当前位置:文档之家› 实用信号源实验报告

实用信号源实验报告

实用信号源实验报告
实用信号源实验报告

实用信号源实验报告

电子信息科学与技术

课程设计报告

名:

级:

号:

班内序号:

指导教师:

黄惠英

目录

一、实验要求1

1.

任务:1

2.

技术指标:1

3.

要求2

4.

主要参考元:2

二、设计方案2

1.

设计原理2

3.参数计算9

1)

信号发生电路9

2)

放大电路10

3)

计数显示电路11

三、电路测试与遇到的问题12

1.

信号失真的调节13

2.

信号频率调节13

3.

功率放大电路13

4.

计数显示电路14

5.

连接全部电路14

四、总体电路图14

五、实验数据15

六、实验总结16

22

一、实验要求

1.

任务:

在给定5V电源电压条下,设计并制作一个信号源。

2.

技术指标:

(1)

正弦波信号源

a、信号频率:20HZ~20KHZ连续可调;

b、频率稳定度:优于10

c、非线性失真系数:£3%,降低正弦波非线性失真系数,至少眼睛看不出来;

d、正弦波幅度连续可调,调整范围峰峰值为100mV~2V。

(2)

脉冲波信号源

a、信号频率:20HZ~20KHZ连续可调;

b、上升和下降时间:£1us;

c、平顶斜降:£

5%

d、脉冲占空比:2%到98%连续可调;

e、脉冲波幅度连续可调,调整范围峰峰值为100mV~2V。

(3)

上述两个信号源公共要求

a、在负载为600W时,

输出幅度为2V;

b、完成5位频率的数字显示

3.

要求

设计与总结报告:有方案设计与论证,理论分析与计算,完整的电路原理图,测试方法与数据,结果分析。要有特色与创新。

4.

主要参考元:

ICL8038,CD4026,NE556或NE555,CD4001或CD4004,LF356 或LM318,等

注:不采用单片机控制

二、设计方案

1.

设计原理

(1)ICL8038及外围电路

ICL8038是单片集成函数信号发生器,其内部框图如图1-1所示。它由恒流源I1和I2、电压比较器A和B、触发器、缓冲器和三角波变正弦波电路等组成。

图1-1

ICL8038原理框图

外接电容C由两个恒流源充电和放电,电压比较器A、B的阈值分别为电源电压(指UCC+UEE)的2/3和1/3。恒流源I1和I2的大小可通过外接电阻调节,但必须I2>I1。当触发器的输出为低电平时,恒流源I2断开,恒流源I1给C充电,它的两端电压uC随时间线性上升,当uC达到电源电压的2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I2接通,由于I2>I1(设I2=2I1),恒流源I2将电流2I1加到C上反充电,相当于C由一个净电流I放电,C两端的电压uC又转为直线下降。当它下降到电源电压的1/3时,电压比较器B的输出电压发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I2断开,I1再给

C充电,…如此周而复始,产生振荡。

若调整电路,使I2=2I1,则触发器输出为方波,经反相缓冲器由管脚⑨输出方波信号。C上的电压uC,上升与下降时间相等,为三角波,经电压跟随器从管脚③输出三角波信号。

将三角波变成正弦波是经过一个非线性的变换网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从管脚②输出。

图1-2

ICL8038管脚功能图

(2)

LM318放大电路

图1-3

LM318管脚功能图

(3)

NE555定时计数电路

图1-4

NE555内部结构图

555定时器由3个阻值为5kΩ的电阻组成的分压器、两个电压比较器C1和C2、基本RS触发器、放电三极管TD和缓冲反相器G4组成。555定时器工作时过程分析如下:

当VI1>2/3VCC,VI2>1/3VCC时,比较器C1输出低电平,比较器C2输出高电平,基本RS触发器置0,G3输出高电平,放电三极管TD导通,定时器输出低电平。

当VI1<2/3VCC,VI2>1/3VCC时,比较器C1输出高电平,比较器C2输出高电平,基本RS触发器保持原状态不变,555定时器输出状态保持不来。

当VI1>2/3VCC,VI2<1/3VCC时,比较器C1输出低电平,比较器C2输出低电平,基本RS触发器两端都被置1,G3输出低电平,放电三极管TD截止,定时器输出高电平。

当VI1<2/3VCC,VI2<1/3VCC时,比较器C1输出高电平,比较器C2输出低电平,基本RS触发器置1,G3输出低电平,放电三极管TD截止,定时器输出高电平。

图1-5

NE555引脚图

1脚:接地端;

2脚:低电平触发端,由此输入低电平触发脉冲;

3脚:输出端,输出高电压约低于电源电压1V—3V,输出电流可达200mA;

4脚:复位端,输入负脉冲(或使其电压低于0.7V)可使555定时器直接复位;

5脚:电压控制端,在此端外加电压可以改变比较器的参考电压,不用时,经0.01uF的电容接地,以防止引入干扰;

6脚:高电平触发端,由此输入高电平触发脉冲;

7脚:放电端,555定时器输出低电平时,放电晶体管TD导通,外接电容元通过TD放电;

