(1986)Laminar differences in sizes,shapes,and response profiles of cutaneous receptive fields in the rat SI cortex.Exp Brain Res 62:549–559.

Clarey JC,Barone P,Imig TJ(1992)Physiology of thalamus and cortex.In: The mammalian auditory pathway:neurophysiology(Popper E,Fay R, eds), pp. 232–334. New York:Springer-Verlag.

Clarey JC,Barone P,Imig TJ(1994)Functional organization of sound direction and sound pressure level in primary auditory cortex of the cat. J Neurophysiol72:2383–2405.

Connors BW,GutnickMJ(1990)I ntrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104.

Cruikshank SJ,Rose HJ,Metherate R(2002)Auditory thalamocortical synaptic transmission in vitro. J Neurophysiol87:361–384.

Daw NW,Fox K,Sato H,Czepita D(1992)Critical period for monocular deprivation in the cat visual cortex. J Neurophysiol67:197–202. Dear SP,Fritz J,Haresign T,Ferragamo M,Simmons JA(1993)Tonotopic and functional organization in the auditory cortex of the big brown bat,Eptesicus fuscus.J Neurophysiol70:1988–2009.

DeFelipe J,Conley M,Jones EG(1986)Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. J Neurosci 6:3749–3766.

Desai NS,Cudmore RH,Nelson SB,Turrigiano GG(2002)Critical periods for experience-dependent synaptic scaling in visual cortex.Nat Neurosci 5:783–789.

Diamond ME,Huang W,Ebner FF(1994)Laminar comparison of somatosensory cortical plasticity. Science 265:1885–1888.

DiCarlo J,Johnson K(2002)Receptive field structure in cortical area3b of the alert monkey. Behav Brain Res 135:167–178.

Eggermont JJ(1996)How homogeneous is cat primary auditory cortex?

Evidence from simultaneous single-unit recordings.Aud Neurosci 2:79–96.

Foeller E,Vater M,Kossl M(2001)Laminar analysis of inhibition in the gerbil primary auditory cortex. J Assoc Res Otolaryngol2:279–296. Gilbert CD(1977)Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol268:391–421.

Gilbert CD,Wiesel TN(1979)Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex.Nature 280:120–125.

Hefti BJ,Smith PH(2000)Anatomy,physiology,and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade.J Neurophysiol 83:2626–2638.

Hefti BJ,Smith PH(2002)Distribution and kinetic properties of GABAergic inputs to layer V pyramidal cells in rat auditory cortex.

J Assoc Res Otolayrngol DOI: 10.1007/s10162-002-3012-z.

Hirsch JA,Alonso JM,Reid RC,Martinez LM(1998)Synaptic integration in striate cortical simple cells. J Neurosci18:9517–9528.

Huang CL,Winer JA(2000)Auditory thalamocortical projections in the cat:laminar and areal patterns of input.J Comp Neurol427:302–331. Hubel DH,Wiesel TN(1962)Receptive fields,binocular interaction and functional architecture in the cat's visual cortex.J Physiol(Lond) 160:106–154.Hübener M,Shoham D,Grinvald A,Bonhoeffer T(1997)Spatial relationship among three columnar systems in cat area 17.J Neurosci 17:9270–9784.

Imig TJ,Adrián HO(1977)Binaural columns in the primary field(A1)of cat auditory cortex. Brain Res138:241–257.

Imig TJ,Brugge JF(1978)Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J Comp Neurol182:637–660.

Innocenti GM(1980)The primary visual pathway through the corpus callosum:morphological and functional aspects in the cat.Arch Ital Biol118:124–188.

Innocenti GM(1986)General organization of callosal connections in the cerebral cortex.In:Cerebral cortex(Jones EG,Peters A,eds),Vol.5, pp. 291–353. New York:Plenum Press.

Jen PH, Sun XD,Lin PJ(1989)Frequency and space representation in the primary auditory cortex of the frequency modulating bat Eptesicus fuscus. J Comp Neurol A 165:1–14.

Jones EG(1975)Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey.J Comp Neurol 160:205–267.

Jones EG (2002) Microcolumns in the cerebral cortex.Proc Natl Acad Sci USA97:5019–5021.

Kilgard MP,Pandya PK,Vazquez J,Gehi A,Schreiner CE,Merzenich MM (2001)Sensory input directs spatial and temporal plasticity in primary auditory cortex. J Neurophysiol 86:326–338.

Kral A,Hartmann R,Tillein J,Heid S,Klinke R(2000)Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner.Cereb Cortex 10:714–726.

Landry P,Deschênes M(1981)Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat.J Comp Neurol199:345–371. LeVay S,Gilbert CD(1976)Laminar patterns of geniculocortical projection in the cat. Brain Res 113:1–19.

Linden JF,Liu RC,Sahani M,Schreiner CE,Merzenich MM(2002) Spectrotemporal structure of receptive fields in areas AI and A AF of mouse auditory cortex. Soc Neurosci Abstr32:458.4.

Lund JS,Henry GH,MacQueen CL,Harvey AR(1979)Anatomical organization of the primary visual cortex(area17)in the cat.A comparison with area17of the macaque monkey.J Comp Neurol 184:599–618.

Mangini NJ,Pearlman AL(1980)Laminar distribution of receptive field properties in the primary visual cortex of the mouse.J Comp Neurol 193:203–222.

Manzoni T, Barbaresi P, Bellardinelli E,Caminiti R(1980)Callosal projections from the two body midlines.Exp Brain Res 39:1–9. Martinez LM,Alonso JM (2001)Construction of complex receptive fields in cat primary visual cortex.Neuron 32:515–525.

Martinez LM,Alonso JM,Reid RC,Hirsch JA(2002)Laminar processing of stimulus orientation in cat visual cortex. J Physiol 540:321–333. Matsubara JA,Phillips DP(1988)Intracortical connections and their physiological correlates in the primary auditory cortex(AI)of the cat.

J Comp Neurol268:38–48.

McCormickDA,Connors BW,Lighthall JW,Prince DA(1985)Com-parative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol54:782–806.

