当前位置:文档之家› mathlab汽车动力匹配程序

mathlab汽车动力匹配程序

mathlab汽车动力匹配程序
mathlab汽车动力匹配程序

附:计算使用的MATLAB程序代码及其含义

%不同i0对应车速为40、50、60时的发动机转数

clear

clc

close all

r=0.4275; %车轮半径

u0=[40 50 60]; %速度

i0=[4.22 4.68 4.88 5.01 5.28 5.48]; %主减速比

n=(i0'*u0)/(0.377*r); %对应发动机转数

n

%加速燃油消耗率

clear

clc

close all

yita=0.89;G=9160*9.8;f=0.02;CDA=4.64;a=0.1704;Iw1=1.798;Iw2=3.598;r=0.4 275;

m=9160;If=0.218;ig=1;i0=[4.22,4.68,4.88,5.01,5.28,5.48];

for x=1:1:6

n=1000:100:2800; %等距取数

ua5=(0.377*r.*n)/i0(x); %求转数对应车速

F5=f*G+CDA*(ua5.^2)/21.15; %求阻力

P_fw5=F5.*ua5./(yita*3.6*1000); %阻力功率

ua0=50:1:60; %50到60公里加速

ua1=50:1:60;

delta=1+(Iw1+Iw2)/(m*r^2)+(If*ig^2*i0(x)^2*yita)/(m*r^2);

%求旋转质量换算系数

P0=(G*f.*ua0./3600+CDA.*ua0.^3/76140+(delta*m.*ua0/3600)*a)/yita;

%初速度为ua0时的阻力功率

P=(G*f.*ua1/3600+CDA.*ua1.^3/76140+(delta*m.*ua1/3600)*a)/yita;

%末速度为ua1时的阻力功率

b1=0.0133.*P.^2-2.0715.*P+287.47; %燃油消耗率

Qt=P.*b1./(367.1.*8); %燃油消耗

i1=size(Qt); %求Qt向量长度

i=i1(2);

Qt1=Qt(2:i-1);

dt=1/(3.6*a); %速度每增加1km/h所需要的时间

q=(Qt(1)+Qt(i))*dt./2+sum(Qt1)*dt; %加速段燃油消耗量

q

end

%减速油耗

clear

clc

close all

ua1=60;ua2=40;a=0.2584;Qi=191;

Q=(8*Qi)/(367.1*8); %计算怠速燃油消耗

Qd=((ua1-ua2)*Q)/(3.6*a); %减速燃油消耗

Qd

%六工况油耗

clear

clc

close all

Q=[237.1422 238.6344 241.21566 241.6732 244.3986 246.7512];

Qs=(Q./(125+175+1000))*100 %六工况燃油消耗量

clear

clc

close all

n1=linspace(0,50000); %先求各个档位的驱动力

nmax=2800;nmin=1000;r=0.4275;yita=0.89;CDA=4,64;f=0.02;G=(9160)*9.8;ig= [8.69,5.01,2.91,1.7,1.00];i0=5.01;

for i=1:1:5 %i为档数

uamax(i)=chesu(nmax,r,ig(i),i0); %计算各个档位的最大速度与最小速度

uamin(i)=chesu(nmin,r,ig(i),i0);

ua(i,:)=linspace(uamin(i),uamax(i),30);

n(i,:)=zhuansu(ua(i,:),r,ig(i),i0); %计算各个档位的转速范围

Ttq(i,:)=zhuanju(n(i,:)); %求出各档位的转矩范围

Ft(i,:)=qudongli(Ttq(i,:),ig(i),i0,yita,r); %求出驱动力

F(i,:)=f*G+CDA*(ua(i,:).^2)/21.15; %求出滚动阻力和空气阻力的和

delta(i,:)=1+(1.798+3.598+0.218*(ig(i)^2)*(i0^2)*yita)/(9160*r^2); %转动质量换算系数

a(i,:)=1./(delta(i,:).*14000./(Ft(i,:)-F(i,:))); %求出加速度

c=1./a(i,:);

plot(ua,c);

title('加速度倒数曲线');

