当前位置:文档之家› 润滑油添加剂简述

润滑油添加剂简述

润滑油添加剂简述
润滑油添加剂简述

前言

润滑基础油不管是矿物油或合成油,如不利用现今添加剂技术,仍无法满足高性能润滑油的要求。

添加剂是化学复合物质,可以改善很多润滑油的性能,他们可以加强已有的性能,抑制不想要的性能,產生变化的发生速率,同时可以加入基础油新的有用的性能。添加剂最初在1920年代开始使用后,它的使用即迅速的增加,现今每一种润滑油几乎都含至少一种添加剂在内,有些含多种不同种类的添加剂,其含量可由几百分之一的%至30%。

添加剂虽然对油的性能表现有所助益,但如用量过多或添加剂间会彼此反应,也是有害的。所以均衡的添加剂配方并经测试,确认无不良的副作用是很重要的,一旦达成有效的均衡配方后,使用者额外添加外来补充品通常是不需要的。

添加剂可以按下列的功能分成两大类:

1/ 影响基础油的物理与化学性能:物理性能如黏温特性、解乳化性、低温特性等。化学性能如氧化稳定性。

2/ 影响与金属表面的物理化学性:如减少磨擦、增加极压表现、防磨损与抗腐蚀等。

添加剂虽然对於润滑油有很大的影响,但有些性能是不受影响的,如挥发性、热稳定性、热传导性、消泡性、被压缩性、与沸点等,优良品质的基础油加上均衡与极佳化的添加剂组合,才能调配出高性能的润滑油。也因此,现今有使用氢裂解与高度氢处理的高精炼基础油,及酯类与PAO的合成基础油越来越多。

润滑油添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂金属钝化剂,乳化剂,防腐蚀剂,防锈剂,破乳化剂等类型。

一黏度指数增进剂(VI Improver)

视原油的来源与传统炼製的基础油,其VI在80与120 之间,传统油大都在100左右,黏度指数增进剂的使用可以增加润滑油的黏度指数。黏度指数增进剂是一种油溶胀的长键、链状高分子的聚合体,它的功用是在高温下令油保持适度的黏度,这是由於在高温下聚合体的物理型态改变的结果。

在烃类基础油中,在高温时聚合体则伸展成长线型,粘度指数改进剂的分子溶胀,流体力学的体积和表面积增大,溶液内摩擦增加,从而导致溶液的粘度增加,弥补了油在高温时降低的黏度。而在低温时聚合体的结构是卷曲的,对溶液内摩擦影响不大,因而对油的粘度影响亦不大。正是由于粘度指数改进剂在不同温度下呈不同状态影响着润滑油的粘度,所以它能起到改善润滑油粘温性能的作用。

黏度指数增进剂的长键高分子会受机械剪力而受到影响,在中度的剪力作用下会使聚合体暂时分离,致使黏度暂时降低;当这剪力移除后聚合体恢复原型,而黏度也恢复。如高分子受机械剪力破坏后,则即使剪力移除后,聚合体也无法复元,而降低的黏度也无法恢复。

黏度指数增进剂用於汽车引擎机油、自动排档油、多功能拖曳油、车用齿轮油、及液压油,使得润滑油使用的温度范围比单纯的矿物油更為宽广。

二抗氧化剂(Oxidation Inhibitors)

当油温度在有氧存在的情况下升高时,氧化就会发生,氧化的结果是黏度与有机酸的浓度会增加。

油氧化的速率受几个因素影响,当油温增加时,氧化速率成指数倍增。一般常理是矿物油温每增加18°F(10 °C),油氧化的速率增加一倍;如让油大量暴露於空气或将空气搅入油中,油氧化的速率也会增加。有些金属,特别是铜与铁,及有机酸与矿物酸类,都具有催化与促进油氧化的作用。油氧化一般是油中的自由基与氧结合,所以如能阻止这种反应,即可达到抑制氧化的效果。

向油中加入抗氧抗腐剂后,能在金属表面生成保护膜,起到以下三种作用:一是防止金属的氧化催化作用,延缓润滑油的氧化速度;二是隔绝了酸性氧化产物与金属的直接接

触,从而防止了金属的腐蚀;三是生成的保护膜具有良好的抗磨性能,从而能减少机械零件的磨损。

抗氧化剂有两种:一种是与自由基反应成较不活性的物质,一种是分解那些具自由基的物质,成為较不活性的化合物。当油温低於200°F(93°C)时,氧化的速率较慢,第一种抗氧化剂是有效的;但当油温高於200°F(93°C)时,金属的氧化催化效果是油氧化的重要的因素,在这种情况下,抗氧化剂的使用即应抑制或减少金属催化的作用,这些抗氧化剂通常会与金属表面形成一层保护膜,因此这类的物质也可称為金属惰化剂。常用的抗氧化剂是二硫磷酸锌(Zinc Dithiophosphate),它一方面具金属惰化,一方面油温高於200°F(93°C)时,也具分解那些具自由基的物质成為较不活性的化合物。

抗氧化剂主要包括酚型抗氧剂、胺型抗氧剂、硫磷型抗氧剂及其它类型抗氧剂。高分子酚型抗氧剂如双酚抗氧剂、S-连双酚抗氧剂、酚酯型抗氧剂在内燃机油中得到广泛应用。

胺类抗氧剂成本较高,但高温抗氧性好,有生成沉淀的趋势和潜在的毒性,曾一度使用受到限制。早期的N-苯基-a萘胺及衍生物因证明是致癌物被淘汰后,胺型抗氧剂毒性大的说法减少了,在某些领域的使用已超过酚型抗氧剂。ZDDP系列抗氧剂具有抗氧、抗磨、抗腐等多种性能,是内燃机油中主要的添加剂之一,由于其所含磷易使催化转化器中的催化剂中毒,目前采取加入含铜辅助抗氧剂的方法。

利用伏安技术向浸在被分析油液中的电极施加受控电压信号(电压大小随时间延长而增大)。随着电压的增加,抗氧化剂发生电化学极化,所产生的电流在抗氧化剂的氧化电位附近出现峰值,峰值大小与溶液中抗氧剂的浓度有关。测量电流峰高或面积,并将结果储存在数据采集软件中。根据测得的电压-电流关系图,可以确定被测润滑剂中抗氧化的种类和含量。

氧化安定性说明润滑油的抗老化性能,一些使用寿命较长的工业润滑油都有此项指标要求,因而成为这些种类油品要求的一个特殊性能。测定油品氧化安定性的方法很多,基本上都是一定量的油品在有空气(或氧气)及金属催化剂的存在下,在一定温度下氧化一定时间,然后测定油品的酸值、粘度变化及沉淀物的生成情况。一切润滑油都依其化学组成和所处外界条件的不同,而具有不同的自动氧化倾向。随使用过程而发生氧化作用,因而逐渐生成一些醛、酮、酸类和胶质、沥青质等物质,氧化安定性则是抑制上述不利于油品使用的物质生成的性能。

润滑油氧化安定性测定方法

用旋转氧弹法测试润滑油氧化安定性的标准是SH/T 0193-92,对照的国际标准为ASTM

D2272。“R.P.V.O.T.”也有人简称其为“R.B.O.T.”,是英文“Rotating Pressure Vessel

Oxidation Test”的缩写,中文译为:“旋转压力容器氧化试验”或“旋转氧弹试验”,是测定油品氧化稳定性的一种方法。

与FT-IR(傅立叶变换红外光谱)、酸值、粘度等试验不同,R.P.V.O.T.测定的是油品实际抗氧化能力(基础油+未消耗的抗氧剂的综合抗氧化能力),而其它分析方法测试的是油品已经氧化的程度。对设备管理人员来说,在油品或机械设备出现无可挽回的损失之前及时反应十分必要,对此,R.P.V.O.T.不失为一种更积极的方法。这种测试适合于油箱容量大,补油量小,工作条件苛刻的设备(如汽轮机、造纸机润滑循环系统)。

RPVOT的测试结果以分钟为单位,通过与原来新油的RPVOT值相比较,可以得出被测在用油品的剩余使用寿命。通常当在用油品的剩余使用寿命为新油的40%时,为油品使用的警告值,当油品的剩余使用寿命为新油的25%时(通常情况下,测试结果小于50分钟),为油品使用临界值。

当然,根据应用情况不同,这些数据也有所变化,特别需要注意的是:有些情况下可能需要很长时间才能达到油品使用警告值,但紧接着很快就达到油品使用临界值,这时用户切不可麻痹,最好咨询润滑油供应商是否需要换油了,避免出现事故。

三清净分散剂(Detergents and Dispersants)

清净剂和分散剂主要用于内燃机润滑油中起清净作用和分散作用,中和内燃机油中的酸,增溶和分散油泥,保持发动机的清洁,其用量占润滑油添加剂的一半左右。清净就是不让润滑油在使用过程中产生的胶质、沥青等物质沉积下来;分散就是让润滑油中的胶质、残炭以及燃料燃烧过程中生成的烟垢等物质分散悬浮于油中,以便润滑油在循环过程中通过机油滤清器除去。因此,清净剂应当是在内燃机高温区域内能阻止或抑制润滑油氧化变质而生成沉积的物质,它大多是金属有机化合物;分散剂则应当是在内燃机低温区域内能使生成的油泥很好地分散在油中的物质,这些物质大都是不含金属的有机聚合物。

20世纪30年代末至40年代中期,出现了酚盐、磺酸盐及水杨酸盐等金属清净剂。50年代Shell公司、Lubrizol公司率先研制出高碱金属清净剂,解决了由于大功率增压柴油机、船用柴油机燃烧高硫燃料引起的活塞沉积增加、缸套磨损等问题。此后,Lubrizol、Chevron、Shell公司又先后开发了低、中、高及超高碱值酚盐、磺酸盐及水杨酸盐等金属清净剂,以满足调配各种油品需求。进入90年代,由于发动机小型化、大功率、高速度的发展,传统的金属清净剂已不能满足要求,另外环境法规的苛刻也使得原来有毒的灰分高的含硫磷氯添加剂使用受到限制,各国纷纷开发研究新型的金属清净剂,如镁盐、过碱性清净剂等。