Mel BW,Ruderman DL,Archie KA(1998)Translation-invariant orienta-tion tuning in visual‘complex’cells could derive from intradendritic computations.J Neurosci 18:4325–4334.

Mendelson JR,Schreiner CE,Sutter ML,Grasse KL(1993)Functional topography of cat primary auditory cortex:responses to frequency-modulated sweeps.Exp Brain Res 94:65–87.

Mendelson JR,Schreiner CE,Sutter ML(1997)Functional topography of cat primary auditory cortex:response latencies.J Comp Physiol A 181:615–633.

Merzenich MM,Knight PL,Roth GL(1975)Representation of the cochlea within primary auditory cortex in the cat.J Neurophysiol 38:231–249.

Metherate R,Aramakis VB(1999)Intrinsic electrophysiology of neurons in thalamorecipient layers of developing rat auditory cortex.Brain Res Dev Brain Res 115:131–144.

Métin C,Godement P,Imbert M(1988)The primary visual cortex in the mouse:receptive field properties and functional organization.Exp Brain Res 69:594–612.

Middlebrooks JC,Dykes RW,Merzenich MM(1980)Binaural response-specific bands in primary auditory cortex(AI)of the cat:

88Columnar Transformations in Auditory Cortex?Linden and Schreiner at The 3rd Military Medical University on February 14, 2014 https://www.doczj.com/doc/7a1747762.html,/ Downloaded from

topographical organization orthogonal to isofrequency contours.

Brain Res 181:31–48.

Miller LM,EscabíMA,Read HL,Schreiner CE(2001)Functional convergence of response properties in the auditory thalamocortical system.Neuron32:151–160.

Mitani A,Shimokouchi M(1985)Neuronal connections in the primary auditory cortex:an electrophysiological study in the cat.J Comp Neurol235:417–429.

Mitani A,Shimokouchi M,Itoh K,Nomura S,Kudo M,Mizuno N(1985) Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat.J Comp Neurol235:430–447.

Ojima H,Honda CN,Jones EG(1991)Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex.

Cereb Cortex 1:80–94.

Oonishi S,Katsuki Y(1965)Functional organization and integrative mechanisms on the auditory cortex of the cat.Japan J Physiol 15:342–365.

Phillips DP,Irvine DRF(1981)Responses of single neurons in physio-logically defined primary auditory cortex(AI)of the cat:frequency tuning and responses to intensity.J Neurophysiol 45:48–58.

Phillips DP,Irvine DRF(1983)Some features of binaural input to single neurons in physiologically defined area AI of cat cerebral cortex.

J Neurophysiol49:383–395.

Pinto DJ,Brumberg JC,Simons DJ(2000)Circuit dynamics and coding strategies in rodent somatosensory cortex.J Neurophysiol 83:1158–1166.

Read HL,Winer JA,Schreiner CE(2001)Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex.

Proc Natl Acad Sci USA98:8042–8047.

Recanzone GH,Schreiner CE,Merzenich MM(1993)Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13:87–103. Reid RC,Alonso JM(1995)Specificity of monosynaptic connections from thalamus to visual cortex. Nature378:281–284.

Reser DH,Fishman YI,Arezzo JC,Steinschneider M(2000)Binaural interactions in primary auditory cortex of the awake macaque. Cereb Cortex 10:574–584.

Ringach DL,Shapley RM,Hawken MJ(2002)Orientation selectivity in macaque V1:diversity and laminar dependence.J Neurosci 22:5639–5651.

Rockel AJ,Hiorns RW,Powell TPS(1980)The basic uniformity in the structure of the neocortex. Brain 103:221–244.

Rockland KS,Lund JS(1983)I ntrinsic laminar lattice connections in primate visual cortex. J Comp Neurol216:303–318.

Roe AW, Pallas SL,Hahm JO, Sur M (1990)A map of visual space induced in primary auditory cortex. Science250:818–820.

Roe AW,Pallas SL,Kwon YH,Sur M(1992)Visual projections routed to the auditory pathway in ferrets:receptive fields of visual neurons in primary auditory cortex. J Neurosci12:3651–3664.

Sahani M,Linden JF(2002)Evidence optimization techniques for estimating stimulus-response functions.In:Advances in neural information processing systems(Becker S,Than S,Obermeyer K, eds), Vol.15. Cambridge, MA: MIT Press (in press).

Schreiner CE,Mendelson JR(1990)Functional topography of cat primary auditory cortex:distribution of integrated excitation.J Neurophysiol 64:1442–1459.

Schreiner CE,Read HL,Sutter ML(2000)Modular organization of frequency integration in primary auditory cortex.Annu Rev Neurosci 23:501–529.

SchwarkHD,Jones EG(1989)The distribution of intrinsic cortical axons

in area3b of cat primary somatosensory cortex.Exp Brain Res

78:501–513.

Sharma J,Angelucci A,Sur M(2000)Induction of visual orientation modules in auditory cortex. Nature404:841–847.

Shen JX,Xu ZM,Yao YD(1999)Evidence for columnar organization in the auditory cortex of the mouse.Hear Res 137:174–177.

Simons DJ(1978)Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophys41:798–820.

Simons DJ,Carvell GE(1989)Thalamocortical response transformation in the rat vibrissa/barrel system. J Neurophysiol61:311–330.

Simons DJ,Woolsey TA(1984)Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex.J Comp Neurol230:119–132.

Smith PH,Populin LC(2001)Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices.

J Comp Neurol 436:508–519.

Somers DC,Nelson SB,Sur M(1995)An emergent model of orientation selectivity in cat visual cortical simple cells.J Neurosci15:5448–5465. Sretavan D,Dykes RW(1983)The organization of two cutaneous submodalities in the forearm region of area3b of cat somatosensory

cortex. J Comp Neurol13:381–398.

Stern EA,Maravall M,Svoboda K(2001)Rapid development and plasticity of layer2/3 maps in rat barrel cortex in vivo.Neuron 31:305–315.

Suga N(1965)Functional properties of auditory neurones in the cortex of echo-locating bats.J Physiol (Lond) 181:671–700.