xlabel('ua'); %x轴名称

ylabel('1/a'); %y轴名称

F2(i,:)=Ft(i,:)-F(i,:);

end

temp1(1,:)=ua(2,:)/3.6; %下面分各个档位进行积分,求出加速时间

temp1(2,:)=1./a(2,:);

n1=1;

for j1=1:1:30

if ua(3,j1)>max(ua(2,:))&&ua(3,j1)<=90

temp2(1,n1)=ua(3,j1)/3.6;

temp2(2,n1)=1./a(3,j1);

n1=n1+1;

end

end

n2=1;

for j1=1:1:30

if ua(4,j1)>max(ua(3,:))&&ua(4,j1)<=90;

temp3(1,n2)=ua(4,j1)/3.6;

temp3(2,n2)=1./a(4,j1);

n2=n2+1;

end

end

n3=1;

for j1=1:1:30

if ua(5,j1)>max(ua(4,:))&&ua(5,j1)<=90;

temp4(1,n3)=ua(5,j1)/3.6;

temp4(2,n3)=1./a(5,j1);

n3=n3+1;

end

end

y=temp1(1,1)*temp1(2,1)+qiuji(temp1(1,:),temp1(2,:))+qiuji(temp2(1,:),t emp2(2,:))+qiuji(temp3(1,:),temp3(2,:))+qiuji(temp4(1,:),temp4(2,:));

y

gtext('ig1'),gtext('ig2'),gtext('ig3');gtext('ig4');gtext('ig5');

function ua=chesu(n,r,ig,i0); %由转速计算车速

ua=0.377*r.*n/(ig*i0);

function n=zhuansu(ua,r,ig,i0); %求转速

n=ig*i0.*ua./(0.377*r);

end

function y=zhuanju(n); %求转矩函数

y=-6.4e-5*n.^2+0.2453*n+139.69;

function y=qudongli(Ttq,ig,i0,yita,r); %求驱动力函数

y=(ig*i0*yita.*Ttq)/r;

end

%C曲线

clear

clc

close all

b=[18.2417 18.5902 18.7999 18.9809]; %燃油消耗

t=[36.1848 33.8979 32.0154 28.4538]; %加速时间

plot(b,t,'+r') %绘制i0散点图用+表示

hold on; %保持图像

b1=linspace(b(1),b(4),100); %b1到b4划100点

t1=spline(b,t,b1); %三次样条差值

plot(b1,t1); %绘制c曲线

title('燃油经济性—加速时间曲线'); %图表标题

xlabel('百公里油耗(L/100km)'); %x轴名称

ylabel('加速时间s'); %y轴名称

gtext('i0=4.22'),gtext('i0=5.01'),gtext('i0=5.28');gtext('i0=5.48');

%驱动力图

clear

clc

close all

m=9160;

uamax=90; %最大车速

imax=0.3; %最大爬坡度

Ttqmax=380; %发动机最大转矩

nPemax=2800; %最大功率转数

d=0.855; %轮胎直径

r=d/2; %轮胎半径

Ttq=[331,341,355,367,375,386,370,351,340,323]; %发动机转矩

n=[1000,1200,1400,1600,1800,2000,2200,2400,2600,2800]; %发动机转数io=(0.377*r*2800)/uamax; %最小传动比

afamax=atan(imax); %最大爬坡度角度

aitT=0.89;

g=9.8;

f=0.02;

ig1=8.69;

ig5=1;

ig4=1.7

ig3=2.91;

ig2=5.01;

ua1=(0.377*r*n)/(ig1*io); %一档对应车速

ua2=(0.377*r*n)/(ig2*io);

ua3=(0.377*r*n)/(ig3*io);

ua4=(0.377*r*n)/(ig4*io);

ua5=(0.377*r*n)/(ig5*io);

Ft1=(Ttq*ig1*io*aitT)/(1000*r); %一档对应驱动力

Ft2=(Ttq*ig2*io*aitT)/(1000*r);

Ft3=(Ttq*ig3*io*aitT)/(1000*r);

Ft4=(Ttq*ig4*io*aitT)/(1000*r);