8脚:电源端,可在5V—18V范围内使用。

(4)

CD4001或非门

图1-6

CD4001内部结构图

由于CD4026的2管脚低电平时读数,故NE555的计时信号要经过一个非门,此处采用CD4001芯片。

(5)

CD4026及数码管显示电路

图1-7

CD4026引脚图

INH=“0”时,时钟脉冲从CP

端引入,时钟脉冲的上升沿使计数器翻转;INH

=“1”时,计数器停止计数,显示的数字同时被保持。引脚REST=“1”时,计数器复零,显示器显示数“0”。QCO

输出计数器时钟

CP

的十分频信号,作级联下级计数时钟脉冲用。

DEI

是控制显示的输入端。当DEI=“l”时,输出真值电平;当DEI=“0”时,显示器消隐,此时a-g

都为“0”电平。

CD4026引脚功能说明:

引脚

功能说明

1

时钟脉冲输入

2

闸门信号(低电平计数,高电平暂停)

3

显示控制端(低电平数码管灭,高电平数码管显示)

4

显示输出控制端(数码管显示输出高电平,数码管熄灭输出低电平)

5

溢出/进位

8

数字地

16

电源输入

14

数字2输出端(数码管显示2时输出低电平,其余显示输出高电平)

15

异步清零/重置端

10、12、13、9、11、6、7

abcdefg7段数码管显示输出端

2.

设计思路

根据电路原理,可将电路分为三个部分:信号发生电路、功率放大电路、计数显示电路。这样分模块处理可让思路清晰,并且在实际搭建电路的时候,能够逐级实现,方便电路错误的查找。

信号发生电路

计数显示电路

功率放大电路

输出幅值可变波形

显示信号频率

如图所示,信号发生电路应用ICL8038芯片,该芯片具有生成方波三角波和正弦波的功能,并且波形的频率及占空比都可调;功率放大电路采用通用的LM318芯片;计数显示电路采用CD4026芯片CD4001芯片和NE555芯片,其中CD4026实现对输入波形的计数以及对数码管控制两种功能,CD4001为多个或非门,起滤波的作用,NE555实现周期震荡,为CD4026提供使能信号。

3.参数计算

+5V

1)

信号发生电路

-5V

占空比调节:

T1

上升时间或“1”

下降时间或“0”

此处,RA,RB即为4,5管脚的电阻值,调节即可。失真调节:

调节1脚及12脚电位器即可调节

频率调节:

当RA=RB=R

时,

可知大体的电容选取:

f=20Hz

对应0.47uF

(474)

f=200Hz

对应0.047uF

(473)

f=2kHz

对应0.0047uF

(472)

f=20kHz

对应470pF

(471)

2)

放大电路

但通过实验测试,由于上述所提到的在占空比调节过程中5脚和4脚分配电流发生变化,使输出频率受到影响,最终在某些频段占空比并不能实现理想调节,满足不了2%到98%连续可调的要求,所以将模块功能分开设计:ICL8038负责占空比为50%的波形产生,力求使失真达到最小;而将方波占空比的调节+5V 交给比较器LM318完成。

-5V

其中104和105电容作用为为防止自激。

3)

计数显示电路

NE555的3脚输出占空比,即跳动的高低电平控制计数。

根据手册提供的公式:

T1=0.683*(RA+RB)*C

T2=0.683*RB*C

F=1.443/((RA+2RB)*C)

由6、7脚间和7、8脚间电阻阻值决定,由于后者阻值相对2M电位器可以忽略,T1=T2=0.683*R*C,F=1.443/(2*R*C),经计算可得知当F大致取0.5Hz时,C取值为约为1uF。由于是使用电位器,阻值可调所以电容取1uf数量级的电容都可以的。

在实现计数和清零的功能后,手动调整电位器,使其输出的频率值能和示波器上的频率值对应,而且一段时间内稳定不变。即让其在1s计数。

CD4026的2管脚为时钟使能信号,控制技术的开始和暂停;3管脚为显示使能端口,控制数码管的开关;15管脚为技术复位端口,控制技术清零。

数码管的全动电压为5V。应该再在共阴极接一小电阻,以防止数码管电流过大。

三、电路测试与遇到的问题

1.

信号失真的调节

先测试芯片好坏。将ICL8038的7脚和8脚短接(8脚外部电路暂时不接),用示波器观察输出波形,若出现波形,确定芯片没问题,则可进行下序步骤。

将8脚外部电路按电路图原理图接入。

先查看脉冲波,调节4、5脚电位器是占空比接近50%(人眼看无误差),再查看正弦波,并通过调节1脚和12脚之间的电位器实现对正弦波失真的改善。

2.

信号频率调节

设计方案中,10脚电容依次取0.47uF、0.047uF、

0.0047uF、470pF,电路连接及布线原因,实际电容依次取的是:0.047uF、0.022uF、0.0022uF、200pF。

通过更换电容实现不同频率档位,调节8脚的电位器,实现频率同一档位内的微调。

3.