Sugimoto S,Sakurada M,Horikawa J,Taniguchi I(1997)The columnar and layer-specific response properties of neurons in the primary

auditory cortex of Mongolian gerbils.Hear Res 112:175–185.

Sur M,Wall JT,Kaas JH(1984)Modular distribution of neurons with slowly adapting and rapidly adapting responses in area3b of

somatosensory cortex in monkeys.J Neurophysiol51: 724–744.

Sur M,Garraghty PE,Bruce CJ(1985)Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in areas 3b and1.

Brain Res 342:391–395.

Sur M,Garraghty PE,Roe AW(1988)Experimentally induced visual pro-jections into auditory thalamus and cortex. Science 242:1437–1441.

Sutter ML,Schreiner CE(1991)Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex.

J Neurophysiol65:1207–1226.

Swadlow HA,Gusev AG(2000)The inf luence of single VB thalamo-cortical impulses on barrel columns of rabbit somatosensory cortex.

J Neurophysiol83:2802–2813.

Swadlow HA,Gusev AG(2002)Receptive-field construction in cortical inhibitory interneurons. Nat Neurosci 5:403–404.

Trachtenberg JT,Trepel C, Stryker MP (2000) Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing

primary visual cortex. Science287:2029–2032.

Troyer TW,Krukowski AE,Priebe NJ,Miller KD(1998)Contrast-invariant orientation tuning in cat visual cortex:thalamocortical input

tuning and correlation-based intracortical connectivity.J Neurosci

18:5908–5927.

Wallace MN,Kitzes LM,Jones EG(1991)Intrinsic inter-and intralaminar connections and their relationship to the tonotopic map in cat

primary auditory cortex. Exp Brain Res 86:527–544.

Weinberger NM(1998)Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol Learn Mem 70:226–251.

Winer JA(1992)The functional architecture of the medial geniculate body and the primary auditory cortex.In:The mammalian auditory

pathway:neuroanatomy(Webster DB,Popper AN,Fay RR,eds),

pp.222–409.New York:Springer-Verlag.

Zhang LI,Bao S,Merzenich MM(2001)Persistent and specific inf luences of early acoustic environments on primary auditory cortex.Nat

Neurosci4:1123–1130.

Cerebral Cortex Jan2003, V13N189

at The 3rd Military Medical University on February 14, 2014

https://www.doczj.com/doc/7a1747762.html,/

Downloaded from

小学joinin剑桥英语单词汇总

JOIN IN 学生用书1 Word List Starter Unit 1.Good afternoon 下午好 2.Good evening 晚上好 3.Good morning 早上好 4.Good night 晚安 5.Stand 站立 Unit 1 6.count [kaunt] (依次)点数 7.javascript:;eight [eit] 八 8.eleven [i'levn] 十一 9.four [f?:] 四 10.five [faiv] 五 11.flag [fl?g] 旗 12.guess [ges] 猜 13.jump [d??mp] 跳 14.nine [nain] 九 15.number ['n?mb?] 数字 16.one [w?n] 一 17.seven ['sevn] 七 18.six [siks] 六 19.ten [ten] 十 20.three [θri:] 三 21.twelve [twelv] 十二 22.two [tu:] 二 23.your [ju?] 你的 24.zero ['zi?r?u] 零、你们的 Unit 2 25.black [bl?k] 黑色26.blue [blu:] 蓝色 27.car [kɑ:] 小汽车 28.colour ['k?l?] 颜色 29.door [d?:] 门 30.favourite [feiv?rit]javascript:; 特别喜爱的 31.green [gri:n] 绿色 32.jeep [d?i:p] 吉普车 33.orange ['?:rind?] 橙黄色 34.pin k [pi?k] 粉红色 35.please [pli:z] 请 36.purple ['p?:pl] 紫色 37.red [red] 红色 38.white [wait] 白色 39.yellow ['jel?u] 黄色 Unit 3 40.blackboard ['bl?kb?:d] 黑板 41.book [buk] 书 42.chair [t???] 椅子 43.desk [desk] 桌子 44.pen [pen] 钢笔 45.pencil ['pensl] 铅笔 46.pencil case [keis] 笔盒 47.ruler ['ru:l?] 尺、直尺 48.schoolbag [sku:l] 书包 49.tree [tri:] 树 50.window ['wind?u] 窗、窗口 Unit 4 51.brown [braun] 棕色 52.cat [k?t] 猫

joinin剑桥小学英语

Join In剑桥小学英语(改编版)入门阶段Unit 1Hello,hello第1单元嗨,嗨 and mime. 1 听,模仿 Stand up Say 'hello' Slap hands Sit down 站起来说"嗨" 拍手坐下来 Good. Let's do up Say 'hello' Slap hands Sit down 好. 我们来再做一遍.站起来说"嗨"拍手坐下来 the pictures. 2 再听一遍给图画编号. up "hello" hands down 1 站起来 2 说"嗨" 3 拍手 4 坐下来说 3. A ,what's yourname 3 一首歌嗨,你叫什么名字 Hello. , what's yourname Hello. Hello. 嗨. 嗨. 嗨, 你叫什么名字嗨,嗨. Hello, what's yourname I'm Toby. I'm Toby. Hello,hello,hello.嗨, 你叫什么名字我叫托比. 我叫托比 . 嗨,嗨,嗨. I'm Toby. I'm Toby. Hello,hello, let's go! 我是托比. 我是托比. 嗨,嗨, 我们一起! Hello. , what's yourname I'm 'm Toby. 嗨.嗨.嗨, 你叫什么名字我叫托比.我叫托比. Hello,hello,hello. I'm 'm Toby. Hello,hello,let's go! 嗨,嗨,嗨.我是托比. 我是托比. 嗨,嗨,我们一起! 4 Listen and stick 4 听和指 What's your name I'm Bob. 你叫什么名字我叫鲍勃. What's your name I'm Rita. What's your name I'm Nick. 你叫什么名字我叫丽塔. 你叫什么名字我叫尼克. What's your name I'm Lisa. 你叫什么名字我叫利萨. 5. A story-Pit'sskateboard. 5 一个故事-彼德的滑板. Pa:Hello,Pit. Pa:好,彼德. Pi:Hello,:What's this Pi:嗨,帕特.Pa:这是什么 Pi:My new :Look!Pi:Goodbye,Pat! Pi:这是我的新滑板.Pi:看!Pi:再见,帕特! Pa:Bye-bye,Pit!Pi:Help!Help!pi:Bye-bye,skateboard! Pa:再见,彼德!Pi:救命!救命!Pi:再见,滑板! Unit 16. Let's learnand act 第1单元6 我们来边学边表演.