20世纪50年代初期由于金属清净剂对抑制低温油泥生成的效果不理想,1955年美国杜邦公司开发了聚合物型无灰分散剂,但它们的热稳定性不好,改善低温油泥效果不理

想。60年代开发了非聚合物型丁二酰亚胺无灰分散剂,目前以丁二酰亚胺为基础的无灰分散剂已成为主流,其用量占80%以上。

目前丁二酰亚胺无灰分散剂的生产仍以氯化工艺为主,只有不到5%的厂家采用对环境污染小的热加合工艺。

近年来,又先后研制了高分子量无灰分散剂、酯类无灰分散剂、双酐性无灰分散剂、多酰胺无灰分散剂、超高碱烷基水杨酸钙(镁)等新型无灰分散剂,并有部分产品投入工业化生产。这些产品为研制下一代复合剂创造了条件。无灰分散剂的研究发展方向是更好的油泥和漆膜控制能力,优良的烟炱分散能力,改善低温性能,低温粘度小,与其它添加剂相容性好,耐水性好,并可生物降解。

四增粘降凝剂(Thickening Agents)

又称增稠剂,主要是聚俣型有极高分子化合物,增粘剂不仅可以增加油品的粘度,并可改善油品的粘温性能。

国外在20世纪50 年代为改善油品的粘温性能使用了聚甲基丙烯酸酯(PMA)和聚异丁烯(PIB) 。60年代末70年代初开发了乙丙共聚物(OCP)和苯乙烯-双烯共聚物,其中O CP已工业化,其销售量占60%以上。OCP的发展以Exxon为代表,其系列化产品已应用于各种油品中。由于分散性的VII能减少无灰分散剂的用量,避免了因解决低温油品问题,增加无灰分散剂用量而引起的粘度增加。因此,近年来分散型VII研究的较多。

另外,具有分散性,抗氧性,抗磨性的多功能VII的研究也引起国外各大公司的注意。目前已生产应用的有聚异丁烯、聚甲基丙烯酸酯和乙烯-丙烯共聚物。

聚异丁烯的剪切稳定性和低温性能差,在配制低粘度多级油时受到限制。近年来,随着低档油晶的淘汰,OCP的用量逐步上升,并且品种在逐步多样化。随着发动机的法规越来越苛刻,发动机机油对所使用的油溶性的高聚物的要求也越来越高。研制增稠能力强,剪切稳定性好,又不使清净性变差的环保型、可生物降解的高分子聚合物是今后粘度指数改进剂的发展方向。

五磨擦调整剂(Friction Modifiers)

凡是能使润滑油在金属摩擦表面上形成定向吸附膜,从而改善摩擦性能起润滑作用的添加剂,叫做油性或摩擦改进剂。油性剂和摩擦改进剂都含有极性基团,这些含有极性基团的活性物质,对金属表面都有很强的亲和力,极性基团能在金属表面形成一种类似缓冲垫的保护膜,防止金属面直接接触,从而降低摩擦和减少金属磨损。

磨擦调整剂的工作温度是低於抗磨损与极压添加剂发生反应的温度,它含有极性油溶性物质,在金属面形成一层薄膜以减低磨擦。它的应用在於现今节能型润滑油、滑道油、自动排档油等。

油性剂的作用主要是降低摩擦系数,减少摩擦阻力,以节约动力能源,同时在较低负荷情况下,也有显著降低磨损的效果。但这一般只能用在负荷压力较轻和冲击振动较小的情况下,也就是摩擦部位温度不高于100℃,一般金属皂则脱附而失去油性作用,应采用极压剂来解决这一问题。

油性剂的边界润滑机理和吸附膜的作用

在传统的润滑理论中,把润滑分为液体润滑和边界润滑。作相对运动的两个金属表面完全被润滑油膜隔开,没有金属的直接接触,这种润滑状态叫做液体润滑;随着载荷的增加,金属表面之间的油膜厚度逐渐减薄,当载荷增至一定程度,连续的油膜被金属表面的峰顶破坏,局部产生金属表面之间的直接接触,这种润滑状态叫做边界润滑。在边界润滑中,当金属表面只承受中等负荷时,如有一种添加剂能被吸附在金属表面上或与金属表面剧烈磨损,这种添加剂称为抗磨添加剂。当金属表面承受很高的负荷时,大量的金属表面直接接触,产生大量的热,而抗磨剂形成的膜也被破坏,不再起保护金属表面的作用,如有一种添加剂能与金属表面起化学反应生成化学反应膜,起润滑作用,防止金属表面擦伤,甚至熔焊,通常把这种最苛刻的边界润滑叫做极压润滑,而这种添加剂称为极压添加剂。

两金属表面互相作用发生润滑摩擦运动时,如承受较大或冲击性振动性负荷,则不易保持液体润滑,而呈边界润滑状态。也就是说油膜厚度薄到0.0002um以下,或不能保持完整的连续油膜时,润滑油表现的润滑性能几乎和粘度无关,而主要取决于润滑油的“油性”的好坏。就是说润滑油(加油性剂)中的一些带有极性原子,例如S、O、N、P等,或极性基团,如-OH、-COOH、-COOR、-COR、-CN、-CHO、-NCS、-NH2、-NHCH3、-NH3、-NROH、等这些与金属表面亲和活性较强的组分和金属表面分子依靠范德华力而发生物理吸附(吸附热约为20KJ/mo1)。分子或几个分子的薄层,其最低部一层的极性端,实质上和金属表面的氧化层发生了半化学和半物理性的吸附。如脂肪酸类化合物,它和金属表面形成暂时性的脂肪酸金属皂,如硬脂酸C17H35COOH在金属表面上发生电子转移的化学吸附(吸附热为40KJ/mo1以上)作用,形成单分子层的半化学结合油性润滑膜,有时也能起到防烧结作用。

六抗磨损添加剂(Antiwear Additives)

按照作用机理的不同,大致可以分为两大类:活性和非活性添加剂。活性添加剂主要是指分子结构中含有硫、磷、氮等活性元素,可以与金属表面发生化学反应形成保护膜的

化合物;非活性添加剂主要是通过自身或其分解产物在摩擦表面形成保护膜的添加剂,如硼化合物、硅化合物、铝化合物等。

当极重或冲击负荷很大产生局部高温接近到200℃以上时,油性剂化学吸附膜将失去作用,此时则必需采用极压剂。极压剂开始时和摩擦金属表面固体进行界面摩擦化学反应,生成防止金属摩擦表面接触的保护润滑膜。具有双键结构的有机极性分子,如α-烯烃的化学反应机构,此时受压力影响不大,而温度起主要作用,每升高10℃反应速度就增加2倍,但在摩擦作用下可能达几十倍到几百倍。

如上所述,极压抗磨剂通常包括有机氯化物,有机硫化物,有机磷化物,金属盐类及其它等。极压抗磨剂的作用实际上是一种控制性的腐蚀现象,因为只有通过它和金属摩擦表面起化学反应,生成熔点较低和剪切强度较小的化学反应膜,才能起到减小摩擦、磨损和防止擦伤及熔焊的作用。

众所周知,二烷基二硫代磷酸锌(ZDDP)几乎是所有内燃机油都要使用的抗氧抗磨添加剂,能有效地减少汽油机摩擦副的磨损。ZDDP借助分解形成的边界润滑膜而对金属表面提供磨损保护。ZDDP热分解后生成的磷酸酯类和磷酰二硫化物等与金属表面发生化学作用形成较牢固的边界润滑膜,从而减少金属表面磨损。

但是ZDDP在金属表面形成的这种膜有很高的摩擦系数,对改善摩擦不利。油中的ZDDP 和减摩剂会竞争占据金属表面,在研究油品添加剂配方时要谨慎从事。

七极压添加剂(Extreme Pressure Additives)

在高温或重负苛时,滑动面间有更严厉的情况下,则需要有极压添加剂以帮忙减少摩擦、降低磨损,以避免严重的金属表面的破坏。极压添加剂比抗磨损添加剂更具活性,它与金属接触面產生化学反应,而形成一个保护膜,化学反应会随金属接触產生的温度高低而变化。即使含有极压添加剂,初期新的金属面的磨损仍高,但随正常的磨合一过,则会形成保护膜;保护膜如被磨破,也能即时因化学反应而修补,金属间的磨损可大為降低,也因此添加剂会渐渐的消耗掉,这也是适时添加新油、或定期更换油料是必要的。

极压添加剂含有硫、磷、氯,他们可单独存在也可能混合一起。含硫的化合物,有时也包含磷与氯,用於金属切削油;硫磷混合物用於车用与工业用齿轮油,而最有名的硫磷化合物是二烷基二硫化磷酸锌(zinc dialkyldithiophosphates-ZDDP),它除具优越的抗磨损与极压效果外,也具良好的抗氧化能力,故是现今被广泛使用,而又具经济效益的添加剂。

极压添加剂的性能与作用机理

极压添加剂是在载荷大且有高摩擦热时,活性元素如硫、磷、氯与金属表面发生化学反应,生成不同形式的极压膜起润滑作用。其中最常用甚至用量最大的是含硫极压抗磨剂。在摩擦面的极压润滑条件下,由于局部温度上升,吸附在金属表面的含硫化合物与金属急剧反应,生成极压膜,同时还生成Fe2O3、Fe3O4和FeSO4等金属氧化物,这些氧化物在表面形成微细的孔道,使润滑油分子能够渗入而起作用。可见,有机硫化物的极压作用,不仅与硫化金属膜降低剪切应力的作用有关,而且与氧化物的生成有关。

通常,含硫极压抗磨剂为硫化烃类或硫化脂肪,其性能与硫化工艺、烃类结构和含硫量有关。一般在使用中将其中的硫分为活性硫和非活性硫,活性硫有较好的极压性能,抑制工具与工件间的烧结、拉伤等很有效,但它能侵蚀有色金属,特别是铜,因而只能用于黑色金属加工液中。而非活性硫有中等的极压性能,良好的润滑性能,适用于成型加工或与活性硫添加剂配合使用,其对有色金属稳定,可用于有色金属的加工液中。

含硫添加剂,即所谓的硫载体的通式为R-SX-R,不活泼型(X=2)含二硫化物桥为主,具有只在高温下才反应的比较稳定的C-S键。X=3-5之间的活泼型则要活泼的多,因为比较不稳定的多硫化物桥的硫即使在低温下也能析出。在极压条件下,硫载体的反应从物理吸附开始,随后化学吸附,最终硫分离与金属表面反应,此反应一般在600℃以上发生。脂肪族长链基团在金属表面通过物理吸附而生成密实的保护层,起油性作用,硫在一定温度时与金属产生化学反应,起极压抗磨作用。

A、含氯添加剂如典型的T-301添加剂,是通过金属表面的化学吸附或金属表面反应,或分解的元素氯和HCL与金属表面反应,生成FeCL2或 FeCL3 的保护膜,显示出抗磨和极压作用。氯化铁膜有层状结构,临界剪切强度低,摩擦系数小,但是其耐热温度低,在300~400℃时破裂,遇水产生水解反应,生成盐酸和氢氧化铁,失去润滑作用,并引起化学磨损和锈蚀,因此含氯添加剂应在350℃以下和无水情况使用为佳。