功率放大电路

当搭建好放大电路以后,请不要直接链接信号发生电路,以防止烧坏前级电路。打开信号发生器,测量方波的幅值。然后接入放大级的输入端,测量输出幅值。可以通过改变10K电位器调节输出峰峰值在200mV~2V之间变化。

之后连接前级电路,对信号的占空比,失真等进行进一步的调节。

4.

计数显示电路

搭建好电路以后,还是先用信号发生源进行实验。将信号发声源接入CD4026的1管脚。观察数码管是否实现开灯关灯的功能,并且在数码管开时,显示的数值是否为信号发生源的频率。

如果数码管显示全0,可能是由于CD4026芯片1管脚输入时钟的幅度太小,可以适当调整信号发生器输出幅值并观察现象.

如果不停计数,请检查4026芯片15管脚以及555芯片的3管脚链接是否正确,如果仍然不能排除,请更换所有的元器.。

数码管显示的频率很稳定,但是与信号发生器频率不符,这是定时问题,只需调整NE555芯片的电位器,用示波器观察NE555芯片的输出,直到目测高电平有效时间为1秒,然后进行微调即可。

5.

连接全部电路

如果以上各个部分的信号都准确无误,现在可以链接全部电路了。注意信号发生电路的电源现在应加到正负5V,放大电路的电源仍为5V不变,计数显示电路供电为5V。

此时如果不能出现预期效果,请立即切断电源。并把电路重新拆分为三个部分分别进行测试,如有问题调试方法见上。如各个分电路没有问题,请检查三部分电路之间的连接是否健康。

四、总体电路图

-5V

+5V

五、实验数据

表格一

定时电容及频带

电容

0.047uF

0.022uF

0.0022uF

200pF

频率范围(Hz)20~100

100~300

300~2.7K

1.9K~20K

表格二

脉冲信号测量频率(Hz)

占空比

平顶斜降VPPmax(V)VPPmin(mV)20

1.3%~98.7% 24%

6.14

150

200

1.6%~98.4%

2%

6.08

250

1K

1.3%~98.7% 0

6.14

143

10K

1.8%~98.2% 1.8%

6

180

20K

1.9%~98.1% 1.3%

6

163

表格三

正弦信号测量频率(Hz)VPPmax(V)

VPPmin(mV)示波器频率数码管显示误差

20

2.265

175

20.605

20

2.9%

200

3.025

158.5

204.43

200

2.2%

1K

2.86

166

1.086K 1001

7.8%

10K

2.54

46.5

10.115K

86

0.7%

20K

3.12

48

20.485K

20014

2.3%

六、实验总结

拿到实验

题目时,一直担心自己不能完成,因为硬电路是自己的伤。但是同学们给了很多的帮助,网络上搜索的有关芯片的数据手册及相关典型电路也让自己更有信心了。

信号发生器的电路并不难,其中的重点在于8038芯片各个管脚的作用、NE555芯片和CD4026芯片的链接。弄懂CD4026芯片的时序关系是关键,老师也是在此基础上才给我们器材让搭电路。这对我们也是有好处的,因为数据手册告诉你怎样加控制信号达到你想的功能。明白这些,设计和检验电路都不是问题。

硬电路真的是极不稳定,一分钟前波形还好好的,一分钟后,就没了,真的是连原因都不知道,检查几遍电路都查不出问题,后来拿同学的芯片测试,发现并非是芯片问题,只好重搭电路。

这次实验也让自己对检验电路了解很多,比如测试CD4026能否正常工作时,接各管脚电平,比如可以将2脚接地,让它一直计数,检测电路设计是否正确。

通过两周的实验,我成功的完成了自己的电路。在电路设计方面积累了一定的经验,掌握了电路设计的流程,注意事项。并且在电路调测方面也有极大的经验积累。身为一个即将成为大四的学生,这些工程方面的宝贵经验,必将在我以后的学习工作中给我极大的帮助。

最后,感谢老师及同学的帮助!

模拟信号源实验报告

实验1 模拟信号源实验 一、实验目的 1.了解本模块中函数信号产生芯片的技术参数; 2.了解本模块在后续实验系统中的作用; 3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.频率计1 台 3.20M 双踪示波器1 台 4.小电话单机1 部 三、实验原理 本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 正弦波信号(同步正弦波信号)和模拟电话接口。在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM、PCM、ADPCM、CVSD(Δ M)等实验的音频信号源。本模块位于底板的左边。 1.非同步函数信号 它由集成函数发生器XR2206 和一些外围电路组成,XR2206 芯片的技术资料可到网上搜索得到。函数信号类型由三档开关K01 选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V,可由W03调节;频率范围约500HZ~5KHZ,可由W02 调节;直流电平可由W01 调节(一般左旋到底)。非同步函数信号源结构示意图,见图2-1。 2.同步正弦波信号 它由2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。2KHz 方波信号由“时钟与基带数据发生模块”分频产生。U03 及周边的阻容网络组成一个截止频率为2KHZ 的低通滤波器,用以滤除各次谐波,只输出一个2KHz 正弦波,在P04 可测试其波形。用其作为PAM、PCM、ADPCM、CVSD(Δ M)等模块的音频信号源,其编码数据可在普通模拟示波器上形成稳定的波形,便于实验者观测。W04 用来改变输出同步正弦波的幅度。同步信号源结构示意图,见图2-2。