Join In剑桥小学英语.doc

Join In剑桥小学英语(改编版)入门阶段 Unit 1Hello,hello第1单元嗨,嗨 1.Listen and mime. 1 听,模仿 Stand up Say 'hello' Slap hands Sit down 站起来说"嗨" 拍手坐下来 Good. Let's do itagain.Stand up Say 'hello' Slap hands Sit down 好. 我们来再做一遍.站起来说"嗨"拍手坐下来 2.listen again.Number the pictures. 2 再听一遍给图画编号. 1.Stand up 2.Say "hello" 3.Slap hands 4.Sit down 1 站起来 2 说"嗨" 3 拍手 4 坐下来说 3. A song.Hello,what's yourname? 3 一首歌嗨,你叫什么名字? Hello. Hello.Hello, what's yourname? Hello. Hello. 嗨. 嗨. 嗨, 你叫什么名字? 嗨,嗨. Hello, what's yourname? I'm Toby. I'm Toby. Hello,hello,hello. 嗨, 你叫什么名字? 我叫托比. 我叫托比 . 嗨,嗨,嗨. I'm Toby. I'm Toby. Hello,hello, let's go! 我是托比. 我是托比. 嗨,嗨, 我们一起! Hello. Hello.Hello, what's yourname? I'm Toby.I'm Toby. 嗨.嗨.嗨, 你叫什么名字? 我叫托比.我叫托比. Hello,hello,hello. I'm Toby.I'm Toby. Hello,hello,let's go! 嗨,嗨,嗨.我是托比. 我是托比. 嗨,嗨,我们一起! 4 Listen and stick 4 听和指 What's your name? I'm Bob. 你叫什么名字? 我叫鲍勃. What's your name ? I'm Rita. What's your name ? I'm Nick. 你叫什么名字? 我叫丽塔. 你叫什么名字? 我叫尼克. What's your name ? I'm Lisa. 你叫什么名字? 我叫利萨. 5. A story-Pit'sskateboard. 5 一个故事-彼德的滑板. Pa:Hello,Pit. Pa:好,彼德. Pi:Hello,Pat.Pa:What's this? Pi:嗨,帕特.Pa:这是什么? Pi:My new skateboard.Pi:Look!Pi:Goodbye,Pat! Pi:这是我的新滑板.Pi:看!Pi:再见,帕特! Pa:Bye-bye,Pit!Pi:Help!Help!pi:Bye-bye,skateboard! Pa:再见,彼德!Pi:救命!救命!Pi:再见,滑板! Unit 16. Let's learnand act 第1单元6 我们来边学边表演.

常用标点符号用法简表.doc

常用标点符号用法简表 标点符号栏目对每一种汉语标点符号都有详细分析,下表中未完全添加链接,请需要的同学或朋友到该栏目查询。名称符号用法说明举例句号。表示一句话完了之后的停顿。中国共产党是全中国人民的领导核心。逗号,表示一句话中间的停顿。全世界各国人民的正义斗争,都是互相支持的。顿号、表示句中并列的词或词组之间的停顿。能源是发展农业、工业、国防、科学技术和提高人民生活的重要物质基础。分号;表示一句话中并列分句之间的停顿。不批判唯心论,就不能发展唯物论;不批判形而上学,就不能发展唯物辩证法。冒号:用以提示下文。马克思主义哲学告诉我们:正确的认识来源于社会实践。问号?用在问句之后。是谁创造了人类?是我们劳动群众。感情号①!1.表示强烈的感情。2.表示感叹句末尾的停顿。战无不胜的马克思主义、列宁主义、毛泽东思想万岁!引号 ②“ ” ‘ ’ ╗╚ ┐└1.表示引用的部分。毛泽东同志在《论十大关系》一文中说:“我们要调动一切直接的和间接的力量,为把我国建设成为一个强大的社会主义国家而奋斗。”2.表示特定的称谓或需要着重指出的部分。他们当中许多人是身体好、学习好、工作好的“三好”学生。 3.表示讽刺或否定的意思。这伙政治骗子恬不知耻地自封为“理论家”。括号③()表示文中注释的部分。这篇小说环境描写十分出色,它的描写(无论是野外,或是室内)处处与故事的发展扣得很紧。省略号④……表示文中省略的部分。这个县办工厂现在可以生产车床、电机、变压器、水泵、电线……上百种产品。破折号⑤——1.表示底下是解释、说明的部

分,有括号的作用。知识的问题是一个科学问题,来不得半点的虚伪和骄 傲,决定地需要的倒是其反面——诚实和谦逊的态度。2.表示意思的递进。 团结——批评和自我批评——团结3.表示意思的转折。很白很亮的一堆洋 钱!而且是他的——现在不见了!连接号⑥—1.表示时间、地点、数目等 的起止。抗日战争时期(1937-1945年)“北京—上海”直达快车2.表 示相关的人或事物的联系。亚洲—太平洋地区书名号⑦《》〈〉表示 书籍、文件、报刊、文章等的名称。《矛盾论》《中华人民共和国宪法》《人 民日报》《红旗》杂志《学习〈为人民服务〉》间隔号·1.表示月份和日期 之间的分界。一二·九运动2.表示某些民族人名中的音界。诺尔曼·白求 恩着重号.表示文中需要强调的部分。学习马克思列宁主义,要按照毛泽 东同志倡导的方法,理论联系实际。······

