当前位置:文档之家› Discrete dislocation modelling of near threshold fatigue crack propagation

Discrete dislocation modelling of near threshold fatigue crack propagation

Discrete dislocation modelling of near threshold fatigue crack propagation
Discrete dislocation modelling of near threshold fatigue crack propagation

Discrete dislocation modelling of near threshold fatigue crack propagation

R.Pippan a,b,*,H.Weinhandl a

a Erich Schmid Institute of Materials Science,Austrian Academy of Sciences,Jahnstr.12,A-8700Leoben,Austria b

Christian Doppler Laboratory for Local Analysis of Deformation and Fracture,Jahnstr.12,A-8700Leoben,Austria

a r t i c l e i n f o Article history:

Received 31July 2009

Received in revised form 23September 2009

Accepted 7October 2009

Available online 13October 2009Keywords:

Fatigue threshold Dislocation Crack closure

Fatigue crack propagation

a b s t r a c t

At low crack propagation rate in metals and alloys the discrete nature of plasticity is essential to under-stand the fatigue phenomena.A short overview of the different types of performed discrete dislocation simulations of cyclically loaded cracks and their essential results are presented.The discrete dislocation mechanics deliver the changes of the stresses and displacement during cyclic loading.However,it does not give directly the crack propagation rate.In the simulations one has to assume a propagation mech-anism.A comparison implies two things:the different simulations,the experimentally observed crack growth behaviour and crystallographic features will be used to show,which crack propagation mecha-nism is more appropriate in which case.

ó2009Published by Elsevier Ltd.

1.Introduction

The description and as a consequence the prediction of the fati-gue crack propagation requires different types of modelling tools.This becomes clearly evident if one takes into account the different phenomena.For modelling it is very helpful to separate these phe-nomena into three groups:the material separation processes,i.e.the generation of new fracture surface,the monotonic and cyclic deformation in the vicinity of the crack tip and the bridging and closure of the crack ?anks.The latter two phenomena are usually called extrinsic mechanisms.The separation phenomena are called intrinsic mechanisms [1]and they are controlled by deformation processes in the vicinity of the crack tip.The difference in the length scales in all these phenomena and the variation of the load-ing parameter,where fatigue crack propagation occurs,shows even more clearly why different modelling tools are necessary.The crack propagation rate varies between one atomic spacing per cy-cle and a few hundred thousand atomic spacings per cycle.The size of the zones where monotonic plastic deformation and cyclic plas-tic deformation occur can be a few 10nm,in very high strength materials near the threshold,up to the size of the sample or com-ponent in low strength metals at large crack propagation rates,or at very short crack lengths.

In this paper we will restrict our considerations to low crack propagation rates,where atomistic techniques and discrete dislo-cation mechanics are the appropriate methods to describe fatigue crack propagation.The atomistic modelling tools,ab initio tech-niques and molecular dynamics can be used to answer the ques-tions:What does the dislocation core looks like and as a consequence how easy it is to generate and to move the disloca-tion?The discrete dislocation mechanics is an appropriate tool when very local plastic deformation takes place and when the description of stresses in the nm regime is important.Fatigue crack propagation in metals is a consequence of the plastic deformation at the crack tip,especially cyclic plastic deformation.In order to understand better,what happens near the threshold,a detailed understanding of the cyclic plastic deformation as well as a de-tailed understanding of the stresses near the crack tip in the nm re-gime is necessary.

Several discrete dislocation simulations [2–20]devoted to the fatigue crack propagation have been performed in the last 20years.The aim of this paper is to summarize the most important conse-quences of these simulations for the understanding of the fatigue crack propagation behaviour near the threshold.In order to intro-duce the reader to the special phenomena caused by the discrete nature of plasticity,the plastic deformation and the changes of the local stress ?eld during moderate cyclic loading of a mode I crack will ?rst be considered in detail (Section 2).In Section 3the different consequences of discrete nature on the near threshold behaviour of idealized long mode I cracks will be summarized.Some important features of the discrete dislocation simulation of cyclic loaded short cracks of the group of Melin [15–18]will be shortly introduced in Section 4.Discrete dislocation simulations deliver the plastic response,although they do not directly provide the crack propagation mechanism.In Section 5the simulations of van der Giessen and Needleman are used to discuss the effect of propagation mechanisms,because a different type of mechanics was used in their simulation.

0142-1123/$-see front matter ó2009Published by Elsevier Ltd.doi:10.1016/j.ijfatigue.2009.10.001

*Corresponding author.Address:Erich Schmid Institute of Materials Science,Austrian Academy of Sciences,Jahnstr.12,A-8700Leoben,Austria.

E-mail address:reinhard.pippan@oeaw.ac.at (R.Pippan).International Journal of Fatigue 32(2010)

1503–1510

Contents lists available at ScienceDirect

International Journal of Fatigue

journal homepage:www.elsevi e r.c o m /l o c a t e /i j f a t i g u

e

2.Moderately loaded fatigue cracks

Discrete dislocation modelling is a linear elastic description of stress and strain ?elds or displacements,where the nonlinearity is taken into account by the movement of dislocations on pre-de-?ned slip planes.

In the following the computer algorithm,which we have used to simulate the plastic deformation is shortly described.It contains the following steps:

an incremental increase of the applied load or,in the case of unloading an incremental decrease, inspection of dislocation generation,

inspection of fracture surface contact and determination of the contact stresses,

seeking of equilibrium positions.We usually determined a sta-ble equilibrium con?guration,i.e.the dislocations move away from the crack tip if the stress is larger than the friction stress and it moves to the crack tip if it is smaller than the negative friction stress.A two-dimensional mode I crack is used,and the generate dis-locations are parallel to the crack front.At the beginning of the loading of the in?nite cracked body,the body is free from disloca-tions.The crack tip is assumed to be the dislocation source.Dislo-cations are formed,when the local stress intensity is larger than a critical value k e .That is very similar to dislocation generation at a source very near the crack tip (few nm).Where the source stress has to overcome a certain critical value,this type of dislocation generation criterion is used,for example,by [6,15,16].A symmetric emission of dislocation is assumed,which makes the calculation somewhat easier.In our simulations a ‘‘surface forming”crack propagation mechanism is assumed.In Fig.1the mechanism is schematically depicted.The generated dislocations form a V-shaped notch.The next dislocations are generated at the tip of this notch,hence,the spacing between slip planes of the successive emitted individual dislocations is equal to the Burger’s vector.Dur-ing unloading,the emitted dislocations return to the tip and re-sharpen the crack,but in the simulation the crack does not reweld.In real fatigue crack propagation experiments the oxida-tion of the new generated surface at the crack tip prevents a reversible blunting.

The crack growth increment per cycle,D a ,is therefore

D a ?D N áb ácos h

where D N is the number of generated dislocation pairs per cycle and h is the angle between the slip plane and the crack plane.Such propagation mechanisms have been experimentally observed in [21,22]and were proposed very similarly [23–25].For the details to determine the stresses on the dislocations –which are the sum of stresses caused by the applied K –stresses from all other disloca-tions,the image stress and the stresses caused from possible frac-ture surface contacts and the detail of the calculation procedure,see [11,14].

In order to illustrate what happens during such discrete disloca-tion simulation at the crack tip during cyclic loading at a stress intensity range D K somewhat smaller than the effective threshold,D K eff th ,and at a D K larger than D K eff th ,the movement of the dislo-cations and the local stress in the vicinity of the crack tip are con-sidered in the following.The material parameters used are the shear modulus l =80,000MPa,Poisson’s ratio m =0.3,a lattice fric-tion stress of l /1000,a critical stress intensity to generate a dislo-cation at the crack tip k e ?0:4l ???b p and an angle between the crack plane and the slip plane of 70.3°.The stress ratio R =K min /K max =0.1.For all simulations in Figs.2–7the same material

parameters and R are used.The simulation starts with a crack in a ‘‘mathematical”1crystal without dislocations.If K max is smaller than k e ,no dislocations will be generated.During cyclic loading at such small load amplitudes a pure elastic loading and unloading and therefore no crack extension will take place.Since no disloca-tions are generated,the local stress ?eld at the crack tip in the vicin-ity of the crack tip is determined by the applied stress intensity factor K solely.For K max somewhat larger than the critical stress intensity factor k e ,the deformation,i.e.the movement of the disloca-tions and the variation of the local stress ?eld at the crack tip,are de-picted in Fig.2.During the ?rst loading a pair of edge dislocations is generated at the crack tip,when K is equal to k e .They will move away from the crack tip till they reach their equilibrium positions,where the local stress acting on the dislocation is equal to the fric-tion stress.These dislocations reduce the stress ?eld at the crack tip,i.e.they shield the crack tip [26,12].The stress ?eld in the imme-diate vicinity of the crack tip –in a region of about 1/5of the dis-tance to the nearest dislocation –can be described by the standard linear elastic stress ?eld of a crack,characterized by means of a local stress intensity,k .During further loading the dislocations move away and the local k increases similarly to the applied K till again k =k e ,then the next pair of dislocations is emitted.Due to the repul-sive force the ?rst emitted dislocation is pushed away from the crack tip till it again reaches its equilibrium position.This process of the dislocation movement away from the crack tip,increasing of the lo-cal stress intensity till k =k e ,emission of a new pair of dislocation and pushing away from the crack tip of the pre-existing dislocations continuous till the applied K reaches K max .During unloading the stresses acting on the dislocations decrease.The reduction in the lo-cal k is,in this case of the quasi-static consideration,exactly equal to the reduction of the applied K .