DDS信号发生器 实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y EDA技术高级应用 实验报告 姓名:禾小鬼 同组人: 学号:16S 班级:信息2班 指导教师:xxx 院系:电信学院

实验一函数信号发生器 一、实验内容 实验内容包括下面两个方面 1.熟悉quartus ii开发环境 第一次接触quartus ii开发环境,首先可以通过新建一个工程熟悉quartus ii的各种基本操作。需要学习的包括以下几个方面:选器件,采用原理图方法画一个电路图实现某种功能,并对这个功能进行行为仿真以验证功能上的正确性。 2.设计一个函数信号发生器 在开始之前,首先要明确设计目的,我们的想要用电路图方法实现设计一个“函数信号发生器”。然后,可以先根据自己的思路想好一个电路图的设计方案,再开始实验。 二实验结果 1.第一步:建立一个新的工程 新建工程的过程中,最重要的是设置器件,不同的器件的设计之间并不兼容。会有一个综合的信息框,注明了我所做的设置,看看没问题就可以了。然后新建一个原理图文件schematic,作为顶层文件,将顶层文件命名为DDS在上面进行画图。 2.第二步:画电路图 本次实验采用软件自带的器件库MegaWizard Plug-in Manager中的器件。自定义3个ROM,并将ROM表中存储事先准备好的三种波形的数据文件,波形数据文件由matlab产生,ROM中存储8bit-32words的数据,包括一个时钟输入,一个5位地址输入和一个7位输出;还需要一个5位计数器,用以输出读取ROM 的地址;一个时钟控制整个电路工作; 我画的电路图,如图1所示。其原理为:三个ROM表存储三种波形数据,整个电路通过时钟控制,时钟每翻转一次,计数器加一,产生一个地址,输入到

信号发生器的基本参数和使用方法

信号发生器 本人介绍一下信号发生器的使用和操作步骤. 1、信号发生器参数性能 频率范围:0.2Hz ~2MHz 粗调、微调旋钮 正弦波, 三角波, 方波, TTL 脉波 0.5" 大型 LED 显示器 可调 DC offset 电位 输出过载保护 信号发生器/信号源的技术指标: 波形正弦波, 三角波, 方波, Ramp 与脉波输出 振幅>20Vp-p (open circuit); >10Vp-p (加 50Ω负载) 阻抗50Ω+10% 衰减器-20dB+1.0dB (at 1kHz) DC 飘移<-10V ~ >+10V, (<-5V ~ >+5V 加 50Ω负载) 周期控制 1 : 1 to 10 : 1 continuously rating 显示幕4位LED显示幕 频率范围0.2Hz to2MHz(共 7 档) 频率控制Separate coarse and fine tuning 失真< 1% 0.2Hz ~ 20kHz , < 2% 20kHz ~ 200kHz 频率响应< 0.2dB 0.2Hz ~100kHz; < 1dB100kHz~2MHz 线性98% 0.2Hz ~100kHz; 95%100kHz~2MHz

对称性<2% 0.2Hz ~100kHz 上升/下降时间<120nS 位准4Vp-p±1Vp-p ~ 14.5Vp-p±0.5Vp-p 可调 上升/下降时间<120nS 位准>3Vpp 上升/下降时间<30nS 输入电压约 0V~10V ±1V input for 10 : 1 frequency ratio 输入阻抗10kΩ (±10%) 交流 100V/120V/220V/230V ±10%, 50/60Hz 电源线× 1, 操作手册× 1, 测试线 GTL-101 × 1 230(宽) × 95(高) × 280(长) mm,约 2.1 公斤 信号发生器是为进行电子测量提供满足一定技术要求电信号的仪器设备。这种仪器是多用途测量仪器,它除了能够输出正弦波、矩形波尖脉冲、TTL电平、单次脉冲等五种波形,还可以作频率计使用,测量外输入信号的频率 1.信号发生器面板: (1)电源开关; (2)信号输出端子; (3)输出信号波形选择;

数字信号源实验报告

实验一数字信号源实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握集中插入帧同步码时分复用信号的帧结构特点。 3、掌握数字信号源电路组成原理。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。 2、用示波器观察NRZ、FS、BS三信号的对应关系。 3、学习电路原理图。 三、基本原理 本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号。发光二极管亮状态表示‘1’码,熄状态表示‘0’码。 本模块有以下测试点及输入输出点: ? CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz ? BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz ? FS 信源帧同步信号输出点/测试点,频率为7.1KHz ? NRZ-OUT NRZ信号输出点/测试点 图1-3为数字信源模块的电原理图。图1-1中各单元与图1-3中的元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器US2:计数器74161;US3:计数器74193; US4:计数器40160 ?并行码产生器KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应 ?八选一US5、US6、US7:8位数据选择器4512 ?三选一US8:8位数据选择器4512 ?倒相器US10:非门74HC04 ?抽样US9:D触发器74HC74