Ft5=(Ttq*ig5*io*aitT)/(1000*r);

figure,plot(ua1,Ft1,ua2,Ft2,ua3,Ft3,ua4,Ft4,ua5,Ft5);

title('驱动力图');

xlabel('车速/(km/h)'),ylabel('驱动力(kN)') ;

gtext('ig1'),gtext('ig2'),gtext('ig3');gtext('ig4');gtext('ig5');

%动力特性图

clear

clc

close all

Ttq=[331,341,355,367,375,386,370,351,340,323]; %发动机转矩

io=5.01;

nt=0.89; %机械效率%

r=0.4275;

g=9.8;

m=9160;

G=m*g;

CDA=4.64;

n=[1000,1200,1400,1600,1800,2000,2200,2400,2600,2800]; %发动机转数ig1=8.69;

ua=0.377*r*n/ig1/io; %1档对应车速

D=(Ttq.*ig1.*io.*nt/r-CDA*ua.*ua/21.15)/G; %求1档动力因数

plot(ua,D);

hold on;

ig2=5.01;

ua=0.377*r*n/ig2/io;

D=(Ttq.*ig2.*io.*nt/r-CDA*ua.*ua/21.15)/G;

plot(ua,D);

hold on;

ig3=2.91;

ua=0.377*r*n/ig3/io;

D=(Ttq.*ig3.*io.*nt/r-CDA*ua.*ua/21.15)/G;

plot(ua,D);

hold on;

ig4=1.7;

ua=0.377*r*n/ig4/io;

D=(Ttq.*ig4.*io.*nt/r-CDA*ua.*ua/21.15)/G;

plot(ua,D);

hold on;

ig5=1;

ua=0.377*r*n/ig5/io;

D=(Ttq.*ig5.*io.*nt/r-CDA*ua.*ua/21.15)/G;

plot(ua,D);

title('汽车动力特性图D-ua');

xlabel('ua(km/h)');

ylabel('D');

gtext('ig1'),gtext('ig2'),gtext('ig3');gtext('ig4');gtext('ig5');

%爬坡度图

clear

clc

close all

Ttq=[331,341,355,367,375,386,370,351,340,323];

io=5.01;

nt=0.89; %机械效率

r=0.4275;

g=9.8;

ma=9160;

CDA=4.64;

n=[1000,1200,1400,1600,1800,2000,2200,2400,2600,2800]; %发动机转数G=ma.*g; %汽车重力

f=0.02;

ig1=8.69; %1档传动比

ua=0.377*r.*n/ig1/io; %相应发动机转数对应的车速

a=namelengthmax; %标识符的最长长度

a=asin((Ttq.*ig1.*io.*nt/r-(G.*cos(a).*f+CDA*ua.*ua/21.15))/G); %计算1档爬角度

i=100*tan(a); %计算爬坡度

plot(ua,i);

hold on;

ig2=5.01;

ua=0.377*r.*n/ig2/io;

a=namelengthmax;

a=asin((Ttq.*ig2.*io.*nt/r-(G.*cos(a).*f+CDA*ua.*ua/21.15))/G);

i=100*tan(a);

plot(ua,i);

hold on;

ig3=2.91;

ua=0.377*r.*n/ig3/io;

a=namelengthmax;

a=asin((Ttq.*ig3.*io.*nt/r-(G.*cos(a).*f+CDA*ua.*ua/21.15))/G);

i=100*tan(a);

plot(ua,i);

hold on;

ig4=1.7;

ua=0.377*r.*n/ig4/io;

a=namelengthmax;

a=asin((Ttq.*ig4.*io.*nt/r-(G.*cos(a).*f+CDA*ua.*ua/21.15))/G);

i=100*tan(a);

plot(ua,i);

hold on;

ig5=1;

ua=0.377*r.*n/ig5/io;

a=namelengthmax;

a=asin((Ttq.*ig5.*io.*nt/r-(G.*cos(a).*f+CDA*ua.*ua/21.15))/G);

i=100*tan(a);

plot(ua,i);

title('汽车爬坡度图');

xlabel('ua(km/h)');

ylabel('i(%)');

gtext('ig1'),gtext('ig2'),gtext('ig3');gtext('ig4');gtext('ig5');