1

No crystallographic orientations are

assumed.

Fig.1.Schematic representation of the assumed fatigue crack propagation mech-anism:the blunting and resharpening of the crack tip on the atomistic scale is shown.Only the cyclically activated dislocations are sketched.

1504R.Pippan,H.Weinhandl /International Journal of Fatigue 32(2010)1503–1510

1506R.Pippan,H.Weinhandl/International Journal of Fatigue32(2010)1503–1510

tip during unloading.The repulsive force between the dislocations and the image force are here suf?ciently large to move few dislo-cations back to the crack tip.The?rst loading is similar as in the case of the smaller load amplitude depicted in Fig.2,only more dis-locations are generated.During unloading at?rst there is also a lin-ear elastic unloading,i.e.the dislocations remain at their equilibrium positions,which they reached at K max.During this elastic unloading the local k decreases in the same way as the ap-plied K.After a certain reduction of K(about1.2k e)the dislocation, closest to the crack tip,begins to move back to the crack tip,and annihilate at the crack tip.When they have returned to the crack tip,the dislocation shielding decreases and the local k increases. It should be noted that only a negative local k makes sense,when the crack is plastically open.Or in other words negative mode I lo-cal k makes sense only when the crack tip is blunted,because a negative k induces negative displacement of the crack?anks,and this is only possible without overlapping or contact of the crack ?anks if a plastic opening at the crack tip remains.In the case of a plastically closed crack,i.e.all dislocations generated in the pre-vious loading cycles are returned to the crack tip k=0,which oc-curs at larger load cycles.The shape of the crack tip at K max and K min in the1st,2nd and3rd loading cycle are depicted in Fig.4.It can be seen that in the next loading cycle the same number of dislocations are generated.They form a V-shaped notch,although it has a smaller opening.During unloading the dislocation returns again to the crack tip and resharpens the crack tip.Since the size of the monotonic plastic zone and the distance between the nearest dislocation and the crack tip is large compared to the crack exten-sion in the?rst few cycles about the same number of dislocations are generated,which return to the crack tip and only the new slip planes move into the direction of crack extension.Figs.1–5show the different length scales involved.The cyclic crack tip opening displacement and,as a consequence,the crack propagation rate is at the threshold in the order of b,the region,where the local k determines,the stress is in the order of100b and the plastic zone is in the order of10,000b.

In Fig.5the dislocation arrangement and the shape of crack ?anks at K max and K min are shown for the same D K after10,000cy-cles.The crack has grown about10l m,when the cyclic plastic deformation is reduced,only two dislocations are generated during loading and they return during unloading.This reduction of the cyclic plastic deformation is mainly induced by the contact of the fracture surfaces before K min is reached.From the contour of the crack?anks at K min it is evident that crack?anks are in contact over about1l m behind the crack tip.This indicates that near the threshold for fatigue crack propagation a fracture surface contact in a region of only1l m behind the crack tip can signi?cantly affect the cyclic plastic deformation and as a consequence the fatigue crack propagation behaviour.Essential to note is that in such case both the contact area and the cyclic plastic zone are in the same or-der of magnitude.

The dislocations in the wake of the crack are not evenly distrib-uted.They form patterns.The dislocations in the wake of crack tip are arranged in bands with certain spacing.When such a band of dislocations is formed,dislocations on a slip plane somewhat in front of this band cannot pass this band,which is a consequence of long range dislocation–dislocation interaction.The repulsive force caused by the dislocations arranged in such a band is so strong that it is impossible to bypass this band in the immediate vicinity.Only when the slip band of the newly generated disloca-tion and the previously formed band have a spacing larger than a minimum value,the dislocation can pass this band.For more de-tails related to this pattern formation,see[5,13].In Fig.6the cal-culated cyclic crack tip opening displacement D CTOD as a function of the crack extension is plotted for different D K values. It is evident that D CTOD decays with increasing crack length.At lower D K values,D CTOD vanishes at crack extensions in the order of microns.The largest D K where this occurs in these simulations was2.2k e.In this case D CTOD disappears at a crack extension of about10l m,this is in the order of magnitude of the plastic zone size.At D K values larger than a critical value(about2.5k e)D CTOD reaches a nearly constant value at a crack extension somewhat lar-ger than the size of the plastic zone.This decrease or decay of D CTOD with crack extension is caused,as mentioned,by the crack closure effect.In Fig.7the crack tip opening displacement at K max, in the?rst cycle,the cyclic crack tip opening displacement CTOD in the?rst few cycles,D CTOD i and the steady state cyclic crack tip opening displacement,D CTOD s,are plotted as a function of D K. Since the fatigue crack propagation rate should be proportional to D CTOD,as in our computer simulation,the D CTOD i vs.D K curve and the D CTOD s vs.D K curve can be interpreted as fatigue crack growth curves.The D CTOD values have to be multiplied by a geo-metrical factor cotan h to obtain da/dN.The latter one can be called the standard long crack curve.However,it should be noted that only the plasticity induced closure is taken into account,since an ideal straight crack is assumed in the calculation.D CTOD i vs.D K can therefore be interpreted as the intrinsic response of the material.

R.Pippan,H.Weinhandl/International Journal of Fatigue32(2010)1503–15101507

3.Consequences from the long crack simulations

At larger D K the monotonic crack tip opening displacement, CTOD,and the cyclic crack tip opening displacement agrees with the elasto-plastic continuum solutions.However,as can be seen in Fig.7,at smaller D K a signi?cant deviation from a D K2relation is visible.That is independent of the type of loading,i.e.mode I,II or III or assumed material parameters for example,the friction stress,the shear modulus or Poisson’s ratio[2,3,7,13].The more pronounced decrease and?nally the vanishing of the cyclic plastic deformation is a consequence of the discrete nature of plasticity.In the present case it is mainly determined by the dislocation gener-ation mechanism.In terms of metal physics it is a source controlled mechanism.In the present simulation it is assumed that a critical stress intensity is required to generate a dislocation.That is a well established mechanism for a ductile metal[26,27].However,it should be noted that the character of the curves is not changed if one assumes a dislocation source at a certain distance near the crack tip[6,7].The main consequence of discrete dislocation mechanics for fatigue crack propagation is the existence of a well de?ned D K eff th,which should be somewhat larger than k e,(about 1.3k e)and should not be very sensitive to the stress ratio and microstructural parameters[2,3,13].This is in good agreement with experimental experiences,see for example[28].The Rice–Thomson model[27]for dislocation generation at the crack tip leads to an estimate of k e and as a consequence of this estimate the effective(or intrinsic)threshold should be

D K eff th?cálá

???b p

:

The parameter c depends on the assumed emission angle[26].A comparison with the experimentally measured values is in rela-tively good agreement.The estimated values are only slightly smaller than the experimental ones[13].

Besides the explanation of the deviation from the Paris relation in the near threshold region and the prediction of D K eff th,there are two essential outcomes of the discrete dislocation simulations, which should be mentioned here:the anomalous striation spacing, and the plasticity induced crack closure near the threshold.In Fig.5 the dislocation arrangement after a certain crack extension is de-picted.The dislocations are arranged in slip bands.The distance be-tween the bands is about few1000Burgers vectors,but the crack growth rate is only few Burgers vectors per cycle.The distance be-tween the slip bands does not depend signi?cantly on the crack propagation increment per cycle.Each slip band leaves a step on the fracture surface parallel to the crack front,this forms a charac-teristic pattern.In[5,13]it was noted that the pattern agrees with the observed abnormal striation spacing.The normal striation spacings,which are observed at larger crack growth rate,agrees well with the growth rate per cycle[5].In the present simulation a symmetric crack tip plasticity is assumed.At small stress inten-sity ranges asymmetric crack tip plasticity should occur more of-ten.It is,however,obvious that the dislocation arrangement of a crack with asymmetric plasticity is governed by the dislocation–dislocation interaction forces,which should lead also to a typical distance between two large slip bands of the order of some tenths of a micron.Following these arguments,the striations observed in the threshold regime are traces of slip bands on the fracture surfaces.

In our investigated idealized case in the simulation only plastic-ity induced crack closure is considered,because a plane crack extension without the formation of oxide layer is assumed.From the continuum plasticity point of view under constant amplitude loading and steady state propagation condition under small scale yielding,the ratio of closure stress intensity factor to maximum stress intensity factor K cl/K max is a measure of the relative contribu-tion of the effect of crack closure.This is clearly evident from the plane-stress analysis made by Budiansky and Hutchinson[29]or Führing and Seeger[30],however it should be also valid for the plane strain case.In the Paris regime–the higher D K regime in Fig.7–it seems that the contribution of crack closure reaches a constant value,as expected from continuum plasticity.However, in the near threshold regime the discrete nature of plasticity causes an increase in the effect of crack closure.