RCLX+Fe → Fe CL2+RCLX-2

RCLX → RCLX-2+2HCL

Fe+2HCL → FeCLX-2+H2

有机氯化物在极压条件下,首先发生分解:C-CL键断裂,分解产物与金属表面形成金属氯化物薄膜。

B、含硫极压抗磨剂,普遍认为含硫极压抗磨剂的极压抗磨性能与硫化物的C-S键性能有关。较弱的C-S键的性能较容易生成防护膜,导致良好的抗磨效果,而硫化异烯烃T-321就是其中具有代表性的一种极压抗磨剂。因为硫化异丁烯的颜色浅,油溶性好,硫含量高(40-46%),多半是硫-硫键结合,极压抗磨性好,又具有中等化学活性,因而对铜腐蚀性小,故为主要剂品种之一。

有机硫化物的作用机理,首先是在金属表面上吸附,由于接触点的瞬间温度使油膜破裂,金属表面和有机硫化物迅速发生化学反应,生成有承载力的金属硫化物薄膜。

Fe|+R-S-S-R →Fe|< S-R

S-R

R-Sx+Fe|→Fe|…S+RSx-1

Fe|+ S-R →Fe|< S-R

C、含磷极压抗磨剂、磷化物首先在铁表面被吸附,然后在边界条件下发生C-O键断裂生成亚磷酸铁或磷酸铁有机膜,起抗磨作用。在极压条件下,有机磷酸铁膜进一步反应,生成无机磷酸铁反应膜,使金属之间不发生直接接触,从而保护了金属,起到极压作用。其含磷添加剂的极压性能大小顺序可按如下序列:

磷酸酯胺盐>磷酸酰胺≥亚磷酸酯≥酸性磷酸酯>磷酸酯>膦酸酯>次磷酸酯。磷系列极压抗磨剂的热稳定性越差,其抗磨性越好,但抗磨的持久性下降,添加剂消耗就快。一般来说,磷化物的热稳定性越差而抗磨性就越好。磷系极压抗磨剂中用的最广泛的是烷基亚磷酸酯,磷酸酯、酸性磷酸酯等。

有关有机磷化物的作用机理是在边界润滑条件下,有机磷化物与金属表面反应生成一种金属磷化-铁的低共融合金。

八防銹与抗腐蚀添加剂(Rust and Corrosion Inhibitors)

在润滑系统中会產生不同种类的腐蚀性物质,其中两种最重要的来源,一是来自於润滑油本身的有机酸如热与氧化的分解物,另一种则来自於油的污染物质。

几乎每种润滑油都会使用抗腐蚀添加剂,它的功能是在金属表面形成一层保护膜,以防止腐蚀物质与金属直接接触。在汽油或柴油引擎中有一些燃料油中的物质如硫份、抗爆剂,经过燃烧会產生强酸,这些强酸可附著在汽缸壁,或经由润滑油被带到引擎的其他部位。这些酸使活塞环与汽缸壁產生腐蚀性磨损,而曲轴、摇臂等其他部位也都可能產生腐蚀性磨损。油中如含有高硷性物质,将可以中和这些强酸。这些硷性物质也使用於清净剂。

使用防銹剂一般是一种高极性化合物可吸附在金属表面,经由物理或化学反应,防銹剂在金属表面上形成一层薄膜,防止金属与水直接接触。防銹剂在大部分的润滑油中均使用,

但使用时需避免一些问题;诸如对於非铁金属產生腐蚀性,或与水產生恼人的乳化物等,防銹剂因吸附在金属表面,所以随使用时间的延长会渐渐消耗掉。

石油磺酸钠是防锈添加剂中最基本的产品,其作用机理是通过吸附与增溶作用来实现的,它对金属表面通常进行不可逆的单分子吸附,并在油中形成胶束,增加了对水及有机酸等极性物质的溶解性,使得侵入油膜中的极性物质失去活动,具有防锈性能。

九消泡剂(Deformants)

润滑油在使用过程中,由于剧烈搅动或吸人空气,往往会使油中产生气泡;特别是加有清净剂和分散剂、极压抗磨剂、油性剂和摩擦改进剂以及防锈剂的汽油机油、柴油机油、齿轮油、液压油和汽轮机油等油品,由于这些添加剂是极性化合物,都具有表面活性作用,就更容易促使润滑油产生气泡。润滑油中存在气泡会影响使用效果,因而大多数润滑油中都加人了消泡剂。

消泡剂并不能防止润滑油在使用过程中产生气泡,其作用主要是降低气泡与润滑油之间的表面张力,使气泡失去稳定性并易于破裂,迅速地从油中逸出。

消泡剂大致可分两类:一类能消除已产生的气泡,如乙醇等;另一类则能抑制气泡的形成如乳化硅油等。目前消泡剂有乳化硅油、高碳醇脂肪酸酯复合物、聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚和聚氧丙烯氧化乙烯甘油醚等6种。

泡沫试验

定义:润滑油在空气中搅动时,微小之空气泡容易混入油中。当油料静止时,此气泡可迅速上升至液面而散失,但如油料之表面张力较低,气泡不易散失,则不断留下一层泡沫。此种泡沫之散失趋势,可用「泡沫试验」(Foam Test)测知,其单位:ml/ml。

数据说明:例结果為10-0

前一数字為吹入空气5分鐘后

累积之ml数

后一数字為停止吹入空气10鐘

后累积之ml数

十流动点降低剂(Pour Point Depressants)

流动点降低剂是一种高分子聚合体,其功用是在低温下抑制蜡的形成,以避免影响低温的流动性能。它并不能完全避免蜡的形成,但可降低形成的温度;流动点降低剂通常可使流动点降低20-30°F(11 -17°C),但视油的不同,也可以降低达50°F(28°C)。

十一乳化剂(Emulsifiers)

乳化剂通常是使用於水溶性的金属加工液内,它可降低界面张力,让水与油形成较稳定的乳化液。

乳化剂从来源上可分为天然物和人工合成品两大类。而按其在两相中所形成乳化体系性质又可分为水包油(O/W)型和油包水(W/O)型两类。

衡量乳化性能最常用的指标是亲水亲油平衡值(HLB值)。HLB值低表示乳化剂的亲油性强,易形成油包水(W/O)型体系;HLB值高则表示亲水性强,易形成水包油(O/W)型体系。因此HLB值有一定的加和性,利用这一特性,可制备出不同HLB值系列的乳液。

十二破乳化剂(Demulsifiers)

大部分的工业循环系统用油,如液压油、齿轮油、涡轮油、与压缩机油等,多需要良好或优良的解乳化的特性,以分离污染於油中的水。油中如果没有解乳化剂,水在油中会產生稳定的乳化液,基本上表面活性的物质都适合当解乳化剂。现今特殊的聚(乙烯乙二醇)及其他类的环氧物质已被证实非常有效,已成為常用的一种消泡剂。

十三稳定剂(Stability Agents)

又称结构改善剂,是一些极性较强但分子较小的化合物,如有机酸、甘油、醇、胺等。水也是一种常用的结构改善剂。结构改善剂的作用机理是:由于它含有极性基因,能吸附在皂分子极性端间,使皂纤维中的皂分子的排列距离就相应增大,使基础油膨化到皂纤维内的量增大。此外,皂纤维内外表面增大,皂油间的吸附也就增大。因此,在结构改善剂存在时,可使皂和基础油形成较稳定的胶体结构。

结构改善剂的类型随稠化剂和基础油而不同,如甘油是一些皂基润滑脂的结构改善剂。锂基润滑脂中常加微量环烷酸皂;钙基润滑脂中加少量水或醋酸钙;钡基润滑脂中加醋酸钡;膨润土润滑脂中加微量水;铝基润滑脂中加油酸等。

实践中发现,结构改善剂的用量过多或过少都对润滑脂的质量有不利影响。例如,结构改善剂过少,皂的聚结程度较大,膨化和吸附的油量较少,皂-油体系不安定;反之,改善剂过多,由于极性的影响,也会造成胶体结构的破坏,润滑脂的稠度也降低。所以,结构改善剂的用量要适当,一般结构改善剂的用量是试验来确定的。

十四增稠剂(Thickening Agents)

又称稠化剂,一般的分为:皂基:锂皂、钙皂、镁皂等。非皂基:1.有机润滑脂.2无机脂润滑脂。有机主要为聚脲润滑脂,当然还有其他的。无机主要为膨润土润滑脂也有其他。

其他类型添加剂介绍

(1)石墨、二硫化钼类固体悬浮型主要起减摩抗磨作用,但只能应用于固体润滑和低速大负荷设备,当发动机转数超过1000r/min时它们没有任何作用。另外,它在润滑油中的状态不稳定,在一定的时间及温度条件下会发生析出现象。其析出物会造成油路的堵塞,并加速油泥的形成。

(2)特氟龙树脂微粒型作为抗磨剂曾在美国应用广泛,但由于它在低温下会沉积在油道、油泵集滤器上造成堵塞,以及沉积在活塞环槽内使其失去活性,并加速油泥的形成,现在美国很少推荐使用。

(3)含铜、铅等重金属微粒的镀膜类能在摩擦表面形成一层金属膜,起抗磨及抗极压作用,但是必须使用滤芯孔径略大的机油滤清器,否则会被被过滤出来,堵塞机油泵及油路。再有,长时间使用它会在活塞及缸体表面形成膜状物,造成两者粘结,易出现粘环等现象。

(4)磁性油精类是一种表面金属磁化剂,主要起减摩、抗磨作用。该类产品有效作用时间太短,需不断添加,费用较高,而且会干扰汽车上的电子元件的正常工作。

(5)含氯型“氯”是一种良好的极压剂,但不适合发动机高温高速的工作环境,而且会在适宜条件下产生酸,对发动机中的金属产生潜在危险。此外,氯添加剂可能会与润滑油中已有添加剂发生匹配问题,引起其他副作用。

(6)无铅、无氟、无氯的化学成膜剂类能同时表现出抗极压性、抗氧化性及一定抗磨性。由于它在金属表面形成的化学反应膜作用持久,因而能有效延长润滑油和金属机件寿命。

世界添加剂公司简介

20世纪90年代,世界主要的润滑油添加剂生产厂家主要有:Lubrizol、Paramins(Exxon)、Oronite(Chevron)、Amoco、Mobil和SheH等公司,这些公司在全球提供了近90%的产品。