%功率平衡图

clear

clc

close all

m=9160;

uamax=90;

imax=0.3;

Ttqmax=380; %最大转矩

nPemax=2800; %最大功率转数

d=0.855;

r=d/2;

Pe=[33.8,42.7,51.5,62.0,72.8,78.5,84.5,89.2,92.8,97.0,92,81]; %发动机转矩

n=[1000,1200,1400,1600,1800,2000,2200,2400,2600,2800,3000,3200 ]; %发动机转数

B1=2.45;

H=2.76;

CD=0.92;

io=5.01;

afamax=atan(imax); %最大爬坡度

aitT=0.89;

f=0.02;

g=9.8;

ig1=8.69;

ig5=1;

ig4=1.7

ig3=2.91;

ig2=5.01;

ua1=(0.377*r*n)/(ig1*io); %1档车速

ua2=(0.377*r*n)/(ig2*io);

ua3=(0.377*r*n)/(ig3*io);

ua4=(0.377*r*n)/(ig4*io);

ua5=(0.377*r*n)/(ig5*io);

nzuli=[0,1000,1200,1400,1600,1800,2000,2200,2400,2600,2800];

uazuli=(0.377*r*nzuli)/(ig5*io); %计算阻力功率的车速

Pf=m*g*f*uazuli/3600; %滚动阻力功率

CDA=4.64; %迎风面积

Pw=CDA*uazuli.^3/76140; %空气阻力功率

figure,plot(ua1,Pe,ua2,Pe,ua3,Pe,ua4,Pe,ua5,Pe,uazuli,(Pf+Pw)/aitT);

title('功率平衡图'); %图表标题

xlabel('车速/(km/h)'),ylabel('功率/kW')

zoom on;

[x,y]=ginput(1);

zoom off;

disp(x)

gtext('ig1'),gtext('ig2'),gtext('ig3');gtext('ig4');gtext('ig5');gtext( 'Pf+Pw/ηt');

%等速百公里油耗图

clear

clc

close all

m=9160;

uamax=90;

imax=0.3;

Ttqmax=420;

nPemax=2800;

d=0.855;

r=d/2;

b=[219.2,209.9,206.2,199.4,205.5,208.0,214.1,220.7,223.1,229.8]; %各转速燃油消耗率

Pe=[33.8,42.7,51.5,62.0,72.8,78.5,84.5,89.2,92.8,97.0]; %各转速对应功率n=[1000,1200,1400,1600,1800,2000,2200,2400,2600,2800]; %转数

B1=2.45; %车宽

H=1.8725; %车高

CD=0.8;

io=(0.377*r*2800)/uamax; %求最小传动比

afamax=atan(imax); %最大爬坡度所对应的坡道角

aitT=0.89; %传动系机械效率

g=9.8;

f=0.02;

ig1=(m*g*(f*cos(afamax)+sin(afamax))*r)/(Ttqmax*io*aitT); %1档传动比igmax=ig1*io; %最大传动比

ig5=1; %五档传动比

ua5=(0.377*r*n)/(ig5*io); %5挡车速

nzuli=[1000,1200,1400,1600,1800,2000,2200,2400,2600,2800]; %计算阻力功率的发动机转速

uazuli=(0.377*r*nzuli)/(ig5*io); %计算阻力功率的车速

Pf=m*g*(0.0076+0.000056*uazuli).*uazuli/3600; %滚动阻力功率

A=B1*H; %迎风面积

Pw=CD*A*uazuli.^3/76140; %空气阻力功率

P=(Pf+Pw)/aitT; %阻力功率

Qs=P.*b./(1.02.*ua5*8); %燃油消耗量

figure,plot(ua5,Qs); %绘图

title('等速百公里油耗');

xlabel('ua/(km/h)'),ylabel('Qs/(L/100km)')

C曲线为汽车主减速器对主传动比(i0)值不同时,相应传动比对应的汽车的动力性(100公里加速时间)和经济性(百公里油耗),通常运用此曲线来进行最小传动比的优化,已获得最优的燃油经济性和动力性的匹配。