It is surprising that in the near threshold,when plasticity is very small,the plasticity induced crack closure increases.A closer look from the dislocation point of view can explain this phenomenon. Crack closure is caused under plane strain conditions,which is con-sidered here in the two-dimensional model,by the crack tip shield-ing of the wake dislocations.The number of dislocations in the wake of a growing fatigue crack is given by the number of disloca-tions generated during loading minus the number of dislocations returned to the crack tip and crack?ank or annihilated by the gen-eration of a dislocation with an opposite sign of the Burger’s vector. Near the threshold of stress intensity range,the number of disloca-tions returning to the crack tip goes to zero;therefore nearly all generated dislocations during propagation contribute to crack tip shielding and can induce crack closure.This effect is visible,when we compare CTOD and D CTOD in Fig.7,which characterizes the number of dislocations generated and the number of dislocations returned to the crack tip,respectively.In other words,due to the decrease of D K the reduction in the monotonic deformation,which generates shielding dislocations,is not as pronounced as the reduc-tion of the number of the returning dislocations.In addition,it should be noted that the consideration of fatigue crack propagation from a dislocation point of view is very helpful to visualize and ex-plain plasticity induced and roughness induced crack closure,for details see[31,36].

4.Short cracks

In the previous discussed simulations long cracks are consid-ered,i.e.the crack length is large in relation to the size of the plas-tic zone and the characteristic microstructural dimensions.The group of Melin[15–18]has performed several discrete dislocation simulation of short fatigue cracks,where the crack length is smal-ler than the grain size and the size of the plastic zone is comparable to the length of the crack.The analyses have been performed for the geometry shown in Fig.8.The initial crack is assumed to be on a slip plane of a surface grain embedded in a semi-in?nite mate-rial.The crack is inclined by an angle to the normal of the free sur-face.Dislocation generation is only permitted on crystallographic slip planes.The crack propagates by the same mechanism as in

1508R.Pippan,H.Weinhandl/International Journal of Fatigue32(2010)1503–1510

the previous discussed simulations,where the crack propagates by the formation of surface due to the generation of edge dislocations. The simulation technique was somewhat different to the previous presented one.All modelling is based solely on dislocation simula-tion,i.e.the crack and the free edge are described by dislocation di-pole elements.This is a general and very powerful technique, which can be used to describe cracks and plasticity in the same framework,for details see[32,33].A new dislocation pair is as-sumed to be generated,when the resolved shear stress on a slip plane at a very small distance is larger than a critical value.One dislocation moves to the crack tip and causes slip displacement at the crack tip or an opening of the crack,where the slip generates new fracture surface.While the other dislocation moves into the grain.The further calculation procedure is similar to the one pre-sented in Section2.The crack angle,the grain size and the distance to the grain boundary have been investigated for different constant load amplitudes.Also the effect of overloads is investigated.De-spite the difference in the mechanical response of short and long cracks,the main features resulting from the discrete nature of plas-ticity remain the same.

An additional important outcome of these simulations is the explanation of the transition from stage I(shear crack propagation) to stage II(mode I like propagation)fatigue crack propagation and the prediction of the zigzag propagation as depicted in Fig.8.With decreasing distance between the crack tip of the stage I crack and the piled up dislocations at the grain boundary the shear stress in front of the crack in the plane of initial crack propagation de-creases.The shear stresses on the other slip planes increase,there-fore the generation of dislocation on these planes become easier and the crack begins to de?ect.In other words the local k II on the stage I crack is reduced due to the strong effect of the dislocation pile up,when the crack approaches the grain boundary.The local k I,which tries to activate slip on an inclined plane,increases,which induces the de?ection of the crack.

The reason for the formation of the zigzag shape of the crack is similar to the mentioned explanation of the stage I–stage II transi-tion and the formation of the abnormal striation spacing.These examples show again the importance of the discrete nature of plas-ticity in the explanation of the phenomena of fatigue crack propa-gation.It should be noted that the transition from stage I to stage II crack usually occurs in the?rst grain,however sometimes also a transition after an extension in stage I over few grains have been observed[37].However also the mentioned discrete dislocations simulations shows that this transition is sensitive to the slip trans-fer into the neighbour grain.A‘‘strong”grain boundary favours the transition from stage I to stage II fatigue crack propagation, whereas a‘‘weak”boundary favours the stage I propagation.

5.Effect of the propagation mechanism

The discrete dislocation simulations considered until now al-ways assumes the same crack propagation mechanisms.The crack propagates by the formation of new surface by slip,it is similar to the formation of a surface step,when dislocations annihilate at the free surface.The propagation of the crack in these simulations al-ways requires plastic opening or sliding at the crack tip.Despande, Needleman and van der Giessen[9,10]investigated the fatigue crack propagation of a mode I crack under small scale yielding by using a discrete dislocation dynamic description of the plastic deformation,where the dislocation velocity is controlled by a drag coef?cient.Despite the differences in the simulation technique the basic physical ingredients to describe the plastic deformations are the same as in the previous presented simulations.However,they used a completely different crack propagation mechanism.Crack growth is modelled using a cohesive surface that extends over a certain distance in front of the crack[34,35].It can be interpreted as a cleavage crack propagation with a certain work of separation. The parameters used are typical for ideal brittle fracture.Both types,reversible and irreversible cohesive zones are analysed. The latter one should mimic the rewelding in a vacuum,In the dif-ferent simulations usually three slip systems with evenly spaced slip planes are assumed.A high density of dislocation obstacles is randomly distributed.The obstacles represent small precipitates on the slip plane or forced dislocations.The assumed obstacle resistance is comparable to the friction stress assumed in the pre-vious discussed simulations.

It is surprising that the behaviour regarding the onset of fatigue crack propagation is relatively similar despite the different crack growth process.A well de?ned threshold and a typical near thresh-old crack propagation behaviour is re?ected by the simulations. However,the growth rate is very sensitive to the structural param-eter[20],source and obstacle density.In the author’s opinion such propagation mechanism should govern the fatigue crack propaga-tion in semibrittle materials,like some intermetallics,whereas in ductile crystalline metals the blunting and resharpening mecha-nism should be dominant.In the following a few arguments are listed,which should support the last statement.In the cohesive zone description of the crack propagation,the dislocations are al-ways generated in the surroundings of the crack tip,never directly at the crack tip.The stress intensity to cleave the material K G2is smaller than k e,the stress intensity,which generates a dislocation at the crack tip.That is the typical condition for brittle fracture. However,if in such materials a dislocation is generated in the vicin-ity of the crack tip at K values smaller than K G,this dislocation shields the crack,and the macroscopic toughness can be signi?cantly larger than K G.The dislocation activity does not only generate shield-ing dislocations,it can generate also anti-shielding dislocations. Most of them move to the crack?anks and form a surface step at the crack?anks.However,a few of them move in front of the crack tip,where the anti-shielding effect is very large.Under monotonic loading these dislocations can induce subcritical crack growth below K G,and under cyclic loading they induce a cyclic subcritical crack propagation.

In intrinsic ductile materials k e

All simulations considered in this paper are two-dimensional discrete dislocation simulations,i.e.the dislocation line is parallel to the crack front.Real cracks have a complex3D shape and the real dislocation arrangement cannot be described in2D.Due to 2K

G

is the stress intensity calculated from the work of separation,often denoted as Grif?th toughness.

R.Pippan,H.Weinhandl/International Journal of Fatigue32(2010)1503–15101509

the constrains on the stress?eld,especially in the long crack case (i.e.,small scale yielding condition),the limited size of the cyclic plastic zone,and the size of the fractographic features,in the author’s opinion,the2D simulation is a good‘‘?rst”approximation of the problem[13].Special details in the fatigue crack propagation behaviour might be a consequence of the3D nature of dislocation–dislocation interaction and the3D shape of the crack.However,a 3D discrete dislocation simulation for larger crack extension is ex-tremely computer time consuming,and dif?cult to perform with the actual computer power.

6.Concluding remarks

Near the threshold of fatigue crack propagation the growth rate is in the order of atomic distances.Therefore,the near crack tip stresses and the plastic displacements in this order of magnitude are essential.Discrete dislocation simulations are the appropriate tool,which can deliver the necessary information.The paper tries to give a summary of several recent simulations to model the growth of fatigue cracks.It is mainly focused on ductile metals, where the generation of a dislocation at the crack tip is easier than the cleavage of the materialek e6K G).It is shown that several ef-fects of the near threshold behaviour are a direct consequence of the discrete nature of the plastic deformation:

the existence of a well de?ned effective threshold,which does not signi?cantly depend on microstructure,stress ratio,or fric-tion stress[2,3,13],

fractographic features such as abnormal striation spacing[5]or the transition from stage I to stage II fatigue crack propagation and the zigzag propagation of the crack at low growth rate [15,18]are well displayed by the simulation,

even plasticity induced crack closure can be larger near thresh-old than in the Paris regime[11,31,36].

Finally,the behaviour of intrinsic brittle material(k e>K G)but deformable is shortly compared with the ductile material(k e

Finally it should be noted that the performed simulations are a ?rst step to better understand the near threshold fatigue crack propagation.Nevertheless there are still a large number of open questions to explain the differences in the near fatigue crack prop-agation behaviour.Few of them are listed in the following:

How does the environment affect the discussed phenomena?

For example,what is the effect of oxide layer on the plastic deformation at the crack tip and how to model this?