随着添加剂技术的提高,润滑油的使用寿命逐渐延长,对添加剂产品的需求增长缓慢,而全世界添加剂行业生产能力过剩。为加强竞争,通过兼并和合并,目前已形成了四大添加剂公司,即Lubrizol(路博润)、Infineum、Ethyl、Chevron Oronite。

根据IrfanMunir&CO.(IMC;Wyomissing,PA)的统计,这四家公司对整个北美市场的控制达到86%。

中小型规模的公司,如Rohmax、Ciba、Crompton、R.T.Vanderbih只占北美市场的14%。这些添加剂公司,虽然产量不大,但他们以独具特色的产品在市场中也占据了一定的份额,如Rohmax公司几乎在聚甲基丙烯酸酯型粘度指数改进剂和降凝剂系列产品方面占有绝大部分市场份额。Vanderbih公司的极压剂、摩擦改进剂、防锈剂和抗氧剂及Ciba 公司的抗氧剂、金属减活剂和防锈剂等在润滑油添加剂领域中也占有一席之地。

润滑油添加剂项目规划设计方案 (1)

润滑油添加剂项目规划设计方案 投资分析/实施方案

润滑油添加剂项目规划设计方案 成品润滑油对机械和工业设备的运作不可或缺,润滑油添加剂是一种或多种化合物,加入润滑油后,改善其中已有的一些特性或使润滑油得到某种新的特性,能够提高润滑油在机械系统中的效率并增强其性能,或延长润滑剂的使用寿命和提高稳定性。简而言之,润滑油添加剂服务于润滑油市场,其能为润滑油的性能创造高附加值。润滑油添加剂产品主要应用于汽车发动机润滑油(包括天然气发动机)、铁路机车发动机油、船舶发动机油、工业润滑油、润滑脂、乳化炸药等市场。 该润滑油添加剂项目计划总投资3783.26万元,其中:固定资产投资2694.43万元,占项目总投资的71.22%;流动资金1088.83万元,占项目总投资的28.78%。 达产年营业收入9464.00万元,总成本费用7433.27万元,税金及附加71.20万元,利润总额2030.73万元,利税总额2382.03万元,税后净利润1523.05万元,达产年纳税总额858.98万元;达产年投资利润率53.68%,投资利税率62.96%,投资回报率40.26%,全部投资回收期3.98年,提供就业职位190个。 项目建设要符合国家“综合利用”的原则。项目承办单位要充分利用国家对项目产品生产提供的各种有利条件,综合利用企业技术资源,充分

发挥当地社会经济发展优势、人力资源优势,区位发展优势以及配套辅助设施等有利条件,尽量降低项目建设成本,达到节省投资、缩短工期的目的。 ......

润滑油添加剂项目规划设计方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

中国润滑油添加剂行业市场分析报告

中国润滑油添加剂行业市场分析报告 2020年9月

1 方法论 1.1 研究方法 XX研究院布局中国市场,深入研究 10 大行业,54 个垂直行业的市场变化,已经积累 了近 50 万行业研究样本,完成近 10,000 多个独立的研究咨询项目。 ?研究院依托中国活跃的经济环境,从石油化工、汽车制造、高端装备制造等领域着手,研究内容覆盖整个行业的发展周期,伴随着行业中企业的创立,发展,扩张, 到企业走向上市及上市后的成熟期,研究院的各行业研究员探索和评估行业中多变 的产业模式,企业的商业模式和运营模式,以专业的视野解读行业的沿革。 ?研究院融合传统与新型的研究方法,采用自主研发的算法,结合行业交叉的大数据,以多元化的调研方法,挖掘定量数据背后的逻辑,分析定性内容背后的观点,客观 和真实地阐述行业的现状,前瞻性地预测行业未来的发展趋势,在研究院的每一份 研究报告中,完整地呈现行业的过去,现在和未来。

1.2 名词解释 ????ZDDP:Zinc Dialkyl Dithiophos Phate,即二烷基二硫代磷酸锌,一种性能优良的抗氧抗腐剂。 乳化炸药:新型防水工业炸药,具有爆炸威力大、抗水性能好、施工效率高、有毒气体含量少、贮存、运输使用安全等特点。 环烷酸铝:由环烷酸钠皂水溶液与硫酸铝水溶液反应制得的产物,黄色半固体粘稠物,不溶于水,用于配置润滑剂。 硬质合金:利用难熔金属的硬质化合物和粘结金属,通过粉末冶金工艺制成的一种合金材料。 ??内燃机:将燃料在机器内部燃烧放出的热能直接转换为动力的热力发动机。 “国六”污染物排放标准:中国第六阶段机动车污染物排放标准,由中国环境保护部和国家质检总局联合发布,将于 2019 年 7 月 1 日正式实施。 聚异丁烯:由异丁烯聚合而成,具有优异的气密性、溶解性和耐化学品性。 烯烃:含有碳-碳双键的碳氢化合物,有机合成中的重要基础原料。 重烷基苯:生产十二烷基苯过程中的副产物,具有低温流动性好、凝固点低、抗磨性能好的特点,可用于制成多种润滑油。 ? ? ? ?醇类:分子中含有跟烃基或苯环侧链上的碳结合的羟基的化合物,重要的醇有:甲醇、乙醇、苯甲醇、乙二醇等。 ??溶剂精制:用萃取的方法除去原料(或半成品)中所含杂质和非理想组分的工艺过程。溶剂脱蜡:将润滑油原料通过溶剂稀释和冷冻,使其中的蜡结晶析出,从而降低润滑油凝固点的工艺过程。 ?白土补充精制:在一定温度下利用活性白土处理油料,降低油品的残炭值及酸值(或酸

润滑油添加剂基本知识

润滑油解码 一、汽车润滑油添加剂 添加剂主要分类 1、清净分散剂如T154、T15 2、T106、T104、T105、T122等; 清净分散剂主要作用起到清净分散作用。磺酸盐目前是使用比较广泛的清净剂,磺酸盐能够对油中的烟炲起到很好的分散作用。特别是高碱值磺酸盐高温清净性好,酸中和性能好。磺酸盐的主要缺陷是抗氧化性能较差,在严苛条件下酸中和速度比烷基酚盐较差。硫化烷基酚盐高温清净性好,能够有效抑制柴油机油积碳。与磺酸盐分配后可以互补缺点。分散剂提供的油溶性基团比清净剂大,能有效抑制积碳和胶状物互相聚集。分散剂在润滑油中又起到表面活性剂的作用,将一些油溶或不油溶的固体和液体溶解到润滑油当中,起到增溶作用。 2、抗氧抗腐剂如T202、T203等; 抗氧抗腐剂的主要主要品种是二烷基二硫代磷酸锌,能够抑制发动机油漆膜、油泥的产生,抑制油品粘度增长。但是发动机油中磷含量主要来自于抗氧抗腐剂,磷元素能使汽车尾气转化器中三元催化剂中毒。因此在高档发动机油限制了磷含量。实现低磷化对策就意味着减少ZDDP的用量,会对油品抗氧和抗磨性能产生大的影响。目前科技人员正着手开发研制低磷或无灰添加剂,以取代或部分取代ZDDP。 3、挤压抗磨剂如T321等; 挤压抗磨剂一般为含有硫、磷、氯等活性元素的有机化合物。当滑动的两个表面压力增大,便面膜变薄,两个表面凸起处相互接触,

产生局部高温高压,此时极压剂的活性元素与金属发生反应,生成剪切强度较低的的固体保护膜。 4、摩擦改进剂,如T406等; 摩擦改进剂吸附膜大多数为物理吸附膜,物理吸附膜是可逆的,温度升高后吸附膜将会消失,因此摩擦改进剂只有在温度较低,负荷较小的情况下有效。摩擦改进剂用于汽车自动传动液中,可改善油品摩擦系数,改善换挡舒适性。发动机油和齿轮油中使用摩擦改进剂具有降低边界润滑的摩擦系数的作用,提高燃料经济性。 5、抗氧剂,如T512、T534等; 抗氧剂能有效防止油品氧化,能延长其使用和储存寿命。酚类和胺类抗氧剂能捕捉自由基,是氧化反应自由基终止剂,而ZDDP主要是氧化反应产生的过氧化物的分解剂。 6、粘度指数改进剂,如T602、T603等; 粘指剂是一种油溶性高分子聚合物,加入粘度较低的基础油中能显著提高油品粘度和改善黏温性能,适应宽温度范围对油品粘度的要求。 7、防锈剂如T701等; 防锈剂主要作用机理与其分子中极性一段吸附于金属表面,烃基一段伸向油层,形成分子定向排列的致密分子膜,以阻止水分与氧渗入金属表面产生锈蚀。 8、降凝剂如T803等。 降凝剂虽然不能改变油品析出石蜡的数量,但能够吸附在蜡表面或共

常用润滑油添加剂的代号与名称对照

常用润滑油添加剂的代号与名称对照

常用润滑油添加剂的代号与名称对照: 101 清净剂低碱值石油磺酸钙 T101 T102 102 清净剂中碱值石油磺酸钙 T103 103 清净剂高碱值石油磺酸钙 T104 104 清净剂低碱值合成磺酸钙 T105 105 清净剂中碱值合成磺酸钙 T106 106 清净剂高碱值合成磺酸钙 T106A 106A 清净剂高碱值合成磺钙 T107 107 清净剂超碱值合成磺酸镁 T108 108 清净剂硫磷化聚异丁烯钡盐 T108A 108A 清净剂硫磷化聚异丁烯钡盐 T109 109 清净剂烷基水杨酸钙 T111 111 清净剂环烷酸镁 T114 114 清净剂高三值环烷酸钙 T121 121 清净剂中碱值硫化烷基酚钙 T122 122 清净剂高三值硫化烷基酚钙 T151 151 分散剂单烯基丁二酰亚胺 T152 152 分散剂双烯基丁二酰亚胺 T153 153 分散剂多烯基丁二酰亚胺 T154 154 分散剂聚异丁烯丁二酰亚胺(高氮)T155 155 分散剂聚异丁烯丁二酰亚胺(低氮)T201 201 抗氧抗腐剂硫磷烷基酚锌盐 T202 202 抗氧抗腐剂硫磷丁辛基锌盐 T203 203 抗氧抗腐剂硫磷双辛基碱性锌盐 T203A 203A 抗氧抗腐剂硫磷双辛基碱性锌盐 T204 204 抗氧抗腐剂硫磷二烷基锌盐 T205 205 抗氧抗腐剂硫磷二烷基锌盐 T301 301 极压抗磨剂氯化石蜡 T304 304 极压抗磨剂酸性亚磷酸二丁酯 T305 305 极压抗磨剂硫磷酸含氮衍生物 T306 306 极压抗磨剂磷酸三甲酚酯 T307 307 极压抗磨剂硫代磷酸胺盐 T308 308 极压抗磨剂异辛基酸性磷酸酯十八胺盐T309 309 极压抗磨剂硫代磷酸三茜酸 T321 321 极压抗磨剂硫化异丁烯 T322 322 极压抗磨剂二苄基二硫化物