C曲线之所以被称为C曲线,是因为其图线程C形。

2)绘制加速度倒数曲线

加速度倒数曲线,此曲线为车速与汽车加速度倒数的关系,因为ua=a*t,所以t=ua/a,

但是汽车的加速度不为常数,所以不能简单地用此公式计算,这里我们将用积分的方法求曲线与x轴所围成面积来计算汽车从起步到最大速度所用的时间。

3)绘制驱动力图

驱动力是在发动机油门全开时,汽车格挡的驱动力驱动力与车速之间的关系。可以看到从1档起传动比最大,但车速最低,以次随档位的上升传动比减小,驱动力减小,但车速上升。

r i i T Ft T

g tq η0=

o

g a i i rn u 377

.0=

4)绘制汽车动力特性图

动力特性图虽然图形与驱动力图相同,但其表示的关系却不同,动力特性图是表示汽车不同档位车速与动力因素的关系,而且图形的趋势也与驱动力图差不多。

G

F F D w t -=

5)绘制汽车爬坡度图

爬坡度图主要体现的是汽车个档位的爬坡能力,从图中可看出1档的爬坡能力最强,但速度最低,5档的速度最高但爬坡能力最弱,这可以用汽车的驱动力来解释,1档时传动系的传动比最大,也就是减速增扭能力最强,所以速度较小但动力较大,5档则相反。

6)绘制汽车功率平衡图

汽车的功率平衡图,是汽车各档功率与车速的关系,由功率平衡图我们可以确定汽车的理论最高车速和发动机的负荷率,同时也可以求出发动机在部分负荷条件下的后备功率。

7)绘制汽车百公里等速油耗

等速百公里油耗体现的是汽车的燃油经济性能,它的前提是在汽车在最高档条件下,通过控制发动机转速来控制车速测定的汽车在各个速度下的燃油消耗,所以这歌油耗大多只能用作理论上的参考,不能作为实际的燃油消耗量。

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展, 汽车保有量逐年增加汽车尾气对空气的污染也日益加重, 这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题, 使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电机组。这样既利用了发动机持续工作时间长, 动力性好的优点, 又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1 国外发展现状

20世纪90年代以来,世界许多著名汽车生产 厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV 的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997 年8 月推出其第一款混合动力 汽车Toyota Coaster Hybrid EV minibus, 同年12 月,推出Toyota Prius(普锐斯)这是世界第一款 大量生产的混合动力汽车。自第一代Prius 开始销 售以来,截止到中Prius 标准型每升汽油可行驶35.5 公里。到2010 年7 月31 日,累计销量已超过268 万辆。目前市场上正热销的两款车型分别为 丰田Prius 和本田Insight 。在2010年4 月份举 办的北京车展上,共有8 款日系混合动力汽车展出, 其中丰田第三代普锐斯性能最优越,本田Insight 被 认为同级中最省油,本田CR-Z 具有运动风格受到人 们的关注。日本国内对混合动力汽车产业有长期的发展规划,政府大力扶持产业技术发展,出台一系列税收优惠政策及奖励措施,促进混合动力汽车销售,拉动内需;规划长远发展战略。 美国三大汽车公司原来只是小批量生产、销售过电动汽车,而混合动力和燃料电池电动汽车还未能实现产业化,日本的混合动力电动汽车在美国市场上占据了主导地位。美国能源部与三大汽车公司于1993 年签订了混合动力电动汽车开发合同,并于1998年在北美国际汽车展上出了样车。2005年9 月通用汽车、戴姆勒·克莱斯勒与宝马集团签署了关于构建全球合作联盟,以共同开发混合动力推进系统的合作。2009 年美国混合动力汽车销量达到 29.032 万辆虽然占美国汽车市场份额只有2.8%,但从2005 年起呈逐年上升趋势预计,美国的混合动力汽车2013 年将达到 87.2 万辆,市场占有率将达到5%。 1.2 国内发展现状目前,我国在新能源汽车的自主创新过

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题,使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电机组。这样既利用了发动机持续工作时间长,动力性好的优点,又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1国外发展现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款大量生产的混合动力汽车。自第一代Prius 开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到2010年7月31日,累计销量已超过268万辆。目前市场上正热销的两款车型分别为丰田Prius和本田Insight。在2010年4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最