A more detailed analysis of the3D nature of the crack,the

microstructure and the dislocation activity might be essential for the details of the near threshold behaviour. The interaction of internal dislocation sources and crack tip as dislocation source has not been analysed till now.This may be important for the near threshold of long cracks and it should be important for larger load amplitudes and for short crack behavior.

An analysis of the transition from the blunting-resharpening crack propagation to the cleavage dominated process within a single modelling framework seems in the author’s opinion an important task to understand better the different fatigue crack propagation phenomena,especially in high strength materials. References

[1]Ritchie RO.Mater Sci Eng1988:15.

[2]Pippan R.Acta Metall Mater1991;39:255–62.

[3]Pippan R.Int J Fract1992;58:305–18.

[4]Riemelmoser FO,Pippan R,Stüwe HP.Int J Fract1997;85:157–68.

[5]Riemelmoser FO,Pippan R,Stüwe HP.Acta Mater1998;46:1793–9.

[6]Wilkinson AJ,Roberts SG.Scripta Mater1996;35:1365–71.

[7]Wilkinson AJ,Roberts SG,Hirsch PB.Acta Metall Mater1998;46:379–90.

[8]Doquet V.Fatigue Fract Eng Mater Struct1998;21:661–72.

[9]van der Giessen E,Deshpande VS,Cleveringa RP,Needleman A.J Mech Phys

Solids2001;49:2133–53.

[10]Deshpande VS,Needleman A,van E,Giessen Der.Acta Mater

2001;49:3189–203.

[11]Pippan R,Riemelmoser RO,Weinhandl H,Kreuzer H.Philos Mag

2002;82:3299–309.

[12]Pippan R,Riemelmoser RO.Z Metallkunde1995;86:823–6.

[13]Riemelmoser FO,Gumbsch P,Pippan R.Mater Trans2001;42:2.

[14]Riemelmoser FO,Pippan R,Stüwe HP.Acta Mater1998;46:1793.

[15]Hansson P,Melin S.Eng Fract Mech2008;75:1400–11.

[16]Bjerkén C,Melin S.Int J Fatigue2003;25:559–66.

[17]Bjerkén C,Melin S.Eng Fract Mech2004;71:2215–27.

[18]Hansson P,Melin S.Int J Fatigue2005;27:347–56.

[19]Groh S,Olarnrithinum S,Curtin WA,Needleman A,Deshpande VS,van der

Giessen E.Philos Mag2008;88:3565–83.

[20]Kunkler B,Duber O,Koster P,Krupp U,Fritzen CP,Christ HJ.Eng Fract Mech

2008;75:715–25.

[21]Vehoff H.Acta Mater1980;28:265–72.

[22]Bichler C,Pippan R.Eng Fract Mech2007:39.

[23]Pelloux RMN.Eng Fract Mech1970;7:235–47.

[24]Neumann P.Acta Metall1974;22:1155.

[25]Tomkins B.Fract Eng Mater Struct1996;19:1295.

[26]Ohr SH.Mater Sci Eng1985;72:1–35.

[27]Rice JR,Thomson R.Philos Mag1974;29:73–97.

[28]Pippan R.Mater Sci Eng1991;A138:15–22.

[29]Budiansky B,Hutchinson W.J Appl Mech1978;45:267.

[30]Führing H,Seeger W.Eng Fract Mech1979;11:99.

[31]Pippan R,Strobl G,Kreuzer H,Motz C.Acta Mater2004;52:4493–502.

[32]Weertman J.Dislocation based fracture mechanics.Singapore:World Scienti?c

Publications;1996.

[33]Hill DA,Kelly PA,Dai DN,Korsumsky AM.Solution of crack problems:the

distributed dislocation technique.Berlin:Kluwer Academic Publisher;1996.

[34]Needleman A.J Appl Mech1987;54:525.

[35]Wang B,Siegmund T.Int J Fatigue2005;27:1328–34.

[36]Pippan R,Riemelmoser FO.Eng Fract Mech1998;60:315–22.

[37]Forsyth PJE,In:Proceedings of can?eld symposium.On crack propagation;

1962.p.76–94.

1510R.Pippan,H.Weinhandl/International Journal of Fatigue32(2010)1503–1510

汉语_短语的结构分类

短语的结构分类 短语按照结构来考察,可以分为十种:并列短语、偏正短语、动宾短语、介宾短语、补充短语、主谓短语、的字短语、兼语短语、连动短语、固定短语。 [口诀]短语看结构,十种莫忧愁。并偏动介补,主的兼连固。 1、并列短语 词语之间互不修饰限制,地位平等,这样的短语就是并列短语,也称为“联合短语”。 这类短语主要由名词、动词、形容词、代词、数量词这四种词语自我构成,或者几种词语搭配构成,主要有五种形式,可以简单表示为:名+名、形+形、动+动、代+代、数量+数量 例如:崇山峻岭柴米油盐思想感情民俗风情老师和同学国家与集体个人与社会 发展变化研究决定调查研究总结推广吃喝穿戴继承和发扬继承与创新 婉转悠扬和谐幸福金碧辉煌富丽堂皇庄严肃穆丰富而富饶光荣而艰巨 你、我、他你和我这门那户这个那个彼此彼此谁谁谁一个和八个 2、偏正短语 词语之间有修饰限制关系,前一个词语对后一个词语进行修饰和限制,而以后一个词语为中心,词语与词语之间是偏正关系,这样的短语是偏正短语。修饰名词的词叫定语,用()来表示;修饰动词、形容词的词叫状语,用〔〕来表示。这类短语主要以名词、动词、形容词为主体构成,主要有三种形式,简单记为:形.+ 名/副.+动./副.+形.,例如:(1)名词性偏正短语——定语+名词(或代词) ①名词、代词、动词、形容词作定语。例如: 名+名:中华情赤壁赋出师表兰亭集序荷塘月色故都的秋赤壁之战 代+名:我们家这个人之二虫这只黄鹂那只白鹭这条纱巾那根拐棍 动+名:发言稿止痛片美发厅调查提纲训练计划运动规律游览路线 形+名:黑牡丹红太阳白玫瑰绿色食品经典作品优秀分子永恒魅力 ②指示代词、数词、量词组合作定语。 例如:(指+数+量)+名:这支笔这一位委员那一个书包这两个人那一年六月 (数+量)+名:七根火柴一年四季一件小事一曲窦娥冤千古关汉卿 (2)动词性偏正短语——状语+动词 ①状语表示的意义 状语可以表示动作、行为的情态、时间、频率、围、处所、对象等。例如: 表示情态:努力进取认真研究大力发展倾情奉献喜闻乐见娓娓动听 表示时间:猝死马上出发立刻行动现在开始从眼前抓起于拂晓结束 表示频率:间进经常说寻常见几度闻一再强调再三叮嘱常来常往

短语结构与句子成分

第一节短语结构与句子成分 (一)教学目标: 1、理解偏正短语和并列短语的区别以及偏正短语的类型; 2、理解句子的六种成分以及各成分在句中的作用。 3、能够熟练辨析短语结构、熟练分析句子成分。 (二)教学重点: 以上目标均为重点。 (三)教学难点: 1、区别句短语和句子; 2、理解介宾短语; 3、区别宾语和补语。 (四)教学步骤: 1、短语结构。 (1)短语的概念:短语是词的组合,是意义和语法上能搭配而没有句调的一组词,所以又叫词组。短语是比词大比句小的语言单位。 (2)短语的结构类型: 按结构分类,即短语的结构类。 ①主谓短语:粮食丰收春草吐青阳光灿烂明天星期三 ②动宾短语:想妈妈盖被子接受批评经受考验喜欢清净 偏正短语: ③定中短语: 江苏人(代+名)昨天的事(名+名)前进的步伐(动+名)新书(形+名)野生动物(形+名)十吨钢材(数量+名) 经济的逐步发展(名+动)他们的估计(代+动)美妙的渲染(形+动)求学的迫切希望(动+动)灯火的辉煌(名+形)别人的精明(代+形)(分析的精确(动+形)说不出的高兴(动+形) ④状中短语:马上回来(副+动)今天出发(名+动)花园里谈(方位短语+动)这么走(代+动)绕道走(动+动)慢走(形+动)一步一步走(数量+动)吱吱地叫(拟声+动)为人民服务(介宾+动)非常宽(副+形)这么宽(代+形)三尺宽(数量+形) ⑤中补短语:打死(动+动)学得好(动+形)看了一次(动+数量)走到天涯海角(动+介宾)高兴极了(动+副) ⑥联合短语:勤学好问深思熟虑今天和明天来不来又大又圆伟大而质朴既准确又形象升学或者就业一个或两个(构成短语的两个部分是并列关系) ⑦介词短语:(用大腕)盛汤(比前几年)好得多(为了健康)而锻炼(被巨浪)撕成碎片(向英雄模范)学习(关于嫦娥奔月)的神话(针对核心问题)发言(通过这种方式)表达不满 ⑧另外还有连谓短语,如“出去闲逛”、“听了高兴”;兼语短语,如“请他进来”、“通知各单位来开会”;同位短语,如“首都北京”、“我们大家”;方位短语,如“大门外”、“操场上”;量词短语,如“一打”、“两瓶”;助词短语,如“大的”、“吃的”、“暴风雨般”、“触电一样”、“所想”、“所需要”。 (3)短语的其它分类标准:(了解)