多种信号音及铃流信号发生器实验

信息科学与工程学院《程控交换原理》上机实验报告 专业班级电信姓名学号 实验时间 2010年 12月 2 日指导教师成绩

图4—1 本实验系统传送信号流程图 4、数字信号的产生 在数字程控交换机中直接进行交换的是PCM数字信息,在这样的情况下如何使用户家收到信号音(如拨号音、回铃音、忙音等)是一个重要的问题。因为模拟信号产生的信号音是不能通过PCM交换系统的,这就要求设计一个数字信号发生器,使之能与交换网络输出这样一些PCM信息,这些数字信息经过非线性译码后能成为一个我们所需的模拟信号音。 )传统方式产生数字信号音 )由图4—2可知,这是一种常见的PCM编码方式,400HZ—500HZ的正弦信号由硬(3)数字电路产生数字音信号

图4—3 450HZ正弦波信号一个周期取样示意图 我们对正弦信号再以每隔125us取样一次,并将取样所得的正弦信号幅度按照A规律十三 图4—4 数字信号产生电流原理图 5、拨号音及控制电路 主叫用户摘机,CPU检测到该用户有摘机状态后,立即向该用户发出声音信号,表示可以拨号,当CPU中央处理单元收到第一个拨号脉冲后,立即切断该声音信号,该声音信号就叫拨号音。拨号音由上述数字信号产生,一旦一有用户摘机,交换网路把数字信号音送给该用户,经过TP3067的译码,提供给用户450hz的正弦波。

图4—5断续电路原理图 7、忙音及控制电路 忙音表示被叫用户处于忙状态,此时用户应该挂机,等一会在从新呼叫 本试验箱大于采用0、35秒断,0、35秒继续的400hz—450hz的方波信号,图4是该电路的原理图。 图4—6忙音控制电路的原理图。

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

信号发生器实验报告(终)

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶 m 体管的截止电压值。 图4 三角波→正弦波变换电路

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

函数信号发生器与示波器的使用实验报告书

函数信号发生器与示波器的使用实验报告书 专业:班级:学号: 姓名:实验时间: 实验目的 1、学会数字合成函数信号发生器常用功能的设置、使用; 2、会从函数信号发生器胡频率计上读出信号频率; 3、在了解数字双踪示波器显示波形的工作原理基础上,观察 并测量以下信号:(见下表)学会数字示波器的基本操作与 读书; 实验仪器 F40函数信号发生器、UTD2102CE数字示波器、探头。 实验原理 1、函数信号发生器的原理

该仪器采用直接数字合成技术,可以输出函数信号、调频、调幅、FSK、PSK、猝发、频率扫描等信号,还具有测频、计数、任意波形发生器功能。 2、示波器显示波形原理 如果在示波器CH1或CH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与 正弦波电压相等时,则显示完整的周期的正弦波形,若在示波 器CH1和YCH2同时加上正弦波,在示波器的X偏转板上加上 示波器的锯齿波,则在荧光屏上将的到两个正弦波。 实验内容 1、做好准备工作,连接实验仪器电路,设置好函数信号发生 器、示波器; (1)、把函数信号发生器的“函数输出”输出端与示波器的 X CH1信号输入端连接,两台仪器的接通220V交流电源。 (2)、启动函数信号发生器,开机后仪器不需要设置,短暂 时间后,即输出10K Hz的正弦波形。 (3)、需要信号源的其他信号,到时在进行相关的数据设定 (如正弦波2的波形、频率、点频输出、信号幅度)等。 2、用示波器观察上表中序号1的信号波形(10KHz);过程如下: (1)、打开示波器的电源开关,将数字存储示波器探头连接到CH1输入端,按下“AUTO”按键,示波器将自动设置垂直偏转系数、扫描时基以及触发方式;按下CH1按键。

信号发生器实验报告

Chongqing Electric Power College 信 号 发 生 器 实 验 报 告

一、 产品分析及市场调查 信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。采用集成运放和分立元件相结合的方式,利用迟滞比较器电路产生方波信号,以及充分利用差分电路进行电路转换,从而设计出一个能变换出三角波、正弦波、方波的简易信号发生器。通过对电路分析,确定了元器件的参数,并利用protuse 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。该设计可产生低于10 Hz 的各波形输出,并已应用于实验操作。 信号发生器一般指能自动产生正弦波、方波、三角波电压波形的电路或者仪器。电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。这里,采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于10 Hz 的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 原理框架图: 二、电源硬件电路图的设计 (1)单片机的选择 根据初步设计方案的分析,设计这样的一个简单的应用系统,可以选择带有EPROM 的单片机,应用程序直接存贮在片内,不用在外部扩展程序存储器,电路可以简化。ATMEL 公司生产的AT89C 系列单片机,AT89C 系列与C51系列的单片机相比有两大优势:第一,片内程序存储器采用闪存存储器,使程序的写入更加方便;第 “+”“-”键 单片机控制部分 DAC 输出

实验一 信号源实验

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、带话筒立体声耳机一副 3、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS 信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