润滑油基础知识及分类精选文档

润滑油基础知识及分类 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

润滑油的组成? 润滑油是基础油和添加剂两部分组成的。因为单靠基础油并不能满足发动机油诸多的性能要求,基础油是从石油中提炼的精选成份,具有最基本的粘度特征,而添加剂是化学物质,用以改善和提高机油的品质。 (1)润滑油基础油 润滑油基础油主要分矿物基础油及合成基础油两大类。矿物基础油应用广泛,用量很大(约95%以上),但有些应用场合则必须使用合成基础油调配的产品,因而使合成基础油得到迅速发展。? 所谓矿物油,即是直接从石油精炼的用于制作润滑油的物质。而合成油是利用原油或煤炭中较轻的乙烷、丙烷等裂解成乙烯,再经复杂的化学变化将它们重组而成的物质,物理化学性能稳定,不含杂质,比矿物油具有许多天然的优点。 (2)添加剂 添加剂是根据润滑油要求的质量和性能,可改善其物理化学性质,对润滑油赋予新的特殊性能,或加强其原来具有的某种性能,满足更高的要求。对添加剂精心选择,仔细平衡,进行合理调配,是保证润滑油质量的关键。事实上,优质润滑油表现的是一种综合性能。 一般来说,发动机油需具备和满足以下这些要求才能保证发动机的正常工作;适当的粘度;良好的低温流动性能;抗氧化性;热稳定性;清净分散性能;抗磨损性能,防腐蚀、抗锈蚀性能。 2、基础油的加工工艺 经过减压蒸馏后: 传统工艺:常减压蒸馏、溶剂脱沥青、溶剂精制、溶剂脱腊、白土或加氢补充精制。 现代工艺:加氢精制、加氢脱蜡(降凝)、加氢裂化、加氢异构化 3、基础油的分类 (1)中国基础油分类标准 通用基础油: UHVI(VI>140)、VHVI(VI>120)、HVI(VI>80)、 MV(VI:40-80)、 LVI(VI〈40〉

国内外润滑油添加剂现状及发展趋势

国内外润滑油添加剂现状及发展趋势 1 国外发展现状 国外在二十世纪30年代以前,在润滑油中很少使用添加剂。二十世纪50年代润滑油添加剂在国外有了较大的发展,在内燃机油与工业动力设备中得到了应用。内燃机油在润滑油中的比例大,使用添加剂的数量大,品种也多。因此,长期以来国外润滑油添加剂的发展,一直是以提高内燃机油的性能为主。 二十世纪50年代后期,在内燃机油中主要是金属清净剂与抗氧抗腐剂复合使用。清净剂主要是磺酸盐、烷基酚盐、烷基水杨酸盐与硫代磷酸盐。抗氧抗腐剂则是二烷基二硫代磷酸锌盐(ZDDP)。这些基本上适应了当时内燃机工作条件要求,但用这些添加剂调和出来的内燃机油,其性能并不理想,而且加入量高。随着汽车数量的不断增加,城市中的车辆停停开开比较频繁,特别在汽油机使用过程中,低温油泥的产生影响着发动机的正常运转。汽油机曲轴箱中的低温油泥,是在使用中生成的氧化产物,在较低的温度下乳化、缩合而成。油中所含金属清净剂,在这种条件下,分散性能较差,遇水时乳化,对低温油泥的分散功效甚小。 二十世纪60年代初,国外开发与应用丁二酰亚胺无灰分散剂,它具有优异的低温分散性能,在低温油泥分散方面效果显著,还与清净剂具有协同的效应。二者复合使用后,明显地提高了油品的性能并降低了添加剂总用量,是润滑油添加剂领域技术上的大突破。60年代

后期,国外内燃机用的主要的添加剂类型已基本定型,即金属清净剂、无灰分散剂及ZDDP。 二十世纪70年代一方面对上述各类添加剂调整化学结构,进行品种系列化,使单剂性能更具特色。同时进一步研究这些添加剂的复合效应,以期达到在符合经济的原则下,使复合添加剂具有更好的综合性能。 二十世纪80年代则主要研究开发了上述添加剂之间的复合效应,推广应用复合添加剂,出现了铜盐抗氧剂-烷基二苯胺抗氧剂用于内燃机油复合剂。 二十世纪90年代出现高分子量屏蔽酚抗氧剂,新型无灰分散剂(以茂金属催化剂制备聚异丁烯或乙烯丙烯共聚物,然后用于制备丁二酰亚胺型无灰分散剂)则大力推广复合添加剂。目前正在研制非磷无灰抗氧剂用于GF-3的复合剂,以适应低磷化倾向;研制有效烟炱的无灰分散剂;研制含氮无灰分散剂,并研究与弹性密封件的配伍性。近年来随着环保要求的提高以及电脑控制发动机的广泛应用,对润滑油的要求越来越高,润滑油产品的级别也日趋高档,添加剂的品种和需求量也逐渐增加。 到目前为止,润滑油添加剂在品种上主要有清净剂、分散剂、抗氧抗腐剂、极压抗磨剂、油性剂和摩擦改进剂、抗氧剂和金属减活剂、粘度指数改进剂、防锈剂、降凝剂、抗泡沫剂。 润滑油的发展要受到变化的环境法规要求、性能要求和连续的技术投资、变化的地区要求以及工业合理化等因素的影响。在这些因素

浅谈润滑油添加剂———复合剂

浅谈润滑油添加剂———复合剂 学号:2010232253 姓名:张海刚 一、润滑油复合剂基础知识 1.复合剂的定义 润滑油是由基础油和添加剂两部分组成,基础油是润滑油的主要成分,决定着润滑油的基本性质,添加剂则可弥补和改善基础油性能方面的不足。添加剂在润滑油中的所占比例较小,最大一般不超过30%,部分工业用油中小于1%。而润滑油复合剂是具有能赋予基础油本身没有的性质/性能,如抗泡、破乳化等性能;能改进基础油原有的性质/性能,如抗磨、防锈等性能。 2.添加剂的分类 添加剂大致分为三类1、保护润滑表面:清净剂、分散剂、极压抗磨剂、摩擦改进剂、防锈防腐剂。 2、改善润滑剂物理性质:粘度指数改进剂、降凝剂。 3、保护润滑剂本身:抗氧剂、抗泡剂。 国内润滑油复合剂分组——单剂国内润滑油复合剂分组——复合剂根据SH/T 0389-92《石油复合剂的分类》 清净分散剂——T1XX清净剂:具有高碱性,可以持续中和润滑油氧化生成的酸性物质,同时 对漆膜和积炭具有洗涤作用。常用清净剂类型:磺酸钙:如T106 硫化烷基酚钙:如T115B水杨 酸钙:如T109。分散剂:其油溶性基团比清净剂大,能有效地屏蔽积炭和胶状物相互聚集,使其 以小粒子形式分散在油中,防止堵塞滤网。最常用分散剂为聚异丁烯丁二酰亚胺:单挂丁二酰亚胺, T151双挂丁二酰亚胺,T154高分子量丁二酰亚胺,T161

抗氧抗腐剂——T2XX最常用为二烷基二硫代磷酸锌(ZDDP),如T202、T203,是一种多效添加剂,具有抗氧、抗磨、抗腐作用。由于ZDDP含磷元素,对汽车尾气转化器中三元催化剂具有中毒作用,发动机油中ZDDP的用量现受到较大限制。 极压抗磨剂——T3XX极压抗磨剂在金属表面承受负荷的条件下,防止金属表面的磨损、擦伤甚至烧结。极压抗磨剂一般具有高活性基团,在局部的高温高压下,能与金属表面反应形成保护膜。常用极压抗磨剂类型:含氯极压抗磨剂,如氯化石蜡T301;含硫极压抗磨剂:如硫化烯烃T321;含磷极压抗磨剂:如磷酸酯T306 。 油性剂和摩擦改进剂——T4XX通常含有极性基团,通过极性基团吸附在金属表面上形成吸附膜,阻止金属相互间的接触,从而减少摩擦和磨损。早期多采用动植物油脂,故称油性剂,其它某些化合物也有同样性质,目前把能降低摩擦面的摩擦系数的物质称为摩擦改进剂。常用摩擦改进剂类型:油脂型,如硫化棉籽油T404有机磷型:如膦酸酯T451;有机钼型:如二烷基;二硫代磷酸氧钼T462 。 抗氧剂和金属减活剂——T5XX抗氧剂可以阻止或减缓润滑油的氧化变质,提高其使用寿命。常用抗氧剂类型:酚型:如T501、T512;胺型:如T534。金属表面对润滑油的氧化会起到催化作用,通过金属减活剂与金属表面作用,屏蔽其催化作用,同样能起到抗氧化功效。常用金属减活剂类型: 苯三唑衍生物:如T551;噻二唑衍生物:如T561。 黏度指数改进剂——T6XX 主要为了改善润滑油的黏温性能,提高其黏度指数。评价粘指剂的主要指标:剪切稳定性和稠化能力。常用粘指剂类型:聚甲基丙烯酸酯(PMA):如T602;乙丙共聚物(OCP):如T614;聚异丁烯(PIB):如锦州精联JINEX6130;氢化苯乙烯异戊二烯共聚物(HSD):如锦州精联JINEX9900。 防锈剂——T7XX 防锈剂分子结构的特点:一端是极性很强的基团,具有亲水性质,另一端是非极性的烷基,具有亲油性质,其极性基团吸附在金属表面,形成保护层,阻止腐蚀介质与金属表面接触起到防锈作用。常用防锈剂类型:磺酸盐型:如T701、T705;羧酸型:如T746;有机胺和咪唑啉型:如T703。 降凝剂——T8XX 润滑油的容易凝固是含有石蜡,降低凝固点的方法:深度脱蜡或添加降凝剂。 降凝剂的作用机理是与石蜡形成共结晶,改变石蜡晶体的大小和外形,不易形成网状结构,起到降低凝固点的作用。常用降凝剂类型:烷基萘型:如T801;聚甲基丙烯酸酯型:如T814;聚α-烯烃:如T803。 抗泡剂——T9XX 抗泡剂一般以微小粒子形式分散在润滑油中,与气泡表面作用降低气泡的稳定性,达到抗泡或消泡作用。抗泡剂的加剂量一般很低,少则几个pap,最大不超过0.1%。常用抗泡剂类型:硅油型:如T901;非硅型:如T912;复合抗泡剂:如T921。 破乳剂——T10XX 油品乳化会降低其润滑性、促进油品氧化,并加速金属部件的锈蚀。破乳化性能是与水接触的一些工业用油如工业齿轮油、液压油和汽轮机油等很重要的性能之一。破乳剂也是一种表面活性剂,常用的破乳剂有T1001(胺与环氧乙烷缩合物)。 3.复合添加剂 国内调油所需复合剂大部分依赖进口,特别是高档产品。 国内主要能生产一些中低档的内燃机油、齿轮油及抗磨液压油复合剂。 汽油机油复合剂:如T3002(SJ级)、T3001(SE/SF) 柴油机油复合剂:如T3151(CF-4级)、T3141(CD级) 齿轮油复合剂:如T4204