人力资源结构分析理论介绍

人力资源结构分析 人力资源规划首先要进行人力资源结构分析。所谓人力资源结构分析也就是对企业现有人力资源的调查和审核,只有对企业现有人力资源有充分的了解和有效的运用,人力资源的各项计划才有意义。人力资源结构分析主要包括以下几个方面: (一)人力资源数量分析 人力资源规划对人力资源数量的分析,其重点在于探求现有的人力资源数量是否与企业机构的业务量相匹配,也就是检查现有的人力资源配量是否符合一个机构在一定业务量内的标准人力资源配置。在人力资源配置标准的方法运用上,通常有以下几种: 1、动作时间研究。动作时间研究指对一项操作动作需要多少时间,这个时间包括正常作业、疲劳、延误、工作环境配合、努力等因素。定出一个标准时间,再根据业务量多少,核算出人力的标准。 2、业务审查。业务审查是测定工作量与计算人力标准的方法,该方法又包括两种: (1)最佳判断法。该方法是通过运用各部门主管及人事、策划部门人员的经验,分析出各工作性质所需的工作时间,在判断出人力标准量。 (2)经验法。该方法是根据完成某项生产、计划或任务所消耗的人事纪录,来研究分析每一部门的工作负荷,再利用统计学上的平均数、标准差等确定完成某项工作所需的人力标准。 3、工作抽样。工作抽样又称工作抽查,是一种统计推论的方法。

它是根据统计学的原理,以随机抽样的方法来测定一个部门在一定时间内,实际从事某项工作所占规定时间的百分率,以此百分率来测定人力通用的效率。该方法运用于无法以动作时间衡量的工作。 4、相关与回归分析法。相关与回归分析法是利用统计学的相关与回归原理来测量计算的,用于分析各单位的工作负荷与人力数量间的关系。 有了人力标准的资料,就可以分析计算现有的人数是否合理。如不合理,应该加以调整,以消除忙闲不均的现象。 (二)人员类别的分析 通过对企业人员类别分析,可现实一个机构业务的重心所在。它包括以下两种方面的分析: 1、工作功能分析。一个机构内人员的工作能力功能很多,归纳起来有四种:业务人员、技术人员、生产人员和管理人员。这四类人员的数量和配置代表了企业内部劳力市场的结构。有了这项人力结构分析的资料,就可研究各项功能影响该结构的因素,这些因素可能包括以下几个方面:企业处在何种产品或市场中,企业运用何种技能与工作方法,劳力市场的供应状况如何等。 2、工作性质分析。按工作性质来分,企业内部工作人员又可分为两类:直接人员和间接人员。这两类人员的配置,也随企业性质不同而有所不同。最近的研究发现,一些组织中的间接人员往往不合理的膨胀,该类人数的增加与组织业务量增长并无直接联系,这种现象被称为“帕金森定律”。

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

汉语中常见的短语结构

关于短语的语法 一、并列短语 词和词之间没有轻重主次之分,彼此地位平等。 1、类型 ⑴名+名文化教育今天或明天(名词短语) ⑵动+动调查研究愿意并实行(动词短语) ⑶形+形光辉灿烂庄严肃穆(形容词短语) ⑷代+代我和他这样那样(名词短语) ⑸数量+数量四面八方千秋万代三斤五两(名词短语) 2、并列短语一般前后可以互换位置。 但有些并列短语是不能前后颠倒位置的,因为它有一定次序。 ⑴时间顺序:春、夏、秋、冬 ⑵大小顺序:省、市、县 ⑶年龄顺序:老、中、青 ⑷逻辑顺序:继承和发展接近文学和爱好文学 ⑸语言习惯:男女老少金银铜铁油盐酱醋 二、偏正短语 前偏后正:“偏”修饰、限制“正”。 ⑴定+中(名、代),如:(祖国)大地(一朵)茶花(前进)的步伐 ⑵状+中(动、形),如:[很]好看[独立]思考[慢慢]地走 三、动宾短语 动宾之间是支配与被支配、关涉与被关涉的关系。动词+宾语。宾语是回答动词“谁”、“什么”、“哪儿”的。 例如:消灭敌人放下包袱丢下它发展生产进行斗争、 骗取信任恢复平静爱热闹下决心有幽默感像珍珠 四、动补短语 动词+补语 动补短语中的补语是用来修饰动词的 例如: 看清楚、去一趟、拿起来、引在脑子里 五、形补短语 形容词+补语 以形容词为中心时它的后面只有补语,因为形容词不能带宾语。 结构助词“得”是补语的标志。 例如: 跑得快走得急机灵得很密得不透气 六、主谓短语 陈述与被陈述的关系。名词(代词)+动词(形容词) 主语可以回答谓语“谁”、“什么”;谓语可以回答主语“怎么样” 例如: 觉悟提高思想解放阳光灿烂心情舒畅 特殊主谓短语:名词做谓语。 例如:

今天星期三明天国庆节他中等身材 七、量词短语 由数词或指示代词加上量词组成。 1、数量短语:一个、二斤、四里、三次、一回、三只、一碗、两包 2、指量短语:这种、那种、这堆、这次、那回。 八、介宾短语 由介词加上后面的名词、代词或名词短语组成。 介加名、介加代、介加名词短语 例如: 为人民(服务)对群众(说)从现在(起)关于课堂纪律问题当黎明到来的时候按规定(办理)把大门(推开)

短语结构类型

短语结构类型 一、指出下列短语的结构 1.风俗习惯( ) 2.变化规律( ) 3.历史悠久( ) 4.整修一新( ) 5.交头接耳( ) 6.思维敏捷( )7.废寝忘食( ) 8.前程远大( ) 9.全神贯注( ) 10.襟怀坦白( ) 11.挥手之间( ) 12.愚公移山( ) 13.竞选州长( ) 14.销售计划( ) 15.色彩缤纷( )16.交通规则( ) 17.风和日丽( ) 18.激动不已( )19.禁止吸烟( ) 20.辛勤耕耘( ) 21.巍峨挺立( )22.不断发生( ) 23.气氛热烈( ) 24.继往开来 ( ) 二、下列各组短语分别以哪组类型短语为主,其中不同的短语各是哪个,属于什么类型短语。 1.A.祖国万岁 B.品质优良 C.天气晴和 D.思想品质 E.成绩好 2.A.看了两眼 B.打扫教室 C.洗得干净 D.热了起来 E.扔出去 3.A.十分伟大 B.我的书包 C.小声地说 D.追歼敌人 E.很热闹 4.A.讲解语法 B.讲述清楚 C.种植玉米 D.制造火箭 E.听故事 5.A.用圆珠笔(写)B.对于我们 C.按照习惯 D.必然产生 E.被大雨(淋) 6.A.报纸杂志 B.调查研究 C.身体健康 D.严肃认真 E.读和写 三、辨别下列课文题目的结构类型 1.济南的冬天 2.纪念白求恩3.蚊子和狮子 4.死海不死 5.事事关心 6.反对自由主义 7.中国石拱桥 8.白杨礼赞 9.皇帝的新装 10.同志的信任 11.《论语》十则 12.老杨同志 13.向沙漠进军14.记一辆纺车 15.批评和自我批评 16.谈骨气 17.最后一课18.在烈日和暴雨下19.忆江南 20.桃花源记 21.想和做22.说谦虚 四、指出下列画横线的短语的结构类型: 1、早听说香山红叶是北京最浓最浓的秋色,能去看看,自然乐意。我去的那日,天也作美,明净高爽,好得不能再好了;人也奏巧,居然找到了一位老向导。这位老向导就住在西山脚下,早年做过四十年的向导,胡子都白了,还是腰板挺直,硬朗得很。 2、从大会堂北门进去,穿过大理石柱廊、风门厅、衣帽厅,就进入宴会厅底层大厅。 3、黄显声的报纸每天按时送还,铅笔、薄纸和刀片都妥善地收藏起来。 4、调皮的人们围上来,七嘴八舌打趣他。 5、发动机、卷扬机、混凝土搅拌机和空气压缩机的吼声,震荡山谷。 6、小时候有一回上树掐海棠花,不想叫蜜蜂蜇了一下,痛得我差点儿跌下来。 五、按照下列要求各写出三个短语来,并指出它们的结构类型: 1.定语+ 中心词 2.状语+ 中心词 3.中心词+ 补语 4.谓语+ 宾语 5.主语+ 谓语 六、指出下列短语变换内部次序前后的结构类型: 政治学习责任重大达到目的 学习政治重大责任目的达到 津津有味地品尝认真地学习吃饭的时候 品尝得津津有味认真的态度吃得真快 七、选出正确答案 1.下列词语中,与“卧薪尝胆”结构完全相同的一项是() A.偃旗息鼓惩前毖后温故知新巧妙绝伦 B.尊师重教惟妙惟肖赴汤蹈火心旷神怡C.趋吉避凶理屈词穷潜滋暗长随机应变 D.走马观花饮水思源扬眉吐气粉身碎骨2.选出下列短语在结构分类正确的一项() ①山川大地②声音响亮③经济特区④渐渐消散 ⑤顾全大局⑥雄伟壮丽⑦结构坚固⑧竞选州长 A.①③/ ②⑥⑦/ ④⑤⑧ B.①③⑥/ ②⑦/ ④⑧/ ⑤ C.①⑥/ ②④⑦/ ③⑤/ ⑧ D.①⑥/ ②⑦/ ③④/ ⑤⑧ 3.全是主谓短语的一项是() A.亚洲西部前功尽弃种类繁多 B.知识贫乏经验不足参加会议 C.起草方案朝晖夕阴洗得干净 D.工作繁忙须发花白意志坚强 4.短语结构类型不相同的一项是() A.我的老师人类的语言济南的冬天 B.竞选州长记一辆纺车纪念白求恩C.蚊子和狮子怀疑与学习想和做 D.范进中举曹刿论战最后一课 5.下列课文标题都是偏正短语的一组是()