函数信号发生器实验报告

函数发生器设计(1) 一、设计任务和指标要求 1、可调频率范围为10Hz~100Hz 。 2、可输出三角波、方波、正弦波。 3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。 4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。 5、输出阻抗约600Ω。 二、电路构成及元件参数的选择 1、振荡器 由于指标要求的振荡频率不高,对波形非线性无特殊要求。采用图1所示的电路。同时产生三角波和方波。 图1 振荡电路 根据输出口的信号幅度要求,可得最大的信号幅度输出为: V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V 选取3.3V 的稳压二极管,工作电流取5mA ,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。 OM Z CC Z 3Z Z V -V V -1.5V-V 9-1.5-4 R ==700ΩI I 5≈=()

取680Ω。 取8.2K Ω。 R 1=R 2/3=8.2/1.5=5.47(K Ω) 取5.1K Ω。 三角波输出的电压峰值为: V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω 取3K Ω。 Z Z V 4 RW=8K 0.1~0.2I 0.15 ==Ω?() () 取10K Ω。 R 6=RW/9=10/9=1.11(K Ω) 取1K Ω。 积分时间常数: 取C=0.1uF ,则: R5=4.019/0.1=40.19K Ω 取39K Ω。 取R 7=R 5= 39K Ω。 转换速率 Z 1max OSM max 24V R f 44 5.1100 SR 4V f =0.995mS R 8.2 ???≥= =(V/) 一般的集成运算放大电路都能满足要求。兼顾波形转换电路集成电路的使用。集成电路 选用四运放LM324。LM324内含四个相同的运算放大器,其中两个用于振荡器,两个用于波形变换。 三、振荡电路工作原理 利用集成运算放大电路也可实现产生方波和三角波的信号发生器,电路主要由比较器和积分器构成。电路中,有源积分器由运算放大器2A 及其外围电路积分电容C 和电阻R 5、R 7组成。有源积分器的输出通过R 1接至比较器1A 的正输入端,积分器的输入电压由电位器分压取出,设R W 与R 6形成的分压系数为a w ,则积分器的输入电压为V i =±a w Vz 。分压系数a w 为: Z 2Z V 4R 8K 0.1I 0.15≥==Ω?() 251MAX R 8.2 R C= 4.019mS 4R f 4 5.1100 ==??()

音频测试-低频信号发生器-使用方法

低频信号发生器的操作方法 第一步骤:低频信号发生器的连接 连接电源线 用220V AC 线把低频信号发生器连上市电。如电源插座旁有控制开关,还须把开关打开。(如上图2) 连接信号线 将输出线插入到低频信号发生器的信号输出(OUTPUT )接口,并顺时针扭动半圈(如下图3)。图 1 图 2 将开关打开

第二步骤:信号电压幅度调节 上述步骤完成后,接下来需要开机预热和调节输出信号的幅度。 1) 开机(POWER ) 按下电源键开机,开机后电源指示灯会亮。电源按钮一般为红色。 图 3 图 4 连接输出线 电源按钮 电源指示灯

波形选择(WAVE FORM ) 控制低频信号发生器的输出波形。此按钮未按下去时为正弦波,按下去后为矩形波。中文意思为波形。在音频测试中应选择正弦波。(如上图6) 振幅调节(AMPLITUDE ) 此旋钮用来对信号幅度进行微调。顺时针为调大(MAX ),逆顺针为调小(MIN )。如下图图 6 图 5 波形选择 按钮 衰减度选择 -20dB 档 振幅微 调旋钮 图 7 交流电压 20V 档 信号频率 为50Hz

第四步骤:信号频率调节 当调好低频信号发生器的信号电压时,我们还要调节信号发生器的信号频率。 1) 频率调节(FREQUENCY ) 频率调节旋钮上有刻度盘,刻度盘上的数值从10~100,我们调节时把刻度盘上的数值对准正上方的黑色标志,这个数值就是输出信号的基数值。Frequency 中文为频率的意思。(如上图9个琴键按钮,分别为×1、×10、×100、×1K 、×10K ,它们与频率旋钮配合使用。当按下其中的某一个时,表示频率旋钮上指示的基数值×此按钮的倍数。 图 9 图 8 频率旋钮 倍数选择

函数信号发生器实验报告

青海师范大学 课程设计报告课程设计名称:函数信号发生器 专业班级:电子信息工程 学生姓名:李玉斌 学号:20131711306 同组人员:郭延森安福成涂秋雨 指导教师:易晓斌 课程设计时间:2015年12月

目录 1 设计任务、要求以及文献综述 2 原理综述和设计方案 2.1 系统设计思路 2.2设计方案及可行性 2.3 系统功能块的划分 2.4 总体工作过程 3 单元电路设计 3.1 安装前的准备工作 3.2 万用表的安装过程 4 结束语 1设计任务、要求 在现代电子学的各个领域,常常需要高精度且频率可方便调节的信号发生器。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路称为函数信号发生器,又名信号源或振荡器。函数信号发生器与正弦波信号发生器相比具有体积小、功耗少、价格低等优点, 最主要的是函数信号发生器的输出波形较为灵活, 有三种波形(方波、三角波和正弦波)可供选择,在生产实践,电路实验,设备检测和科技领域中有着广泛的应用。 该函数信号发生器可产生三种波形,方波,三角波,正弦波,具有数字显示输出信号频率和电压幅值功能,其产生频率信号范围1HZ~100kHZ,输出信号幅值范围0~10V,信号产生电路由比较器,积分器,差动放大器构成,频率计部分由时基电路、计数显示电路等构成。幅值输出部分由峰值检测电路和芯片7107等构成。 技术要求: 1. 信号频率范围 1Hz~100kHz; 2. 输出波形应有:方波、三角波、正弦波; 3. 输出信号幅值范围0~10V; 4. 具有数字显示输出信号频率和电压幅值功能。