润滑油添加剂介绍

润滑油添加剂介绍 润滑油添加剂为加入润滑剂中的一种或几种化合物,以使润滑剂得到某种新的特性或改善润滑剂中已有的一些特性。 添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂等类型。市场中所销售的添加剂一般都是以上各单一添加剂的复合品,所不同的就是单一添加剂的成分不同以及复合添加剂内部几种单一添加剂的比例不同而已。 润滑油的添加剂具体分类 (1)清净分散剂:金属表面的沉积物对于润滑和散热都不利,清净分散剂的目的就是为了减少老化产物在金属表面的沉积,将沉积物从金属表面清洗下来使之悬浮在油中,并在通过过滤器时将其滤掉。此外它还具有中和作用,以降低氧化产生的酸对金属的腐蚀作用。 (2)抗氧抗腐剂:润滑油在使用中由于催化剂、高温和热的作用会发生氧化,抗氧剂的目的就是要抑制和减缓这种氧化的倾向,提高油品氧化安全性。主要的抗氧化剂有胺型、酚型和金属型等。根据油品使用温度的不同和应用场合的不同,应选择不同类型的抗氧化剂。 (3)抗磨剂:在摩擦面的高温部分能与金属反应生成融点低的物质,节省油耗和振动噪音。

(4)油性剂:都是带有极性分子的活性物质,能在金属表面形成牢固的吸附膜,在边界润滑的条件下,可以防止金属摩擦面的直接接触。 (5)增粘剂(粘度指数改进剂):又称增稠剂,主要是聚合型有极高分子化合物,增粘剂不仅可以增加油品的粘度,并可改善油品的粘温性能。有较好的抗剪切性能和热氧化安定性能 (6)防锈剂:是一些极性化合物,对金属有很强的吸附力,能在金属和油的界面上形成紧密的吸附膜以隔绝水分、潮气和酸性物质的侵蚀;防锈剂还能阻止氧化、防止酸性氧化物的生成,从而起到防锈的作用。 (7)抗泡剂:使气泡能迅速地溢出油面,失去稳定性并易于破裂,从而缩短了气泡存在的时间。 (8)极压剂:大部分都是硫化物、氯化物、磷化物,在高温下能与金属反应生成润滑性的物质,在苛刻条件下提供润滑。 (9)降凝剂:用以改变润滑剂中蜡晶体的形状,从而提高油品在低温下的流动性。 润滑油的清净分散性添加剂对润滑油重要意义 其一是指润滑油能将其氧化后生成的胶状物、积炭等不溶物或悬浮在油中,形成稳定的胶体状态而不易沉积在部件上; 其二是指将已沉积在发动机部件上的胶状物、积炭等,通过润滑油洗涤作用于洗涤下来。清净分散剂是一种具有表面活性的物质,

常用润滑油添加剂的代号与名称对照

常用润滑油添加剂的代号与名称对照: T101 101 清净剂低碱值石油磺酸钙 T102 102 清净剂中碱值石油磺酸钙 T103 103 清净剂高碱值石油磺酸钙 T104 104 清净剂低碱值合成磺酸钙 T105 105 清净剂中碱值合成磺酸钙 T106 106 清净剂高碱值合成磺酸钙 T106A 106A 清净剂高碱值合成磺钙 T107 107 清净剂超碱值合成磺酸镁 T108 108 清净剂硫磷化聚异丁烯钡盐 T108A 108A 清净剂硫磷化聚异丁烯钡盐 T109 109 清净剂烷基水杨酸钙 T111 111 清净剂环烷酸镁 T114 114 清净剂高三值环烷酸钙 T121 121 清净剂中碱值硫化烷基酚钙 T122 122 清净剂高三值硫化烷基酚钙 T151 151 分散剂单烯基丁二酰亚胺 T152 152 分散剂双烯基丁二酰亚胺 T153 153 分散剂多烯基丁二酰亚胺 T154 154 分散剂聚异丁烯丁二酰亚胺(高氮)T155 155 分散剂聚异丁烯丁二酰亚胺(低氮)T201 201 抗氧抗腐剂硫磷烷基酚锌盐 T202 202 抗氧抗腐剂硫磷丁辛基锌盐 T203 203 抗氧抗腐剂硫磷双辛基碱性锌盐 T203A 203A 抗氧抗腐剂硫磷双辛基碱性锌盐 T204 204 抗氧抗腐剂硫磷二烷基锌盐 T205 205 抗氧抗腐剂硫磷二烷基锌盐 T301 301 极压抗磨剂氯化石蜡 T304 304 极压抗磨剂酸性亚磷酸二丁酯 T305 305 极压抗磨剂硫磷酸含氮衍生物 T306 306 极压抗磨剂磷酸三甲酚酯 T307 307 极压抗磨剂硫代磷酸胺盐 T308 308 极压抗磨剂异辛基酸性磷酸酯十八胺盐T309 309 极压抗磨剂硫代磷酸三茜酸 T321 321 极压抗磨剂硫化异丁烯 T322 322 极压抗磨剂二苄基二硫化物 T323 323 极压抗磨剂氨基硫代酯 T341 341 极压抗磨剂环烷酸铅

润滑油添加剂简述

前言 润滑基础油不管是矿物油或合成油,如不利用现今添加剂技术,仍无法满足高性能润滑油的要求。 添加剂是化学复合物质,可以改善很多润滑油的性能,他们可以加强已有的性能,抑制不想要的性能,產生变化的发生速率,同时可以加入基础油新的有用的性能。添加剂最初在1920年代开始使用后,它的使用即迅速的增加,现今每一种润滑油几乎都含至少一种添加剂在内,有些含多种不同种类的添加剂,其含量可由几百分之一的%至30%。 添加剂虽然对油的性能表现有所助益,但如用量过多或添加剂间会彼此反应,也是有害的。所以均衡的添加剂配方并经测试,确认无不良的副作用是很重要的,一旦达成有效的均衡配方后,使用者额外添加外来补充品通常是不需要的。 添加剂可以按下列的功能分成两大类: 1/ 影响基础油的物理与化学性能:物理性能如黏温特性、解乳化性、低温特性等。化学性能如氧化稳定性。 2/ 影响与金属表面的物理化学性:如减少磨擦、增加极压表现、防磨损与抗腐蚀等。 添加剂虽然对於润滑油有很大的影响,但有些性能是不受影响的,如挥发性、热稳定性、热传导性、消泡性、被压缩性、与沸点等,优良品质的基础油加上均衡与极佳化的添加剂组合,才能调配出高性能的润滑油。也因此,现今有使用氢裂解与高度氢处理的高精炼基础油,及酯类与PAO的合成基础油越来越多。

润滑油添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂金属钝化剂,乳化剂,防腐蚀剂,防锈剂,破乳化剂等类型。 一黏度指数增进剂(VI Improver) 视原油的来源与传统炼製的基础油,其VI在80与120 之间,传统油大都在100左右,黏度指数增进剂的使用可以增加润滑油的黏度指数。黏度指数增进剂是一种油溶胀的长键、链状高分子的聚合体,它的功用是在高温下令油保持适度的黏度,这是由於在高温下聚合体的物理型态改变的结果。 在烃类基础油中,在高温时聚合体则伸展成长线型,粘度指数改进剂的分子溶胀,流体力学的体积和表面积增大,溶液内摩擦增加,从而导致溶液的粘度增加,弥补了油在高温时降低的黏度。而在低温时聚合体的结构是卷曲的,对溶液内摩擦影响不大,因而对油的粘度影响亦不大。正是由于粘度指数改进剂在不同温度下呈不同状态影响着润滑油的粘度,所以它能起到改善润滑油粘温性能的作用。 黏度指数增进剂的长键高分子会受机械剪力而受到影响,在中度的剪力作用下会使聚合体暂时分离,致使黏度暂时降低;当这剪力移除后聚合体恢复原型,而黏度也恢复。如高分子受机械剪力破坏后,则即使剪力移除后,聚合体也无法复元,而降低的黏度也无法恢复。 黏度指数增进剂用於汽车引擎机油、自动排档油、多功能拖曳油、车用齿轮油、及液压油,使得润滑油使用的温度范围比单纯的矿物油更為宽广。 二抗氧化剂(Oxidation Inhibitors) 当油温度在有氧存在的情况下升高时,氧化就会发生,氧化的结果是黏度与有机酸的浓度会增加。 油氧化的速率受几个因素影响,当油温增加时,氧化速率成指数倍增。一般常理是矿物油温每增加18°F(10 °C),油氧化的速率增加一倍;如让油大量暴露於空气或将空气搅入油中,油氧化的速率也会增加。有些金属,特别是铜与铁,及有机酸与矿物酸类,都具有催化与促进油氧化的作用。油氧化一般是油中的自由基与氧结合,所以如能阻止这种反应,即可达到抑制氧化的效果。 向油中加入抗氧抗腐剂后,能在金属表面生成保护膜,起到以下三种作用:一是防止金属的氧化催化作用,延缓润滑油的氧化速度;二是隔绝了酸性氧化产物与金属的直接接