蛋白质结构分析原理及工具-文献综述

蛋白质结构分析原理及工具 (南京农业大学生命科学学院生命基地111班) 摘要:本文主要从相似性检测、一级结构、二级结构、三维结构、跨膜域等方面从原理到方法再到工具,系统地介绍了蛋白质结构分析的常用方法。文章侧重于工具的列举,并没有对原理和方法做详细的介绍。文章还列举了蛋白质分析中常用的数据库。 关键词:蛋白质;结构预测;跨膜域;保守结构域 1 蛋白质相似性检测 蛋白质数据库。由一个物种分化而来的不同序列倾向于有相似的结构和功能。物种分化后形成的同源序列称直系同源,它们通常具有相似的功能;由基因复制而来的序列称为旁系同源,它们通常有不同的功能[1]。因此,推测全新蛋白质功能的第一步是将它的序列与进化上相关的已知结构和功能的蛋白质序列比较。表一列出了常用的蛋白质序列数据库和它们的特点。 表一常用蛋白质数据库 网址可能有更新 氨基酸替代模型。进化过程中,一种氨基酸残基会有向另一种氨基酸残基变化的倾向。氨基酸替代模型可用来估计氨基酸替换的速率。目前常用的替代模型有Point Accepted Mutation (PAM)矩阵、BLOck SUbstitution Matrix (BLOSUM)矩阵[2]、JTT模型[3]。 序列相似性搜索工具。序列相似性搜索又分为成对序列相似性搜索和多序列相似性搜索。成对序列相似性搜索通过搜索序列数据库从而找到与查询序列相似的序列。分为局部联配和全局联配。常用的局部联配工具有BLAST和SSEARCH,它们使用了Smith-Waterman 算法。全局联配工具有FASTA和GGSEARCH,基于Needleman-Wunsch算法。多序列相似性搜索常用于构建系统发育树,这里不阐述。表二列举了常用的成对序列相似性比对搜索工具

结构动力分析

【结构工程的软件时代】 结构工程已全面进入软件时代,结构工程师要从繁琐的重复劳动中解脱出来,培养结构概念和体系,锻炼结构整体思维。 《结构概念和体系》是国际著名的结构大师林同炎广为流传的著作。相信大多数从事建筑结构的工程人员都或多或少读过这本书。其实,这本书可以说是结构工程师的必修课。从事结构工作,很重要的一点就是在工作中培养结构概念体系和整体性思维的方法。这对于结构工程师来讲,是十分重要的。 如今的软件技术已相当发达,很多繁琐的工作都可以通过软件完成,甚至于智能化到了“一键式完成”的地步。设想,如果在软件再这么智能化而且功能强大下去,到时候,只要输入基本的设计参数和经济指标,按一个回车键,软件就将建筑方案设计、结构方案设计、施工图设计全部一条线完成出来了,那么对结构工程师来说不是一场灾难嘛。软件取代所有主要工作,技术人员不就要下岗了啊。所以,我认为,从一个角度来讲,结构工程软件时代的到来,意味着结构工程师的一场“危机”。如何在这场即将到来的危机面前“明哲保身”,做软件所不能做到的事情是很关键和重要的,什么最关键而重要,我认为就是结构的概念和体系思维,这个才是将来结构工程师的价值所在,而这恰恰是软件所难以做到的。 闲话暂放,言归正传。这篇博客将粗浅地探讨结构动力学问题的概念和体系问题。之所以关注结构动力学问题,一是因为结构静力学研究已比较成熟,林同炎前辈的《结构概念和体系》一书中已阐明很完善精辟了,二是因为现阶段工程结构抗震问题是研究的热点和前沿,这个时代里不懂工程抗震概念的结构工程师很难成为一个好工程师。 构件→结构→结构体系,整体性思维,需要工程实践的锻炼以及不断思考的积累。在实践中,反复向自己提问是培养结构概念的一个好方法。比如,问自己什么叫振型分解法?有哪些假定?什么叫时程分析法?有哪些优缺点?……这样积累下来,很多概念就越辩越明,结构的概念也就逐渐得到建立。 【结构动力分析的分类】 结构动力分析主要包括:特征值分析、反应谱分析、时程分析三大块。特征值分析也称结构自振特性分析,主要求解结构的自振周期和振型向量。反应谱分析基于振型分解反应谱理论,是一种工程上最常用的计算地震作用下结构动力响应方法,但这种方法只限于线弹性结构,弹塑性阶段振型分解法不再适用。时程分析包括线弹性时程分析和弹塑性时程分析两大类,与振型分解法的主要区别在于采用实测的地震波输入结构计算结构的响应,弹塑性时程分析具体还可分为静力弹塑性时程分析(也称Pushover分析)和动力弹塑性时程分析两类。 上述结构动力分析中,特征值分析和反应谱分析比较常用。而时程分析一般仅针对重要建筑以及体型非常复杂的建筑。小震水准下可进行结构线弹性时程分析,大震水准下需要采用结构弹塑性时程分析方法。现阶段,弹塑性时程分析还属于工程上比较前沿的分析内容,还属于一部分实力较强的设计院和科研机构的“专利业务”。当然,我认为随着结构技术人员水平的不断提高,以及软件技术的发达,结构弹塑性时程分析在将来将会越来越普及,甚至成为结构设计人员的“家常便饭”。 【特征值分析】 特征值分析也称结构自振特性分析,因为在数学上这个问题属于齐次线性方程组特征值的求解问题,故亦称特征值分析。其目的是求解结构的自振周期和振型。以前曾经碰到这样一个很有意思的概念问题:结构的阻尼比越大,那么结构的自振周期是减小还是增大呢?概念不清就很容易产生混乱。其实,结构的自振特性均是指无阻尼自由振动的特性值,因此不存在阻尼的影响问题。还有一个问题就是什么是振型?虽然我们经常提振型这个概念,不少人一时半会答不上来。从概念上讲,振型是结构发生无阻尼自由振动时各质点的相对位移,

短语结构类型

八年级短语类型及试题 一、短语类型 偏正短语:前偏后正,“偏”修饰,限制“正”。 鉴别词: 常见的结构形式有: 形容词+名词,如:美丽的花朵伟大的人民浩瀚的大海 数量词+名词,如:一杯水一位顾客三斤水果 名词+名词,如:学校的图书馆祖国大地烟台的苹果 代词+名词,如:大家的心情我的老师自己的心情 中心语是动词或形容词时,修饰语是状语,用〔〕表示,常常有“地”字。 常见的结构形式有: 形容词+动词,如:慢慢地走激动地演讲迅速地回答 副词+动词,如:完全相信十分思念突然发现 副词+形容词,如:非常美丽更加坚决相当迅速 动宾短语:动宾之间是支配与被支配,干涉与被干涉的关系。动词+宾语。宾语是回答动词“谁”、“什么”、“哪”的。 鉴别词:着;了;过 常见的结构形式有: 动词+名词,如:敬畏生命热爱工作上中学 动词+代词,如:丢掉它们关爱自己想念大家 主谓短语:结构内部两个成分之间有陈述和被陈述之间的关系。 鉴别词:已经;很 常见的结构形式有: 名词+动词,如:会议结束蝴蝶飞舞菊花开放 代词+动词,如:自己说话谁同意我们回去 名词+形容词,如:花朵鲜艳斗志昂扬阳光灿烂 代词+形容词,如:你真美丽这里清静大家激动

另外,还有特殊主谓短语,即名词做谓语。 如:今天星期三明天国庆节他中等身材你是中学生 并列短语:词和词之间没有轻重主次之分,彼此地位平等。 鉴别词:和、而、或 常见的结构形式有: 名词+名词,如:文化教育今天或明天良师益友 动词+动词,如:调查研究愿意并实行团结互助团结和谐 形容词+形容词,如:光辉灿烂庄严肃穆万紫千红风和日丽 代词+代词,如:我和他这样那样 数量词+数量词,如:四面八方千秋万代半斤八两 并列短语一般前后可以互换位置,如:工厂、农村,我、你、他等。但有些并列短语是不能前后颠倒位置的,因为它有一定次序。如:春、夏、秋、冬(时间顺序),省、市、县(大小顺序),老、中、青(年龄顺序),继承和发展接近文学和爱好文学(逻辑顺序),男女老少金银铜铁油盐酱醋(语言习惯)等等。 后补短语:结构内部两个成分之间有补充和被补充的关系。 鉴别词:得 常见的结构形式有: 动词+补语,如:写得好坐在石头上休息一会儿 形容词+补语,如:美丽极了密得不透气开心得一蹦三尺高 二、试题精讲 1、短语结构各不相同的一项是:() A、艰苦奋斗传播真理思想进步愚公移山 B、范进中举开沟挖渠认真学习取得成功 C、安邦定国跑向操场保护血管发表见解 D、打得惨败雨后彩虹崇高理想关系明确