2原理叙述和设计方案 2.1 系统设计思路 函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件(如低频信号函数发生器S101全部采用晶体管),也可以是集成器件(如单片集成电路函数信号发生器ICL8038)。产生方波、正弦波、三角波的方案也有多种,如先产生方波,再根据积分器转换为三角波,最后通过差分放大电路转换为正弦波。频率计部分由时基电路、计数显示电路等构成,整形好的三角波或正弦波脉冲输入该电路,与时基电路产生的闸门信号对比送入计数器,最后由数码管可显示被测脉冲的频率。产生的3种波经过一个可调幅电路,由于波形不断变化,不能直接测出其幅值,得通过峰值检测电路测出峰值(稳定的信号幅值保持不变),然后经过数字电压表(由AD转换芯片CC7107和数码管等组成),可以数字显示幅值。 2.2设计方案及可行性 方案一:采用传统的直接频率合成器。首先产生方波—三角波,再将三角波变成正弦波。 方案二:采用单片机编程的方法来实现(如89C51单片机和D/A转换器,再滤波放大),通过编程的方法控制波形的频率和幅度,而且在硬件电路不变的情况下,通过改变程序来实现频率变换。 方案三:是利用ICL8038芯片构成8038集成函数发生器,其振荡频率可通过外加直流电压进行调节。 经小组讨论,方案一比较需要的元件较多,方案二超出学习范围,方案三中的芯片仿真软件中不存在,而且内部结构复杂,不容易构造,综合评定,最后选择方案一。 2.3系统功能块的划分 该系统应主要包括直流稳压电源,信号产生电路,频率显示电路和电压幅值显示电路四大部分。 直流稳压电源将220V工频交流电转换成稳压输出的直流电压,信号产生电路产生的信号,经过适当的整形,作为频率显示电路的输入,从而达到了数字显示频率的要求;产生的信号经过幅频显示部分(峰值检测电路和数模转换),便

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

函数信号发生器实验报告

北京邮电大学 电子电路综合设计实验 实验报告 实验名称:函数信号发生器的设计与调测 The Design and Debugging of Function Signal Generator 摘要:方波与三角波发生器由集成运放电路构成,包括比较器与RC积分器组成。方波发生器的基本电路由带正反馈的比较器及RC组成的负反馈构成;三角波主要由积分电路产生。两个电位器中一个调整方波频率,一个改变方波的占空比;三角波转换为正弦波,则是通过差分电路实现。该电路振荡频率和幅度便于调节,输出方波幅度大小由稳压管的稳压值决定,方波经积分得到三角波;而正弦波发生电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。 关键词:函数信号发生器,方波,三角波,正弦波 设计任务要求: 基本要求: a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。 1)输出频率能在1-10KHz范围内连续可调,无明显失真; =12V,上升、下降沿小于10μs,占空比可调范2)方波输出电压U opp 围30%-70%; 3)三角波U =8V; OPP ≥1V。 4)正弦波U opp b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH) 提高要求: a)三种输出波形的峰峰值U 均可在1V-10V范围内连续可调。 opp

b)三种输出波形的输出阻抗小于100Ω。 c)用PROTEL软件绘制完整的印制电路板图(PCB)。 探究环节: a)能否提供使所设计函数信号发生器显示出当前输出信号的种类、大小和频率的实验演示或详细设计方案;(提示:三种波形从同 一个端口输出,再用发光管之类的东西指示当前输出波形) b)能否提供其他函数信号发生器的设计方案?如果能提供,请通过仿真或实验结果加以证明。 设计思路: 1、原理框图: 实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。 由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。 2、系统的组成框图

信号发生器实验报告

信号发生器实验报告

一、 信号发生器广泛应用于电子工程、通信工程、自动控制、 遥测控制、测量仪器、仪表和计算机等技术领域。采用集成运放和分立元件相结合的方式,利用迟滞比较器电路产生方波信号,以及充分利用差分电路进行电路转换,从而设计出一个能变换出三角波、正弦波、方波的简易信号发生器。通过对电路分析,确定了元器件的参数,并利用protuse 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。该设计可产生低于10 Hz 的各波形输出,并已应用于实验操作。 信号发生器一般指能自动产生正弦波、方波、三角波电压波形的电路或者仪器。电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。这里,采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于10 Hz 的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 原理框架图: 二、电源硬件电路图的设计 (1)单片机的选择 根据初步设计方案的分析,设计这样的一个简单的应用系统,可以选择带有EPROM 的单片机,应用程序直接存贮在片内,不用在外部扩展程序存储器,电路可以简化。ATMEL 公司生产的AT89C 系列单片机,AT89C 系列与C51系列的单片机相比有两大优势:第一,片内程序存储器采用闪存存储器,使程序的写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路的体积更小。它以较小的体积、良好

的性能价格备受亲密。在家电产品、工业控制、计算机产品、医疗器械、汽车工业等应用方面成为用户降低成本的首选器件。

函数信号发生器F120使用说明

F05/F10/F20/F40/F80 /F120 数字合成函数/任意波信号发生器/计数器 使 用 说 明 书 南京盛普仪器科技有限公司NANJING SAMPLE INSTRUMENT TECHNOLOGY CO.,LTD.