混合动力汽车发展现状及趋势分析

混合动力汽车发展现状及 趋势分析 (本文为word格式,下载后可任意修改)

摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题,使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电

机组。这样既利用了发动机持续工作时间长,动力性好的优点,又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1国外发展现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款大量生产的混合动力汽车。自第一代Prius开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到2010年7月31日,累计销量已超过268万辆。目前市场上正热销的两款车型分别为丰田Prius 和本田Insight。在2010年4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最优越,本田Insight被认为同级中最省油,本田CR-Z具有运动风格受到人们的关注。日本国内对混合动力汽车产业有长期的发展规划,政府大力扶持产业技术发展,出台一系列税收优惠政策及奖励措施,促进混合动力汽车销售,拉动内需;规划长远发展战略。

电动汽车动力匹配计算规范(纯电动)

XH-JS-04-013 电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为 j i w f t F F F F F +++= (1)

载货汽车动力匹配和总体设计

汽车设计课程设计说明书 学院:机械工程学院 班级: 姓名: 学号:

目录 设计任务书 (3) 第1章整车主要目标参数的初步确定 (4) 发动机的选择 (4) 发动机的最大功率及转速的确定 (4) 发动机最大转矩及其转速的确定 (6) 轮胎的选择 (7) 传动系最小传动比的确定 (8) 传动系最大传动比的确定 (10) 第2章传动系各总成的选型 (11) 发动机的选型 (11) 离合器的初步选型 (12) 变速器的选型 (14) 传动轴的选型 (15) 主减速器结构形式选择 (16) 驱动桥的选型 (17) 第3章整车性能计算 (17) 配置潍柴发动机的整车性能计算 (17) 汽车动力性能计算 (17) 汽车经济性能计算 (20) 第4章发动机与传动系部件的确定 (21) 参考文献 (23)

设计任务书 载货汽车动力匹配和总体设计 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4; 驱动型式:8×4; 轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。

第1章 整车主要目标参数的初步确定 发动机的选择 发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600(13 max max max a D a a T e u A C u f g m P ?+??≥η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器 的传动效率)%9.84%96%98%95%95=???=T η,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 a m ——汽车总质量,kg m a 31000=; g ——重力加速度,2/81.9s m g =; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况

混合动力汽车技术及发展趋势分析

XXXXXXX学院 毕业论文 论文题目混合动力汽车技术及发展趋势分析学生姓名XXX 专业汽车检测与维修 班级汽修X班 学号XXXXXX 指导教师XXX 2016年4月 20日

目录 1 引言 (4) 2 混合动力汽车的类型和特点 (5) 2.1串联式混合动力汽车 (5) 2.2并联式混合动力汽车 (6) 2.3混联式混合动力汽车 (7) 3 混合动力汽车的核心技术研究与发展 (9) 3.1混合动力汽车用电池 (9) 3.1.1混合动力汽车对电池的特殊要求 (9) 3.1.2 混合动力汽车电池的发展 (10) 3.1.3 混合动力汽车电池的管理 (10) 3.2 混合动力汽车电机驱动系统 (11) 3.3 混合动力汽车中电力电子技术的应用 (12) 4 混合动力汽车需要解决的关键技术 (13) 4.1混合动力单元技术 (13) 4.2能量存储技术 (14) 4.3汽车集成电力电子模块技术 (15) 结论 (16) 致谢 (17) 参考文献 (18)

摘要 随着石油供应的日趋紧缺和环境污染的日益加剧,电动车这种以电能为动力的交通工具凭借其节能、环保的优点日渐成为业界关注的焦点。20世纪80年代以来, 许多发达国家纷纷投入巨资研发电动汽车,我国的“863 计划”也已明确将电动汽车作为重点攻关项目。社会对环境和节能的重视有力地促进了混合动力车辆的发展。本文分析了国内外混合动力汽车的研究现状,介绍了混合动力汽车的主要结构形式与工作特点,指出了混合动汽车目前需要解决的主要问题和采用的关键技术,并对其发展前景进行了预测。 关键词:环境;能源;混合动力