肩关节脱位

肩关节脱位:Dislocation of the shontder joint 一、分类 1、前脱位:喙突下、盂下、锁骨下 2、后脱位:肩峰下、盂下、冈下 3、下脱位:盂下 4、盂上 二、肩关节前脱位机制:喙盂下最常见 间接暴力:外展、外旋力量同时作用于肱骨头直接暴力:暴力直接作用于肱骨后方 三、临床表现与诊断: 1、有外伤史 2、局部疼痛肿胀、特殊姿势 3、方肩畸形、关节空虚 4、Dungas征(+) 5、X线确诊与鉴别有无合并骨折 四、治疗 (一)复位:手法、局麻 1、Hippocrates法(足蹬法) 2、Kocher法 3、Stimson法 (二)固定

1、单纯脱位:三角中悬吊屈肘90o位3W,全并骨折,延1~2w 2、关节囊破损明显或肩带肌力不足,搭肩位胸肱绷带固定 (三)功能锻炼爬墙外展爬墙上举弯腰垂臂旋转滑车带臂上举 肘关节脱位Dislocation of the elbow joint 一、分类 后、外侧方、内侧方、前脱位 二、脱位机制: 跌倒时上肢外展,手掌着地,暴力传递至尺、桡骨上端、肘关节过伸,尺骨鹰嘴突处产生杠杆作用,使尺、桡骨近端脱向肱骨远端的后方。 三、临床表现与诊断: 1、有外伤史 2、患处肿痛不能活动,肘屈曲约135o 3、肘后空虚 4、肘部三点关系改变 5、X线可明确 四、治疗 (一)手法复位 (二)固定:长臂石膏托屈肘90o,三角巾悬吊2~3w

(三)功能锻炼 桡骨头半脱位:Subluxation of head of radius /pulled elbow 一、脱位机制:多见于5岁以下小儿 桡骨头未发育好,桡骨颈部的环状韧带只是一片薄弱的纤维膜,前臂被提拉,桡骨头即向远端滑移,恢复原位时,环状韧带的上半部不及退缩,卡压在肱桡关节内。 二、临床表现与诊断: 1、有上肢被牵拉病史 2、小儿诉肘部疼,下肯取物和活动肘部,拒摸 3、检查体征少,桡骨头压痛(+) 4、X线(—) 三、治疗 手法复位,无需麻醉,不必固定 上肢骨折 一、锁骨骨折Clavicular fracture

短语的结构

短语的结构 一、并列短语 词和词之间没有轻重主次之分,彼此地位平等。 1、类型 ⑴名+名文化教育今天或明天(名词短语) ⑵动+动调查研究愿意并实行(动词短语) ⑶形+形光辉灿烂庄严肃穆(形容词短语) ⑷代+代我和他这样那样(名词短语) ⑸数量+数量四面八方千秋万代三斤五两(名词短语) 2、并列短语一般前后可以互换位置。 例如:工厂农村我你他 但有些并列短语是不能前后颠倒位置的,因为它有一定次序。 ⑴时间顺序:春、夏、秋、冬 ⑵大小顺序:省、市、县 ⑶年龄顺序:老、中、青 ⑷逻辑顺序:继承和发展接近文学和爱好文学 ⑸语言习惯:男女老少金银铜铁油盐酱醋 3、并列短语一般要求词性相同,但个别也有不同。 例如:姐姐和我(名词+代词)勤劳勇敢不怕苦(形+形+代) 二、偏正短语 1、前偏后正:“偏”修饰、限制“正”。 ⑴定+中(名、代),如:(祖国)大地(一朵)茶花(前进)的步伐 ⑵状+中(动、形),如:[很]好看[独立]思考[慢慢]地走 2、旧语法:“的”是定语的标志;“地”是状语的标志。新语法:统一为“的”。 三、动宾短语 动宾之间是支配与被支配、关涉与被关涉的关系。动词+宾语。宾语是回答动词“谁”、“什

么”、“哪儿”的。 例如:消灭敌人放下包袱丢下它发展生产进行斗争 骗取信任恢复平静爱热闹下决心有幽默感像珍珠 四、述补短语 A、动+补 动补短语中的补语不能回答动词“谁”、“什么”“哪儿”。 例如: 看清楚、去一趟、拿起来、引在脑子里、跑得快、走的急 五、形补短语 B、形+补 以形容词为中心时它的后面只有补语,因为形容词不能带宾语。结构助词“得”是补语的标志。 例如:机灵得很密得不透气漂亮极了 六、主谓短语 陈述与被陈述的关系。名词(代词)+动词(形容词) 主语可以回答谓语“谁”、“什么”;谓语可以回答主语“怎么样” 结构形式:A名+动B名+形C代+动D代+形 例如: 觉悟提高思想解放阳光灿烂心情舒畅 特殊主谓短语:名词做谓语。 例如: 今天星期三明天国庆节他中等身材 七、复指短语

汉语短语结构类型的分析

一汉语短语结构类型的分析 1.1自《马氏文通》问世以来,有关汉语语法的论著对短语的分类基本上是按外部功能和内部结构这两个标准来进行的,其中以内部结构为标准的分类占有更重要的地位。其实,汉语短语分类中的“功能说”和“结构说”都在一定程度上受到叶斯丕森和布龙菲尔德理论的影响。在结构分类方面,布氏的句法结构观念似乎特别适合于汉语,因为汉语词的构成方式、短语的构成方式和句子的构成方式是那样相似,以至布氏的句法结构类型的分析可以直接应用于汉语每一层面上的语法单位的结构分析。短语在汉语语法单位中处于一种枢纽地位,因此,短语的结构类型可以上通句子下至词。这是汉语语法单位进行结构分析的一条捷径,发展到顶峰就是“词组本位说”。如范晓先生在《说句子成分》、《关于结构和短语》①等文中多次提出:汉语的句子结构和短语结构的构造原则基本上是一致的,除独词句外,句子只不过是独立的短语而已。根据这种观点,应当是有多少种结构的短语,相应地便会有多少种结构的句子。 1.2“词组本位说”把句法结构类型和短语类型完全对应起来,即以分析短语的结构类型为基础,扩 展到句子结构。作为一种分析方法,它有可取之处;从实际的作业上看,它也具有相当的成效。它操作起来十分简便,似乎可以一以贯之地分析汉语的一切“结构”,然而从另一个角度看,恰恰是这种简便掩盖了汉语短语类型分析的句法分析中的一些实质性问题,如(一)是不是每个短语都可以在结构类型中找出它的归属?有的虚词和实词组合,其内部结构关系如何看待?(二)结构类型相同的短语,为什么其语法功能和转换关系不同?比如“人才交流”和“学者讨论”在结构分类中都是主谓关系,但前者能作“进行”类动词的宾语,后者不能;前者能在受定语限定之后作主语或宾语,后者不能。(三)许多结构类型不同的短语却有同样的语法功能,这是为什么? 短语同词一样是静态的、备用的语法单位,对它内部进行分析以及据此而进行的分类,其标准与动态的、使用的语法单位—一句子的分析不应该是一样的,事实上,构成短语的成分和构成句子的成分也并不具有完全的同一性。吕叔湘先生认为“从语素到句子”有一个“中间站”,即短语。②这里我们借用下“中间站”这个说法。我们认为,如果说汉语语法单位由静态转化为动态有一个中间站的话,那末这个中间站不是短语,而是句子成分。语和短语都需要这个中间站的过渡,才能由静态的备用单位转化为动态的使用单位。③“词组本位说”所做的单纯的结构分析究其根源是混淆了两种不同性质的单位,因而没能解决上述问题,也就不能使短语研究向更深的方向发展。 正因如此,目前有些学者对“词组本位说”提出质疑,试图把短语的结构和句子的结构区别开来,进而建立词法、短语法(有的学者叫“下句法结构”)、句法三足鼎立的语法分析体系,④这一步迈得很勇敢,也颇有见地。如果把短语法单列出来,那末短语分类就和句法结构分类有了质的区别。但他们的分类如仍按短语内部的结构关系来确定,上面提出的问题就仍无法解决。 二短语分类的原则 2.1为了解决上述问题,我们试图从一个新的角度来给短语分类。有一个原则问题必须加以强调,那就是同划分任何语法单位类别一样,给短语分类也应该遵守一个不可忽视的原则:划分出来的类别能够有效地服务于分析。反过来说,就是:不管用什么标准来划分,只要划分出来的类别可以用来有效地说明语法规律,这个分类就应该是有效的语法分类。 基于上述原则,就我们已经掌握的语言材料进行试验的结果来看,依据短语内部的语义关系进行的分类能够较好地服务于语法分析的目的,能够较好地解决至今尚未很好解决的一些句法分析问题,如句法分析中的主宾类问题。用这个新的分类能够较好地说明短语作为与词一样的静态单位,其内部语义关系的不同对它的句法功能以及对包括它在内的更大一级的句法结构有什么影响,而这些问题是依据结构关系分类所无法说明的。事实上,类似这种分类的观点已经有人在实际的语法分析中运用过,只不过是非自觉的罢了。比如许多学者分过“受事主语句”的特点,从这些分析中可以看出:在他们的意识中肯定是把“施事—一动作”格式和“受事—一动作”格式加以对比,而这两种格式正是从分析语义关系的角度确定的。我们不过是试图把这种零散的、不自觉地运用语义关系进行语法分析的做法当作一种理论依据加以系统化而已。2.2我们给短语分类的标准是词与词之间的语义关系。当然,语义是一个相当宽泛的概念,因此这里就需要给语义标准界定一个范围。如前所述,从分类的目的和结果来看,以语义关系为标准的分类也应该