目录 第一章概述 (1) 第二章主要特征 (1) 第三章技术参数 (2) 一、函数信号发生器 (2) 二、计数器 (4) 三、其它 (5) 第四章面板说明 (6) 一、显示说明 (6) 二、前面板说明 (7) 三、后面板说明 (11) 第五章使用说明 (12) 一、测量、试验的准备工作 (12) 二、函数信号输出使用说明 (12) 三、计数使用说明 (31) 第六章遥控操作使用说明 (32) 第七章注意事项与检修 (47) 第八章仪器整套设备及附件 (49)

本仪器是一台精密的测试仪器,具有输出函数信号、调频、调幅、FSK 、PSK 、猝发、频率扫描等信号的功能。此外,本仪器还具有测频和计数的功能。本仪器是电子工程师、电子实验室、生产线及教学、科研的理想测试设备。 1、采用直接数字合成技术(DDS )。 2、主波形输出频率为100μHz ~ 120MHz (F120)。 3、小信号输出幅度可达0.1mV 。 4、脉冲波占空比分辨率高达千分之一。 5、数字调频分辨率高、准确。 概述 1 2 主要 特征

6、猝发模式具有相位连续调节功能。 7、频率扫描输出可任意设置起点、终点频率。 8、相位调节分辨率达0.1度。 9、调幅调制度1% ~ 120% 可任意设置。 10、输出波形达30余种。 11、具有频率测量和计数的功能。 12、机箱造型美观大方,按键操作舒适灵活。 一、函数发生器 1、波形特性 主波形:正弦波,方波, TTL 波(频率大于40MHz 仅有正弦波) 波形幅度分辨率:12 bits 采样速率:200Msa/s (F120 为300 Msa/s) 正弦波谐波失真:-50dBc (频率≤ 5MHz ) -45dBc (频率≤ 10MHz ) -40dBc (频率≤ 20MHz ) -35dBc (频率> 20MHz ) 正弦波失真度: ≤0.1%(f :20Hz ~ 100kHz ) 方波升降时间: ≤25ns (F05型、F10型) ≤15ns (F20型、F40型、F80型、F120型) 3 技术指标

信号发生器单片机实验

实验项目名称:信号发生器设计实验实验学时:2 同组学生姓名:无实验地点: 实验日期:实验成绩: 批改教师:批改时间: 一、实验目的和要求 1、实验目的 (1)掌握D/A转换器DAC0808的工作原理及外围电路设计方法; (2)掌握A/D转换器ADC0804的工作原理及外围电路设计方法; (3)掌握单片机与D/A转换器、A/D转换器接口与编程方法; (4)掌握利用单片机产生常用波形的方法。 2、实验要求 利用单片机、DAC0808和ADC0804等器件设计一个简易信号发生器,发生器能产生方波、锯齿波、三角波和正弦波,要求频率可调、幅值可调、并可以在不同波形之间任意切换。 要求给出电路原理图,编写程序,给出仿真结果。 二、实验仪器和设备 PC机,Keil μVision3编译软件,Proteus仿真软件

三、实验内容与步骤 1、电路设计原理 1.1按照实验要求连接电路图,并对线路编号:电路图: 图1 1.2最小单片机系统包括外围的晶振和复位电路: 此图还包括了按键控制电路和LED灯显示。 图2

1.3 ADC0804电路 ADC0804: Vin(+)、Vin(-):两个模拟信号输入端,可以接收单极性、双极性和差模输入信号。 DB0-DB7:具有三态特性数字信号输出端,输出结果为八位二进制结果。 CLKIN:时钟信号输入端。 CLKR:内部时钟发生器的外接电阻端,与CLK端配合可由芯片自身产生时钟脉冲,其频率计算方式是:fck=1/(1.1RC)。 CS:片选信号输入端,低电平有效。 WR:写信号输入端,低电平启动AD转换。 RD:读信号输入端,低电平输出端有效。 INTR:转换完毕中断提供端,AD转换结束后,低电平表示本次转换已完成。 VREF/2:参考电平输入,决定量化单位。 VCC:芯片电源5V输入。 AGND:模拟电源地线。 DGND:数字电源地线。 ADC0804芯片,其中芯片的VIN+与VIN-之间接一个滑动电阻器,通过滑动滑动变阻器使得输入的电压变化,经过芯片之后,不同的电压值对应不同的数据,从而改变波形的频率。

相关主题
文本预览
相关文档 最新文档