工业润滑油添加剂

润滑油添加剂 润滑油添加剂概念是加入润滑剂中的一种或几种化合物,以使润滑剂得到某种新的特性或改善润滑剂中已有的一些特性。添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、流点改善剂、粘度指数增进剂等类型。市场中所销售的添加剂一般都是以上各单一添加剂的复合品,所不同的就是单一添加剂的成分不同以及复合添加剂内部几种单一添加剂的比例不同而已。 润滑油的添加剂具体分类 我国的润滑油添加剂,根据行业标准SHO389--92石油添加剂的分类,按作用分为清净分散剂、抗氧化腐剂、金属钝化剂、极压抗磨剂、油性剂和摩擦改进剂、粘度指数改进剂、防锈剂、降凝剂、抗泡沫剂等。 1、净分散剂 清净分散剂包括清净剂和分散剂两类。主要用于内燃机油(汽油机油、柴油机油、铁路内燃机车用油、二冲程汽油机油和船用发动机油)。其主要作用是使发动机内部保持清洁,使生成不溶性物质呈胶体悬浮状态,不致进一步形成积炭、漆膜或油泥。具体说来,其作用可分为酸中和、增溶、分散和洗涤等四个方面。 2、氧抗腐剂 抗氧抗腐剂可以抑制油品氧化,主要用于工业润滑油、内燃机油和工艺用油等。 3、金属钝化剂 金属钝化剂夜市一种抗氧剂,它本身并无抗氧化作用,而是间接地"钝化"金属活性,抑制金属及其化合物对油品氧化其催化作用,减少油品的败坏,延长油品的使用寿命。 4、积压抗磨剂 积压抗磨剂是指在高温、高压的边界润滑状态下,能和金属表面形成高熔点化学反应膜,以防止发生溶结、咬粘、刮伤的添加剂。它的作用是其分解产物在摩擦高温下与金属起反应,

生成剪切应力和熔点都比纯金属低的化合物,从而防止接触表面咬合和焊溶,有效的保护金属表面。极压抗膜剂主要用于工业齿轮油、液压油、导轨油、切削油等有极压要求的油中,以提高油品的极压抗磨性能。 5、油性剂和摩擦改进剂 凡是能使润滑油增加油膜强度,减少摩擦系数,提高抗磨损能力,降低运动部件之间的摩擦和磨损的添加剂都叫油性剂。 6、粘度指数改进剂 粘度指数改进剂都是油溶性的链状的高分子聚合物,其相对分子质量有几万到几百万。当其溶解在润滑油中时,在低温时它们以丝卷状存在,对润滑油的粘度影响不大,随着润滑油温度升高,丝卷伸张,有效容积增大,对润滑油流动阻力增大,导致润滑油的粘度相对显著增大。基于不同温度下粘度指数改进剂具有不同形态并对粘度产生不同影响,可以增加粘度和改进粘温性能,故粘度指数改进剂主要用于提高润滑油的粘度指数,改进粘温性能,增大粘度。可用来配制稠化剂油,使配制的油品具有优良的粘温性能,使其低温起动性好,油耗低和具有一定的抗磨作用。 7、防锈剂 防腐剂的作用实在金属表面形成牢固的吸附膜,以抑制氧及水,特别是谁对金属表面的接触,使金属不致锈蚀。 防锈剂主要用于工业润滑油和金属加工冷却润滑液、金属防护油等。 8、降凝剂 油品温度下降到一定程度后,就要失去流动性而凝固,降凝剂的作用主要是降低油品的凝固点,并保证油品在低温下能够流动。 降凝剂广泛应用于各类润滑油中,典型代表是烷基萘、聚α-烯烃。 9、抗泡沫剂 液压油、压缩机油等油品可能遇到开机、停机频繁的工作条件,内燃机油、齿轮箱油等循环系统的搅拌又比较激烈,常常会产生大量泡沫,造成能量传递和供油故障。抗泡方法很多,可分为物理-机械抗泡和化学抗泡。实际上,大多数是添加剂炮剂作为抗泡剂的物质应具备: ①抗泡剂不能溶于润滑油中; ②抗泡剂能均匀地分散在润滑油中; ③抗泡剂表面张力比润滑油要小。

润滑油添加剂调研报告

润滑油添加剂(T104、T105、T106、T107)调研报告 一、理化性能及用途 (1)低碱值合成磺酸钙(T104) 棕红色液体。具有显著的清净能力和防锈性能。可调制中、高档内燃机油, 尤其适于调制低灰份内燃机油。油品中的添加量为0.6-2.5% 。 (2)中碱值合成磺酸钙(T105) 棕红色液体,闪点190℃,无毒,能与强氧化剂发生反应。具有较好的中和能力和优良的高温清净性,并具有防锈性,主要用于调制中高档内燃机润滑油,可以明显减少发动机部件上的高温沉积物,保持活塞清净,减少机件的酸性腐蚀和锈蚀,并能延长换油期。同无灰剂、抗氧抗腐剂有较好的复合效应。油品中的添加量为0.6-2.5% 。 (3)高碱值合成磺酸钙(T106) 棕红色液体,闪点190℃,无毒,能与强氧化剂发生反应。具有优异的中和性能和较好的高温清净性,并具有防锈性,主要用于调制高档内燃机润滑油,适用于使用燃料中含硫较高的发动机润滑油中,不但可以减少发动机燃烧室中漆膜和积炭的沉积,保持活塞清洁,还可以避免机件的酸性腐蚀,并能延长其换油期。 同无灰剂、抗氧抗腐剂有较好的复合效应。添加量一般为1.5-3.0%,可调制CB-CD 级,SC-SE级内燃机油。 (4)超碱值合成磺酸镁(T107) 具有特优的高温清净性和酸中和能力,同时兼有一定的防锈蚀作用。高碱性合成磺酸镁清净剂,因其碱中和能力强,灰分低,并有较好的防锈能力,因而主要用于高档汽油机油。 二、质量指标

目前各生产企业所遵循的质量标准如下: 表1 低碱值合成磺酸钙(T104)的质量指标 表2 中碱值合成磺酸钙(T105) 的质量指标 表3 高碱值合成磺酸钙(T106) 的质量指标

润滑油添加剂基础知识

润滑油添加剂Ⅰ 静态混合器加工方法 有关“润滑油添加剂”的基础知识 1、什么是抗泡剂? 内燃机油及工业用油在发动机等设备中使用时,往往要喷散成雾状,这样就使润滑油中混进一部分空气,而形成比较稳定的泡沫流入曲轴箱内和润滑油箱内,结果就会使发动机不能正常操作。加入抗泡剂便可破坏润滑油与空气所形成的泡沫,降低泡沫吸附膜的稳定性,缩短泡沫存在的时间,从而保证设备的正常运转。 常用抗泡剂有:甲基砖坯油、丙烯酸酯与醚共聚物等。 抗泡剂的统一符号 为:“T9XX”。 2、什么是降凝剂? 润滑油中一般均含有少量的石蜡,当油品温度下降到一定程度后,由于 石蜡结晶析出,油就要失去流动性面凝固。降凝剂的作用主要是降低油品的凝点。 降凝剂是一种化学合成的聚合物或缩合产品,其分子中一般含有极性基团和与石蜡烃结构相似的烷基链,通过在蜡结晶表面的吸附或与其共晶的作用,改变蜡结晶的形状和尺寸,防止蜡晶粒间粘结形成三维网状结构,从而保持油品在低温下的流动性。但是,如果润滑油中石蜡含量过多,大大超过了降凝剂所能起到的作用,那么即使加了降凝剂也起不到降凝作用。 我国降凝剂有:烷基萘、聚α-烯烃、聚丙烯酸酯等。 降凝剂的统一符号为:“T8XX”。 3、什么是防锈剂? 防锈剂能在金属表面形成牢固的吸附膜,以抑制氧及水、特别是水对金属表面的接触、使金属不致锈蚀。防锈剂的分子结构应对金属有充分的吸附性,并对油的溶解性也好。 常用的防锈剂有:烯基丁二酸、十七烯基咪唑烯基丁二酸盐、环烷酸锌、二壬基萘磺酸钡、苯骈三氮唑、石油磺酸钡等。 防锈剂的统一符号为:“T7XX”。 4、什么是抗氧剂和金属减活剂? 润滑油在使用过程中,在氧的存在下,受热、光、金属的催化作用,油品分子中结构最不牢的碳氢键受到破坏,发生自由基连锁反应,生成氧化物、过氧化物、水等。而后进一步聚合、缩合,形成胶质、油泥、漆膜等,使润滑油的使用性能变坏,使用寿命缩短。 抗氧剂的作用在于抑制油品的氧化、钝化金属的催化作用,减少油品的败坏,

润滑油添加剂

润滑油添加剂市场调研论文 (天津渤海职业技术学院300402 石油111 30号)【摘要】:随着机械工业的发展,对润滑油的要求越来越高,现代设备对润滑材料的耐高温、高压、高速、防腐蚀等要求越来越高,近年来润滑油技术的不断发展,特别是润滑油添加剂的应用,介绍了清净分散剂、黏度指数增进剂、抗氧化剂、增粘降凝剂、磨擦调整剂、抗磨损添加剂、极压添加剂、消泡剂等,从而大大改善了设备的润滑状态,确保设备高效、安全运行并且其中几种添加剂国际国外市场概况及发展。 【关键词】:润滑油添加剂应用发展趋势 添加剂是化学复合物质,可以改善很多润滑油的性能,他们可以加强已有的性能,抑制不想要的性能,產生变化的发生速率,同时可以加入基础油新的有用的性能。添加剂最初在1920年代开始使用后,它的使用即迅速的增加,现今每一种润滑油几乎都含至少一种添加剂在内,有些含多种不同种类的添加剂,其含量可由几百分之一的%至30%。添加剂虽然对油的性能表现有所助益,但如用量过多或添加剂间会彼此反应,也是有害的。所以均衡的添加剂配方并经测试,确认无不良的副作用是很重要的,一旦达成有效的均衡配方后,使用者额外添加外来补充品通常是不需要的。[6] 添加剂的作用: 1.改善润滑材料的性能,降低油的凝固点,迅速消除油中的泡味、改善粘温、粘滑特性、增加油膜强度等。 2.保护油脂不氧化变质,延长油脂的使用寿命,提高抗氧化能力,提高抗腐能力,提高抗乳化性能。 3.保护金属不受腐蚀,提高油的防腐性,钝化金属提高防锈能力。 4.增强润滑油脂在恶劣工作条件下的工作能力,增强极压抗磨性,提高机件的抗擦能力,提高机件的磨损自修复能力 添加剂可以按下列的功能分成两大类: 1.影响基础油的物理与化学性能:物理性能如黏温特性、解乳化性、低温特性等。化学性能如氧化稳定性。 2.影响与金属表面的物理化学性:如减少磨擦、增加极压表现、防磨损与抗腐蚀等。 添加剂虽然对於润滑油有很大的影响,但有些性能是不受影响的,如挥发性、热稳定性、热传导性、消泡性、被压缩性、与沸点等,优良品质的基础油加上均衡与极佳化的添加剂组合,才能调配出高性能的润滑油。也因此,现今有使用氢裂解与高度氢处理的高精炼基础油,及酯类与PAO的合成基础油越来越多。一.润滑油添加剂工作原理 由于润滑油中加入了高效添加剂,而绝大多数添加剂是极性物质,这些极性物质与金属表面发生反应,形成化学吸附膜,代替了后来润滑膜,使膜更加牢靠,润滑性能更好。另外,摩擦副在局部高温度压下,添加剂分解出硫、磷、氯等极性物质,这些极性物质与金属反应,也会生成反应物,防止了胶合的发生。同时,由于添加剂的存在增加了接触面积,降低了接触应力;使表面逐渐趋于光滑,从而大大地改善了润滑状态。 二.润滑油添加剂的分类[6]