结构功能分析法

结构功能分析法 结构功能分析方法是社会研究中常用的一种理论分析方法。它的理论依据来源于社会学的一大理论流派——结构功能理论。在现代社会调查研究中,结构功能分析已成为一种广泛应用的理论分析方法。 结构功能理论认为,任何社会事物都是由一定组成部分或要素构成的,这些部分或要素组成了一个社会系统,它们之间的相对稳定的联系就是这一系统的结构。每一个系统要存在和发展下去,就必须满足一些基本的条件或需求,这些条件或需求是由系统的某一特定部分来满足的,换句话说,系统组成部分担负着特定的社会功能。例如,在民族国家这个社会大系统中,生产组织的主要功能是提供物质产品;军事组织的功能是对外保卫国家、对内维持社会的稳定;政治组织的功能是确定国家的基本目标并组织各种力量以实现这些目标,等等。并且每一个民族国家的生存和发展,也离不开它的这些组成部分所发挥的社会功能。 总之,结构是构成事物各个要素之间所固有的相对稳定的组织方式或联结方式。功能是指构成事物的各个要素之间所发生的相互作用和影响。结构功能法就是通过考察事物的结构和功能来认识事物和分析事物的方法。 结构功能分析法的实施步骤: [1] 明确结构和功能的承载物,即分析对象 如犯罪问题中犯罪团伙,人事管理制度改革问题中的人事管理制度等等,并且应该进一步明确是就哪些方面进行分析。 [2]内部结构分析 即考察各组成要素间在形式上的排列和比例。例如分析犯罪团伙的内部结构,就要弄清谁是骨干,谁是随从;谁是唆使者,谁是被唆使者;谁是策划者,谁是执行者,考察罪犯在团伙中的地位排列,分清犯罪轻重,据此绳之以法。 [3]内部功能分析 即考察各组成要素之间的相互影响和相互作用。包括三项基本内容:一是稳定功能关系的性质,即分析一下有没有相互影响和作用,如果有,是一方影响和作用另一方,还是双方相互影响和作用。例如犯罪团伙的成员之间有没有相互间的利益满足,相互的制约和影响。 二是挖掘功能存在和建立的必要条件,即分析在满足什么样的条件时,要素间的相互影响和作用才能存在和建立起来。例如犯罪团伙之间的相互利益满足是在怎样的社会条件和犯罪团伙的内部条件的前提下才发生的。 三是找出满足功能的机制,即分析促使各个要素之间相互影响和作用的手段和方法。例如犯罪团伙中唆使者往往以许愿、表扬、斥责、恐吓等心理手段和分赃、赏赐、殴打、杀害等行为手段对被唆使者进行控制。 [4]外部功能分析 即考察现象整体对社会的影响和作用,也就是把研究对象和现象放在社会之中,考察

汉语_短语的结构分类

短语的结构分类 [口诀]短语看结构,十种莫忧愁。并偏动介补,主的兼连固。 1、并列短语 词语之间互不修饰限,地位平等,这样的短语就是并列短语,也称为“联合短语”。 这类短语主要由名词、动词、形容词、代词、数量词这四种词语自我构成,或者几种词语搭配构成,主要有五种形式,可以简单表示为:n.+ n./v.+ v./adj.+ adj./pron.+ pron./aum.+ aum., 例如:崇山峻岭柴米油盐思想感情民俗风情老师和同学国家与集体个人与社会 发展变化研究决定调查研究总结推广吃喝穿戴继承和发扬继承与创新 婉转悠扬和谐幸福金碧辉煌富丽堂皇庄严肃穆丰富而富饶光荣而艰巨 你、我、他你和我这门那户这个那个彼此彼此谁谁谁一个和八个二百五 2、偏正短语 词语之间有修饰限制关系,前一个词语对后一个词语进行修饰和限制,而以后一个词语为中心,词语与词语之间是偏正关系,这样的短语是偏正短语。修饰名词的词叫定语,用()来表示;修饰动词、形容词的词叫状语,用〔〕来表示。这类短语主要以名词、动词、形容词为主体构成,主要有三种形式,简单记为:adj.+ n./adv.+ v./adv.+ adj.,例如:(1)名词性偏正短语——定语+名词(或代词) ①名词、代词、动词、形容词作定语。例如: 名+名:中华情赤壁赋出师表兰亭集序荷塘月色故都的秋赤壁之战 代+名:我们家这个人之二虫这只黄鹂那只白鹭这条纱巾那根拐棍 动+名:发言稿止痛片美发厅调查提纲训练计划运动规律游览路线 形+名:黑牡丹红太阳白玫瑰绿色食品经典作品优秀分子永恒魅力 ②指示代词、数词、量词组合作定语。 例如:(指+数+量)+名:这支笔这一位委员那一个书包这两个人那一年六月 (数+量)+名:七根火柴一年四季一件小事一曲窦娥冤千古关汉卿 (2)动词性偏正短语——状语+动词 ①状语表示的意义 状语可以表示动作、行为的情态、时间、频率、范围、处所、对象等。例如: 表示情态:努力进取认真研究大力发展倾情奉献喜闻乐见娓娓动听 表示时间:猝死马上出发立刻行动现在开始从眼前抓起于拂晓结束 表示频率:间进经常说寻常见几度闻一再强调再三叮嘱常来常往 表示范围:都好全赖一呼百应一丝不挂九九归一根根寄梦个个宁腮 表示处所:东进外敷向阳开内引外联上窜下跳外树形象内抓管理 表示对象:天问东向坐今日始把根留住将心比心对天发誓向隅而泣 ②状语的构成

中考语文专题三短语结构复习题201803222101

专题三短语结构复习题 1.(2014·潍坊中考)下列各组短语,结构类型不同的一项是( ) A.雄伟壮丽根深蒂固廉明公正舍生取义 B. 非常坚强自知之明万贯家私长途跋涉 C. 精力充沛盛气凌人夸父逐日愚公移山 D. 敬畏生命包罗万象鼎力相助不见天日 2.(2017·潍坊模拟)下列各句,表述正确的一项是( ) A.“前面”“后面”“十笏园”“范畴”“死板”都是名词。 B.“露珠晶莹”“心情愉快”“敬畏生命”“红得发紫”都是主谓短语。 C.“那些模样最像武士脸型的蟹就得天独厚地生存下来”主干是“蟹生存”。 D.“我们家的台阶有三级”中,“我们家的”是状语。 3.(2017·潍坊模拟)下列句子中画线短语与例句画线短语结构相同的一项是 ( ) 例句:全桥结构匀称,和四周景色配合得十分和谐。 A.中国的大豆闻名世界,中国也被誉为“大豆王国”。 B.统筹方法,是一种合理安排工作进程的数学方法。 C.以圣母殿为主体的建筑群,造型古朴优美,做工精巧。 D.一个共产党员,应该襟怀坦白,忠实,积极。 4.(2017·潍坊模拟)对下列短语类型辨析不正确的一项是( ) A.回忆我的母亲(偏正短语) 藤野先生(并列短语) B.勤劳俭朴(并列短语) 狼吞虎咽(并列短语) C.性格和蔼(主谓短语) 祖国富强(主谓短语) D.追求光明(动宾短语) 精通时事(动宾短语) 5.(2017·潍坊模拟)下列短语结构方式不相同的一组是( ) A.性格和蔼樱花烂漫前程万里舆论沸腾 B. 精通时事横渡长江翻检一通发表成绩 C. 革命征途热烈鼓掌祖国大地分外妖娆 D. 宽厚仁慈勤劳俭朴德高望重朝晖夕阴 参考答案 1.D 【解析】 A.都是并列短语;B.都是偏正短语;C.都是主谓短语;D.“鼎力相助”是偏正短语,其余是动宾短语。 2.C 【解析】 A.“死板”是形容词;B.“敬畏生命”是动宾短语,“红得发紫”是后补短语; D.“我们家的”是定语。 3.D 【解析】“结构匀称”是主谓短语。A.“闻名世界”是后补短语;B.“统筹方法”是偏正短语; C.“古朴优美”是并列短语; D.“襟怀坦白”是主谓短语。 4.A 【解析】“回忆我的母亲”是动宾短语,“藤野先生”是偏正短语。 5.B 【解析】 A.都是主谓短语;B.“翻检一通”是后补短语,其他三项是动宾短语;C.都是偏正短语;D.都是并列短语。 1

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

相关主题
文本预览
相关文档 最新文档