Joinin小学五年级英语教案

Join in 小学五年级英语教案 介休市宋古二中上站小学庞汝君 Unit 6 Friends 单元目标: 1、单词:sport music kite cap car book dog cat rat frog spider butterfly 2、句型:Who is your best friend ? (重点) How old is he ? When is his birthday ? What’s his favourite food ? 3、段落:介绍自己的好朋友 My best friend’s name is Toby . He is ten years old . His favourite colour is red . His birthday is in May . He has got a dog . 4、语法:第三人称的人称代词和物主代词(难点) 他he 他的his 她she 她的her 一般现在时第三人称单数动词+s

5、故事:Emma , Jackie and Diana . Are you all right ? What’s the matter ? Don’t be silly . We can play together . The first class 一、教学目标: 两个句型1、Who is your best friend ? 2、How old is he ? 二、教学过程: 1、Talk about your best friend . (1)教师说句子Who is your best friend ? My best friend is Anna. 让学生先领会句子的意思,然后模仿, 小组练习对话并上台表演。 (2)第二个句子How old is he ? He is nine years old . 象上面一样练习,等到学生掌握后把两个问句连起来做 问答操练。

五年级下英语月考试卷全能练考Joinin剑桥英语(无答案)

五年级下英语月考试卷-全能练考-Join in剑桥英语 姓名:日期:总分:100 一、根据意思,写出单词。(10′) Fanny:Jackie, ________[猜] my animal,my ________最喜欢的 animal.OK? Jackie:Ok!Mm…Has it got a nose? Fanny:Yes,it’s got a big long nose,…and two long ________[牙齿]. Jackie:Does it live in ________[美国]? Fanny:No,no.It lives ________[在] Africa and Asia. Jackie:Can it ________[飞]? Fanny:I’m sorry it can’t. Jackie:Is it big? Fanny:Yes,it’s very big and ________[重的]. Jackie:What ________[颜色] is it?Is it white or ________[黑色]? Fanny:It’s white. Jackie:Oh,I see.It’s ________[大象]. 二、找出不同类的单词。(10′) ()1 A.sofa B.table C.check ()2 A.noodle https://www.doczj.com/doc/7a1747762.html,k C.way ()3 A.fish B.wolf C.lion ()4 A.bike B.car C.write ()5 A.tree B.farm C.grass ()6 A.big B.small C.other ( )7 A.eat B.listen C.brown

最新公司注册登记(备案)申请书

公司登记(备案)申请书 注:请仔细阅读本申请书《填写说明》,按要求填写。 □基本信息 名称 名称预先核准文号/ 注册号/统一 社会信用代码 住所 省(市/自治区)市(地区/盟/自治州)县(自治县/旗/自治旗/市/区)乡(民族乡/镇/街道)村(路/社区)号 生产经营地 省(市/自治区)市(地区/盟/自治州)县(自治县/旗/自治旗/市/区)乡(民族乡/镇/街道)村(路/社区)号 联系电话邮政编码 □设立 法定代表人 姓名 职务□董事长□执行董事□经理注册资本万元公司类型 设立方式 (股份公司填写) □发起设立□募集设立经营范围 经营期限□年□长期申请执照副本数量个

□变更 变更项目原登记内容申请变更登记内容 □备案 分公司 □增设□注销名称 注册号/统一 社会信用代码登记机关登记日期 清算组 成员 负责人联系电话 其他□董事□监事□经理□章程□章程修正案□财务负责人□联络员 □申请人声明 本公司依照《公司法》、《公司登记管理条例》相关规定申请登记、备案,提交材料真实有效。通过联络员登录企业信用信息公示系统向登记机关报送、向社会公示的企业信息为本企业提供、发布的信息,信息真实、有效。 法定代表人签字:公司盖章(清算组负责人)签字:年月日

附表1 法定代表人信息 姓名固定电话 移动电话电子邮箱 身份证件类型身份证件号码 (身份证件复印件粘贴处) 法定代表人签字:年月日

附表2 董事、监事、经理信息 姓名职务身份证件类型身份证件号码_______________ (身份证件复印件粘贴处) 姓名职务身份证件类型身份证件号码_______________ (身份证件复印件粘贴处) 姓名职务身份证件类型身份证件号码_______________ (身份证件复印件粘贴处)

剑桥小学英语Join_In

《剑桥小学英语Join In ——Book 3 下学期》教材教法分析2012-03-12 18:50:43| 分类:JOIN IN 教案| 标签:|字号大中小订阅. 一、学情分析: 作为毕业班的学生,六年级的孩子在英语学习上具有非常显著的特点: 1、因为教材的编排体系和课时不足,某些知识学生已遗忘,知识回生的现象很突出。 2、有的学生因受学习习惯及学习能力的制约,有些知识掌握较差,学生学习个体的差异性,学习情况参差不齐、两级分化的情况明显,对英语感兴趣的孩子很喜欢英语,不喜欢英语的孩子很难学进去了。 3、六年级的孩子已经进入青春前期,他们跟三、四、五年级的孩子相比已经有了很大的不同。他们自尊心强,好胜心强,集体荣誉感也强,有自己的评判标准和思想,对知识的学习趋于理性化,更有自主学习的欲望和探索的要求。 六年级学生在英语学习上的两极分化已经给教师的教学带来很大的挑战,在教学中教师要注意引导学生调整学习方式: 1、注重培养学生自主学习的态度 如何抓住学习课堂上的学习注意力,吸引他们的视线,保持他们高涨的学习激情,注重过程的趣味化和学习内容的简易化。 2、给予学生独立思考的空间。 3、鼓励学生坚持课前预习、课后复习的好习惯。 六年级教材中的单词、句子量比较多,难点也比较多,学生课前回家预习,不懂的地方查英汉词典或者其它资料,上课可以达到事半功倍的效果,课后复习也可以很好的消化课堂上的内容。 4、注意培养学生合作学习的习惯。 5、重在培养学生探究的能力:学习内容以问题的方式呈现、留给学生更多的发展空间。 二、教材分析: (一).教材特点: 1.以学生为主体,全面提高学生的素质。