润滑油添加剂

润滑油的添加剂 化学工程系石化10—5(1)班张垒垒添加剂是润滑油的精髓,对油品的使用性能有着重要的影响,正确的选用并合理加工可以改进它的物理化学性质,润滑油添加剂概念是加入润滑剂中的一种或几种化合物,以使润滑剂得到某种新的特性或改善润滑剂中已有的一些特性。添加剂按功能分主要有抗氧化剂、抗磨剂、摩擦改善剂(又名油性剂)、极压添加剂、清净剂、分散剂、泡沫抑制剂、防腐防锈剂、粘度指数增进剂等类型。工业用油的发展趋势是提高润滑油的热氧化剂稳定性,延长换油期,节能降耗,同时满足日益严格的环保要求。 清净分散剂:清净剂和分散剂是润滑油用量最大的一种添加剂。清净剂和分散剂是加入发动机润滑油中,用于防止或减少发动机内生成沉淀物的添加剂。吸附氧化产物,将其分散在油中。 清净剂:是能使发动机部件得到清洗并保持干净的添加剂,一般不单独使用,常与分散剂和抗腐剂复合使用用于内燃机油中,按使用性能和内燃机条件而言,清净剂高温清净性能好,为柴油机主要功能剂。金属清净剂其主要作用,在高温运转条件下,能够抑制和减少内燃机在活塞层表面生成高温沉淀物,使发动机内部清洁。包括中和、洗涤、分散、增溶等四个方面作用。清净剂种类、品种和性能有:磺酸盐清净剂、硫化烷基酸盐、烷基水杨酸盐、硫代磷酸盐、环烷酸盐。 分散剂:是抑制油泥、漆膜和淤渣等物质的沉淀,分散剂与清净剂复合后,又增效作用,既提高润滑油质量,又降低添加剂加入量。无灰分散剂可使发动机在低温运动时曲轴箱和循环油路中生成的油泥分散于油中。可以使润滑油通过滤油器滤掉,延长润滑油寿命,减少发动机磨损,节省燃油。分散剂低温分散性能好,为汽油机油主要功能剂。采用清净分散及抗氧抗腐剂等复合使用。主要作用是分散作用和增溶作用。 抗氧抗腐剂:的产量仅次于清净分散剂和粘度指数改进剂,有良好的抗氧腐性及抗磨性能,能够有效防止发动机轴承腐蚀和因高温氧化而使油品黏度增长。提高油品氧化安全性——防止金属氧化、催化延缓油品氧化速度隔绝酸性物与金属接触生成保护膜具有抗磨性。主要用于内燃机油,其次用于齿轮油、液压油、轴承油,导轨油、压缩机油等工业润滑油。抗氧抗腐性和抗磨性能好,可有效解决发动机凸轮和挺杆的磨损和腐蚀,同时保护机件金属表面不受酸的腐蚀的等。 极压抗磨剂:是指在高温、高压的边界润滑状态下,能和金属表面形成高熔点化学反应膜,以防止发生熔结、咬粘、刮伤的添加剂。作用是通过分解的产物在摩擦高温下于金属起反应,生成剪切应力和熔点都比纯金属低的化合物,从而防止接触表面咬合和焊熔,有效地保护金属表面。挤压抗磨剂主要用于齿轮油、液压油、导轨油、切削油等有挤压要求的润滑油中,以提高油品的挤压抗磨性能。在摩擦面的高温部分能与金属反应生成融点低的物质,节省油耗和振动噪音。大部分都是硫化物、氯化物、磷化物,在高温下能与金属反应生成润滑性的物质,在苛刻条件下提供润滑。挤压抗磨剂的作用实际上是一种控制性的腐蚀现象,因为只有通过它和金属摩擦表面漆化学反应,生成熔点较低和剪切力强度较小的化学反应膜,才能起到减小摩擦、磨损和防止擦伤及熔焊的作用。种类有机氯化物其最广泛而又经济的是氯化石蜡。有机硫化物可分为硫型、硫—磷型、硫—氮型、硫—磷—氮型以及硫—磷—硼—氮型。有磷化合物可分为含磷极压抗磨剂从只含磷元素的亚磷酸二丁酯和磷酸三甲酚酯的基础上,发展了磷—氮剂(T308)、硫—磷剂、硫—磷—氮剂和硫—磷—氮—硼剂等双元素和多元素的挤压抗磨剂,其含磷添加剂的极压性能大小顺序:磷酸酯铵盐>磷酸酰胺>亚磷酸酯>酸性磷酸酯>磷酸酯>膦酸酯>次磷酸酯。磷系列挤压抗磨剂的热稳定性越差,其抗磨性越好,但抗磨的持久性下降,添加剂消耗就快。 油性剂:凡是能使润滑油在摩擦表面上形成定向吸附膜,从而改善摩擦性能,降低运动部件之间的摩擦和磨损的添加剂都叫油性剂和摩擦改进剂。其作用是在摩擦表面形成物理吸附膜和化学吸附膜,可起到增加油膜强度,减少摩擦系数,提高耐磨损能力的作用。吸附可分物理吸附和化学吸附两种,物理吸附是可逆的,温度高会使吸附剂脱服失去作用,所以,油性剂只有在温度较低,负荷较轻是情况下起作用,而在高温高负荷下效果较差。有些油性剂除了物理吸附外,还有化学吸附,抗磨能力较强。油性剂的非极性基部分多数是长链的烷基,烷基链长度与极性基的位置是非常重要的因素。极性基最适合的位置是在烷基的链的最

常用润滑油添加剂的代号与名称对照

常用润滑油添加剂的代号与名称对照:

T代表:添加剂 T1XX: 代表清净剂,指磺酸盐系列产品,包括:石油磺酸盐(T101,T103);合成磺酸盐(T104等) T11X: 代表酚盐系列添加剂 T15X--T16X: 代表分散剂 T3XX: 代表挤压抗磨剂,例如:T301, T307, T321

T20X: 代表抗氧抗磨,抗腐剂:例如:T202 T40X: 代表摩擦改进剂,油性剂;例如:T405,T406 T5XX: 代表抗氧剂 T6XX: 代表粘度指数改进剂;例如:T601,T602,T603,T611,T615,T618 T7XX: 代表防锈剂 T8XX: 代表降凝剂 T9XX: 代表抗泡剂 T12XX: 代表金属钝化剂 1.值得提出的是添加剂也不是万能的,它不能使劣质油品变成优质油品,添加剂只是提高油品质量的主要因素之一。添加剂的贡献不仅取决于它的特殊组分,而且取决于基础油的质量(即基础油要有一定的精制深度或类型,即是溶剂精制、加氢精制、蜡异构化或合成油)和加入油品的添加剂配方技术,这二者缺一不可。 2.清净剂(Detergent),加到燃料或润滑剂中能使发动机部件得到清洗并保持发动机部件干净的化学品。在发动机油配方中,清净剂大多是用碱性金属皂来中和氧化或燃烧中生成的酸。如:高碱值线型烷基苯合成磺酸钙、长链线型烷基苯高碱值合成磺酸钙(TBN300)、长链线型烷基苯高碱值合成磺酸钙(TBN400)、高碱值硫化烷基酚钙、长链线型烷基苯高碱值合成磺酸镁。 3.分散剂(Dispersant),能使固体污染物以胶体状态悬浮于油中的化学品,防止油泥、漆膜和淤渣等物质沉积在发动机部件上。分散剂通常是非金属(无灰),一般与清净剂复合使用。如:T154A聚异丁烯基丁二酰亚胺、T154B硼化聚异丁烯基丁二酰亚胺、T161A高分子量聚异丁烯基丁二酰亚胺、T161B硼化高分子量聚异丁烯基丁二酰亚胺、T151A聚异丁烯基丁二酰亚胺、T164A高分子量聚异丁烯基丁二酰亚胺、T165A高分子量聚异丁烯基丁二酰亚胺。 4.抗氧抗腐剂(Antioxidant and Corrosion Inhibitor 或 Oxidation-Corrosion Inhibitor),能抑制油品氧化及保护润滑表面不受水或其它污染物的化学侵蚀的化学品。如:T202硫磷丁辛伯烷基锌盐、T203硫磷双辛伯烷基锌盐、T204碱式硫磷双辛伯烷基锌盐、T205硫磷丙辛仲伯烷基锌盐、T206硫磷伯仲烷基锌盐、T207硫磷伯仲辛烷基锌盐。 5.极压剂(Extreme Pressure Agent或EP Additive),在极压条件下防止滑动的金属表面烧结和擦伤的化学品。如:T321硫化异丁烯等。 6.抗磨剂(Antiwear Agent) ,能在较高负荷的部件上生成薄的韧性很强的膜来防止金属与金属接触的化学品。 7.油性剂(Oiliness Additive),在边界润滑条件下起增强润滑油的润滑性和防止磨损及擦伤的化学品。油性剂通常是动植物油或在烃链末端有极性基团的化合物,这些化合物对金属有很强的亲和力,其作用是通过极性基团吸附在摩擦面上,形成分子定向吸附膜,阻止金属互相间的接触,从而减少摩擦和磨损。 8.摩擦改进剂(Friction Modifier,FM),能降低两个接触的金属表面之间的摩擦系数的化学品。FM一般不与金属反应,而是吸附在金属表面上。吸附膜能降低油/金属界面的摩擦热,便于改进一定条件下的效率。FM通常是含磷或氮的衍生物。 9.抗氧剂( Antioxidant),能提高油品的抗氧化性能和延长其使用或贮存寿命的化学品。抗氧剂也称氧化抑制剂(Oxidation Inhibitor)。如:T501 2,6-二叔

相关主题
文本预览
相关文档 最新文档