1引言 通常所说的混合动力一般是指油电混合动力,即燃料(汽油,柴油)和电能的混合。混合动力汽车是有电动马达作为发动机的辅助动力驱动汽车。混合动力汽车的燃油经济性能高,而且行驶性能优越,混合动力汽车的发动机要使用燃油,而且在起步、加速时,由于有电动马达的辅助,所以可以降低油耗,简单地说,就是与同样大小的汽车相比,燃油费用更小,而且,辅助发动机的电动马达可以在启动的瞬间产生强大的动力,因此,车主可以享受更强劲的起步、加速。同时,还能实现较高水平的燃油经济性。 混合动力电动汽车(HEV)将内燃机、电动机与一定容量的蓄电池通过控制系统相组合,电动机可补充提供车辆起步、加速时所需转矩,又可以存储吸收内燃机富余功率和车辆制动能量,从而可大幅度降低油耗,减少污染物排放。混合动力汽车虽然没有实现零排放,但其动力性、经济性和排放等综合指标能满足当前苛刻要求,可缓解汽车需求与环境污染及石油短缺的矛盾。所以自从90年代以来,全球刮起了研究混合动力的风暴。日本丰田率先将混合动力车商品化,于1997年推出Prius,随后的时间里,多家日本汽车公司实现了多款混合动力的商品化。在美国,克林顿政府上台不久,为了开发新一代汽车,由美国政府促进,于1993年9月29日发起了新一代汽车伙伴计划即PNGV,目标是开发低油耗的混合动力汽车。然而该计划最终被废止,没有达到预订的2005年左右推出商品化的混合动力汽车的目标。 随着机动车保有量的持续增长,我国机动车污染物排放总量持续攀升。2003年全国机动车碳氢化合物、一氧化碳和氮氧化物排放量是1995年相应污染物排放总量的2.51、2.05和3.01倍。事实上,汽车所产生的空气污染量比任何其他单一的人类活动产生的空气污染量都多。全球因燃烧矿物燃料而产生的一氧化碳、碳氢化合物和氮氧化物的排放量,几乎50%来自于汽油机和柴油机。 最近几年,我国对环境保护的投入不断加大。通过政府的努力,我国城市空气质量总体上也有所好转。随着石油供应的日趋紧缺和环境污染的日益加剧,电能为动力,节能、环保为特色的电动汽车逐渐成为业界关注的焦点。近10多年来,世界各大汽车产业集团陆续投入巨额资金研发电动汽车技术,目前均已从实验室

电动汽车动力匹配设计规范

电动汽车动力匹配设计规范 XXXXXX Q/XXX XXXXXXXXXXXXXX XXXXXX

电动汽车动力匹配设计规范 XXXX-XX -XX 发布 XXXX-XX -XX 实施 XXXXXXXX 有限公司 发 布 目 次 前言 ............................................................................................... Ⅱ 1 范围 ........................................................................................... 1 2 规范性引用文件 ........................................................................... 1 3 术语和定义 .................................................................................. 1 4 技术要求 ..................................................................................... 3 4.1 评价指标 .................................................................................. 3 4.2 计算方法 .................................................................................. 4 4.3 基础数据收集和输入 ................................................................ 10 4.4 计算任务和匹配优化 ................................................................ 10 4.5 计算结果输入及数据分析 . (13) 电动汽车动力匹配设计规范 X X X X X X X X X X 有限公司企业标准