(完整版)JOININ小学三年级英语(上册)重点知识归纳

小学三年级英语(上册)重要知识点归纳 一、单词 Unit 1学习文具:pen (钢笔) pencil (铅笔) pencil-case ( 铅笔盒) ruler(尺子) eraser(橡皮) crayon (蜡笔) book (书) bag (书包) sharpener (卷笔刀) school (学校) Unit 2身体部位:head (头) face( 脸) nose (鼻子) mouth (嘴) eye (眼睛)leg (腿) ear (耳朵) arm (胳膊)finger (手指) leg (腿) foot (脚)body (身体) Unit 3颜色:red (红色的) yellow (黄色的)green (绿色的)blue (蓝色的) purple (紫色的) white (白色的) black (黑色的) orange (橙色的) pink (粉色的)brown (棕色的) Unit 4动物:cat (猫)dog (狗)monkey (猴子)panda (熊猫)rabbit( 兔子) duck (鸭子)pig (猪)bird (鸟) bear (熊)elephant (大象)mouse (老鼠) squirrel (松鼠) Unit 5食物:cake (蛋糕)bread (面包) hot dog (热狗) hamburger (汉堡包) chicken (鸡肉)French fries (炸薯条)coke (可乐)juice (果汁)milk (牛奶) water (水)tea (茶) coffee (咖啡) Unit 6数字:one (一) two (二) three (三)four (四) five (五)six( 六)seven (七) eight (八) nine( 九) ten( 十)doll (玩具娃娃) boat (小船)ball (球) kite (风筝) balloon (气球) car (小汽车)plane (飞机) 二、对话 1、向别人问好应该说――A: Hello! (你好!) B: Hi! (你好!) 2、问别人的名字应该说-――A:What's your name? 你的名字是什么? B:My name's Chen Jie. 我的名字是陈洁。 3、跟别人分手应该说――A: Bye.\ Good bye!(再见) B: See you.(再见) \ Goodbye.(再见) 4、A: I have a pencil\ bag\ruler 我有一只铅笔\书包\尺子。 B: Me too . 我也有。 5、早上相见应该说-――A: Good morning. 早上好!

有限合伙企业登记注册操作指南

有限合伙企业登记注册操作指南 风险控制部 20xx年x月xx日

目录 一、合伙企业的概念 (4) 二、有限合伙企业应具备的条件 (4) 三、有限合伙企业设立具备的条件 (4) 四、注册有限合伙企业程序 (5) 五、申请合伙企业登记注册应提交文件、证件 (6) (一)合伙企业设立登记应提交的文件、证件: (6) (二)合伙企业变更登记应提交的文件、证件: (7) (三)合伙企业注销登记应提交的文件、证件: (8) (四)合伙企业申请备案应提交的文件、证件: (9) (五)其他登记应提交的文件、证件: (9) 六、申请合伙企业分支机构登记注册应提交的文件、证件 (9) (一)合伙企业分支机构设立登记应提交的文件、证件 (10) (二)合伙企业分支机构变更登记应提交的文件、证件: (10) (三)合伙企业分支机构注销登记应提交的文件、证件: (11) (四)其他登记应提交的文件、证件: (12) 七、收费标准 (12) 八、办事流程图 (12) (一)有限合伙企业创办总体流程图(不含专业性前置审批) (12) (二)、工商局注册程序 (15)

(三)、工商局具体办理程序(引入网上预审核、电话预约方式) (16) 九、有限合伙企业与有限责任公司的区别 (16) (一)、设立依据 (16) (二)、出资人数 (16) (三)、出资方式 (17) (四)、注册资本 (17) (五)、组织机构 (18) (六)、出资流转 (18) (七)、对外投资 (19) (八)、税收缴纳 (20) (九)、利润分配 (20) (十)、债务承担 (21) 十、常见问题解答与指导 (21)

剑桥小学英语join in五年级测试卷

五 年 级 英 语 测 试 卷 学校 班级 姓名 听力部分(共20分) 一、Listen and colour . 听数字,涂颜色。(5分) 二、 Listen and tick . 听录音,在相应的格子里打“√”。 (6分) 三、Listen and number.听录音,标序号。(9分) pig fox lion cow snake duck

sheep 笔试部分(共80分) 一、Write the questions.将完整的句子写在下面的横线上。(10分) got it Has eyes on a farm it live sheep a it other animals eat it it Is 二、Look and choose.看看它们是谁,将字母填入括号内。(8分) A. B. C. D.

E. F. G. H. ( ) pig ( ) fox ( ) sheep ( ) cat ( ) snake ( ) lion ( ) mouse ( ) elephant 三、Look at the pictures and write the questions.看图片,根据答语写出相应的问题。(10分) No,it doesn’t. Yes,it is.

Yes,it does. Yes,it has. Yes,it does. 四、Choose the right answer.选择正确的答案。(18分) 1、it live on a farm? 2. it fly?

3. it a cow? 4. it eat chicken? 5. you swim? 6. you all right? 五、Fill in the numbers.对话排序。(6分) Goodbye. Two apples , please. 45P , please. Thank you.

JOININ英语三年级下册课本重点

JOIN IN英语三年级下册课本重点Start unit 1 Words morning afternoon evening night 2 Sentences Good morning !早上好 Good afternoon !下午好 Good evening!晚上好 Good night!晚安 3 Phrases clap your hands 拍拍手 jump up high 往高跳 shake your arms and your legs 晃动你的胳膊和腿 bend your knees 弯曲你的膝盖 touch your toes 摸摸你的脚指

stand nose to nose 鼻子对鼻子站着 Unit 1 Pets 1 Words cat猫dog狗bird 鸟mouse老鼠fish鱼rabbit 兔子frog青蛙hamster仓鼠 budgie鹦鹉tiger老虎monkey 猴子panda熊猫giraffe 长颈鹿elephant 大象bear 熊run跑sit坐fly飞swim游泳roar吼叫eat吃 2 Grammar ★名词的复数:一般在词尾直接加s,不规则变化要牢记: fish-----fish mouse------mice 3 Sentences 1.Have you got a pet ? 你有宠物吗?Yes ,I have. 是的,我有。/No, I haven’t. 不,我没有。 2.2. What have you got ? 你有什么宠物吗?I’ve got a dog . / A dog. 我有一只狗。 3.What colour is the cat ? 你的猫是什么颜色的?It’s black. 它是黑色的。 What iswizard’s pet? 巫师的宠物是什么? 4.What is it ? 它是什么? It’s a rabbit .它是只兔子。

公司注册登记流程(四证)

→客户提供:场所证明租赁协议身份证委托书三张一寸相片 →需准备材料:办理税务登记证时需要会计师资格证与财务人员劳动合同 →提交名称预审通知书→公司法定代表人签署的《公司设立登记申请书》→全体股东签署的《指定代表或者公共委托代理人的证明》(申请人填写股东姓名)→全体股东签署的公司章程(需得到工商局办事人员的认可)→股东身份证复印件→验资报告(需到计师事务所办理:需要材料有名称预审通知书复印件公司章程股东身份证复印件银行开具验资账户进账单原件银行开具询证函租赁合同及场所证明法人身份证原件公司开设临时存款账户的复印件)→任职文件(法人任职文件及股东董事会决议)→住所证明(房屋租赁合同)→工商局(办证大厅)提交所有材料→公司营业执照办理结束 →需带材料→公司营业执照正副本原件及复印件→法人身份证原件→代理人身份证→公章→办理人开具银行收据交款元工本费→填写申请书→组织机构代码证办

理结束 →需带材料→工商营业执照正副本复印件原件→组织机构正副本原件及复印件→公章→公司法定代表人签署的《公司设立登记申请书》→公司章程→股东注册资金情况表→验资报告书复印件→场所证明(租赁合同)→法人身份证复印件原件→会计师资格证(劳动合同)→税务登记证办理结束 →需带材料→工商营业执照正副本复印件原件→组织机构正副本原件及复印件→税务登记证原件及复印件→公章→法人身份证原件及复印件→代理人身份证原件及复印件→法人私章→公司验资账户→注以上复印件需四份→办理时间个工作日→办理结束 →需带材料→工商营业执照正副本复印件原件→组织机构正副本原件及复印件→公章→公司法定代表人签署的《公司设立登记申请书》→公司章程→股东注册资金情况表→验资报告书复印件→场所证明(租赁合同)→法人身份证复印件原件→会计师资格证(劳动合同)→会计制度→银行办理的开户许可证复印件→税务登记证备案办理结束

(完整版)剑桥小学英语Joinin六年级复习题(二)2-3单元.doc

2011-2012 学年度上学期六年级复习题(Unit2-Unit3 ) 一、听力部分 1、听录音排序 ( ) () ()() () 2、听录音,找出与你所听到的单词属同一类的单词 () 1. A. spaceman B. pond C . tiger () 2. A.mascots B. potato C . jeans () 3. A. door B. behind C . golden () 4. A. sometimes B. shop C . prince () 5. A. chair B. who C . sell 3、听录音,将下面人物与他的梦连线 Sarah Tim Juliet Jenny Peter 4、听短文,请在属于Mr. Brown的物品下面打√ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5、听问句选答句 () 1. A. Yes, I am B. Yes, I have C . Yes, you do () 2. A.Pink B. A friendship band C . Yes. () 3. A. OK B. Bye-bye. C . Thanks, too. () 4. A. Monday. B. Some juice. C . Kitty. () 5. A. I ’ve got a shookbag. B. I ’m a student. C . It has got a round face. 6、听短文,选择正确答案 () 1. Where is Xiaoqing from? She is from . A.Hebei B. Hubei C . Hunan () 2. She goes to school at . A.7:00 B.7:30 C . 7:15 () 3. How many classes in the afternoon? classes. A. four B. three C . two () 4. Where is Xiaoqing at twelve o ’clock? She is . A. at home B. at school C .in the park () 5. What does she do from seven to half past eight? She . A.watches TV B. reads the book C. does homework

三年级下学期英语(Joinin剑桥英语)全册单元知识点归纳整理-

Starter Unit Good to see you again知识总结 一. 短语 1. dance with me 和我一起跳舞 2. sing with me 和我一起唱歌 3. clap your hands 拍拍你的手 4. jump up high 高高跳起 5.shake your arms and your legs晃晃你的胳膊和腿 6. bend your knees 弯曲你的膝盖 7. touch your toes 触摸你的脚趾8. stand nose to nose鼻子贴鼻子站 二. 句子 1. ---Good morning. 早上好。 ---Good morning, Mr Li. 早上好,李老师。 2. ---Good afternoon. 下午好。 ---Good afternoon, Mr Brown. 下午好,布朗先生。 3. ---Good evening,Lisa. 晚上好,丽莎。 ---Good evening, Bob. 晚上好,鲍勃。 4. ---Good night. 晚安。 ----Good night. 晚安。 5. ---What’s your name? 你叫什么名字? ---I’m Bob./ My name is Bob. 我叫鲍勃。 6. ---Open the window, please. 请打开窗户。 ---Yes ,Miss. 好的,老师。 7. ---What colour is it? 它是什么颜色? 它是蓝红白混合的。 ---It’s blue, red and white. 皮特的桌子上是什么? 8. ---What’s on Pit’s table? ---A schoolbag, an eraser and two books. 一个书包,一个橡皮和两本书。 9. ---What time is it? 几点钟? 两点钟。 ---It’s two. 10.---What’s this? 这是什么? ---My guitar. 我的吉他。

JOININ英语三年级下册知识点

JOIN IN英语三年级下册 Start unit 1 Words morning afternoon evening night 2 Sentences Good morning !早上好Good afternoon !下午好Good evening!晚上好 Good night!晚安 3 Phrases clap your hands 拍拍手 jump up high 往高跳 shake your arms and your legs 晃动你的胳膊和腿 bend your knees 弯曲你的膝盖 touch your toes 摸摸你的脚指 stand nose to nose 鼻子对鼻子站着 Unit 1 Pets 1 Words cat猫dog狗bird 鸟mouse老鼠fish鱼rabbit 兔子frog青蛙hamster仓鼠 budgie鹦鹉tiger老虎monkey 猴子panda熊猫giraffe 长颈鹿elephant 大象bear 熊run跑sit坐fly飞swim游泳roar吼叫eat吃 2 Grammar

★名词的复数:一般在词尾直接加s,不规则变化要牢记: fish-----fish mouse------mice 3 Sentences 1.Have you got a pet ? 你有宠物吗? Yes ,I have. 是的,我有。/No, I haven’t. 不,我没有。 2.What have you got ? 你有什么宠物吗?I’ve got a dog . / A dog. 我有一只狗。 3.What colour is the cat ? 你的猫是什么颜色的?It’s black. 它是黑色的。 What is wizard’s pet? 巫师的宠物是什么? 4.What is it ? 它是什么? It’s a rabbit .它是只兔子。 5.How many budgies /mice are there? 这里有多少只鹦鹉/老鼠? There are + 数字budgies/mice. 这里有------只鹦鹉/老鼠。 6.Fly like a budgie. 像鹦鹉一样飞。Run like a rabbit. 像兔子一样跑。 Swim like a fish. 像鱼一样游泳。Eat like a hamster. 像仓鼠一样吃东西。 Sit like a dog. 像狗一样坐。Roar like a tiger. 像老虎一样吼叫。 7.What are in the pictures. 图片里面是什么?Animals. 动物。 8. What animals? 什么动物? 9.How many pandas (elephants /bears/ giraffes/ monkeys/ budgies) are there?有多少.? How many + 可数名词的复数形式 Unit 2 The days of the week

外研社剑桥小学英语Join_in四年级上册整体课时教案

外研社剑桥小学英语Join_in四年级上册整体课时教案Starter Unit Let's begin 第一学时: The pupils learn to understand: How are you today? I’m fine/OK. Goodbye. The pupils learn to use: What’s your name? I’m (Alice). How are you? I’m fine. I’m OK. Activities and skills: Decoding meaning from teacher input. Using phrases for interaction in class. Greeting each other. I Introduce oneself. Asking someone’s mane. Teaching process: Step 1: Warm—up. Sing a song. Hello, what’s your name? Step 2: Presentation. 1. What’s your name? I’m…. (1) The teacher introduces herself, saying: Hello, /Good morning, I’m Miss Sun. (2) Asks a volunteer’s name:

What’s your name? The teacher prompt the pupil by whispering, I’m (Alice). (3) Asks all the pupils the same question and help those who need it by whispering I’m…. 2. How are you today? I’m fine. I’m OK. (1) The teacher explains the meaning of How are you today? (2) Tell the class to ask the question all together and introduce two answers, I’m (not very) fine/I’m Ok. (3) Asks all the pupils the same question and make sure that all the students can reply. Step3: Speak English in class. 1. Tells the pupils to open their books at page3, look at the four photographs, and listen to the tape. 2. Asks the pupils to dramatise the situations depicted in the four photographs. A volunteer will play the part of the parts of the other pupils, answering as a group. 第二学时: The pupils learn to use these new words: Sandwich, hamburger, hot dog, puller, cowboy, jeans, cinema, walkman, snack bar, Taxi, clown, superstar.

剑桥英语JOININ三年级上册知识点(供参考)

Join in三年级上册知识点 1.见面打招呼 Hello! = Hi! 你好 Good morning! 早上好! Good afternoon! 下午好! Good evening! 晚上好! (注意:Good night的意思是“晚安”) 2.询问身体健康状况 How are you? 你好吗? I’m fine. = I’m OK.我很好。 3.临走分别 Goodbye. = Bye bye. 再见。 See you tomorrow. 明天见。 4.Miss小姐Mr先生 5.询问名字 -What’s your name? 你叫什么名字? -I’m Toby. = My name is Toby. = Toby.我叫托比。 6.Let’s+动词原形 如Let’s go! 我们走吧! Let’s begin! 我们开始吧! 7. Are you ready? 你准备好了吗? I’m ready. 我准备好了。 8.十二个动词 look看listen听mime比划着表达speak讲read读write写draw画colour涂sing唱think想guess猜play玩9.询问物体 -What’s this? 这是什么? -It’s my dog. / It’s a dog. / My dog. 这是我的狗。 10.my/your+名词 如my apple我的苹果 your apple你的苹果 11.数字0-10 zero零one一two二three三four四five五six六seven七eight八nine九ten十12.询问电话号码 -What’s your phone number? 你的电话号码是多少? -It’s . / . 13.guess sth 猜东西 如Guess the number. 猜数字 14. What’s in the box? 盒子里有什么? 15.询问数量 -How many? 多少? -Nine. 九个。 16. Here is / are sth. 这是……

代理公司注册登记协议书简易版

It Is Necessary To Clarify The Rights And Obligations Of The Parties, To Restrict Parties, And To Supervise Both Parties To Keep Their Promises And To Restrain The Act Of Reckless Repentance. 编订:XXXXXXXX 20XX年XX月XX日 代理公司注册登记协议书 简易版

代理公司注册登记协议书简易版 温馨提示:本协议文件应用在明确协议各方的权利与义务、并具有约束力和可作为凭证,且对当事人双方或者多方都有约制性,能实现监督双方信守诺言、约束轻率反悔的行为。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 代理公司注册登记协议书 甲方:_________ 地址:_________ 电话:_________ 联系人:_________ 乙方:_________ 地址:_________ 电话:_________ 联系人:_________ 为了充分发挥_________的资源和信息服务优势,甲、乙双方经过友好协商,本着平等互利、友好合作的意愿达成本协议书,并郑重声

明共同遵守: 一、甲方同意按照本协议的规定,授权乙方为其代办公司注册手续。 二、乙方提供的代办咨询服务范围仅限如下: 1.为甲方代办工商营业执照、组织机构代码证、税务证、三章(法人章、公章、财务章); 2.约定的其他服务: _________。 三、甲方的责任: 1.甲方应指定专人配合乙方完成新企业工商登记注册等事务,并提供齐全的证件和规范的法律文件资料。 2.甲方对提供的证件和法律文件资料的真实性、正确性、合法性承担全部责任。

相关主题
相关文档 最新文档