汽车动力总成系统匹配技术研究

汽车动力总成系统匹配技术研究 摘要:社会经济对发展是的对节能和环保对在各行业和各产业中对要求进行了提高。汽车产业引起产业特征需要更积极的面对节能环保带来的挑战。通过对传统汽车进行动力总成系统的配备研究,使得各类新技术得到有效的应用,使得动力总成系统获得有效的发挥,这些都是需要不断深入研究和提出改进的建议的。 关键词:汽车;节能;动力 前言 通过对汽车动力总成系统比配的技术研究可以为汽车产业的提供符合节能环保必要的技术改进。同时面对汽车动力总成系统的复杂程度不但加深,对控制系统中心技术的应用进行有效的分析,对汽车动力总成系统的有效优化有积极意义。 1.汽车动力总成系统的构成 首先根据本次实验的目的,选择有价值的构成单元进行。选择3.0L 245马力V6自然吸气的发动机和德国奔驰speedtronic 7速变速箱为其基础动力构成单元。其发动机是德国研发的一款高端发动机,整台发动机是使用V字型的60度夹角和单缸四气门的排气系统构成。其发动机采用了多项现今的汽油机设计技术,具有整台发动机自身重量低,全铝金属设计,符合轻量化以及主/从联合双ECU技术和三层无声链传动系统以及低噪音结构等等。这些先进技术的应用使得发动机具有国际同步的优越性能。变速器的选择,是汽车动力总成系统平台匹配技术研究的一个重要构成单元,本次研究所采用多变所其是一个市场成熟度高的产品,通过选用德国奔驰speedtronic 7速变速箱作为实验的变速器,其具有齿轮咬合紧密和绩效的转换档位的落差,使得动力的联系性为同级别性能较为优越的,并可以自由的设定相应的行驶模式。自动变速器的动力传输主要通过液力变矩器进行。引起液体为一种非硬性的转换装置,其液力传动具有一个在密闭良好的工作空间内,泵轮等工作单元可以进行液体传动带来的动力旋转[1]。 其次,CAN通信网络等也是汽车动力总成系统的一个重要构成。汽车在发展过程中机电一体化程度加快是一个重要的趋势。通过电控系统来实现精确复杂控制是汽车电子技术发展的客观要求。汽车不仅仅是一个简单的交通工具,更是一个移动的科技体。通过多电脑的控制使得汽车机电一体化程度能为汽车带来显著的现代化变革。车载电筒系统包含ABS系统等多种构成。这些类型的构成可以让为汽车的行驶带来更多科技保障[2]。 并且,动力总成电控系统也是汽车动力总成系统的重要构成。目前发动机管理系统随着科技的发展已经进行了高度现代化的改进,本试验选择的CA12GV 发动机管理系统是通过德国博世公司所研发的,具有对多气道多电喷的电控有效

混合动力汽车的发展趋势.

混合动力汽车(HEV)即混合动力电动车,它是由两种或更多类能力来提供动力的,其中就包括电能,可以产生很高的每加仑行驶里程和很低的排放。有两种混合动力电动汽车:串联式和并联式。在串联式HEV中,所需的能量都是由一种能源提供的,例如,电动机驱动汽车发动机给蓄电池组充电。在并联式HEV中,动力经过两种路线传递,电动机和内燃机驱动汽车,电动机在怠速或加速的时候协助驱动汽车,发动机在巡航的时候驱动汽车,并带动发电机给蓄电池充电。当前的混合动力汽车的发动机和电动机通过同一个变速器连接带车轮,有了电动机的帮助发动机能够变的更小。 混合动力汽车(HEV)是当今的热门话题,它开始蜂蜜全球。混合动力汽车是现 在交通技术发展的最前沿,混合动力汽车在汽车工业中有可持续发展的潜能,同时也能减少能源的消耗,降低对原油的依赖,降低环境污染和缓解交通堵塞。混合动力汽车(HEV)把传统的内燃发动机和电动机的优点结合在一起,他们能以许多种不同的方法配置来达到各种不同的目的。在不损失行驶性能和行驶里程的情况下,他们能大大的提高发动机的性能,也能增强动力并为辅助电子装置提供额外的能量。混合动力汽车(HEV)就像传统汽车一样,主要由内燃发动机驱动。然而它也能将在正常滑行和制动中浪费的能量转化成电能存储在蓄电池中,知道被电动机利用。电动机常常在加速、爬坡和内燃机效率低的低速行驶时来辅助发动机。一些混合动力电动车在汽车将要停止时自动关闭发动机,当踏下油门踏板时又自动重新启动发动机,这就防止怠速时能量的浪费。跟纯电动车不一样,现在正在使用的HEV车,不需要插在一个外接电源上来充电。常规的汽油机和制动反馈提供了汽车所需的全部能量。 一些混合动力汽车(HEV)包括: 汽油发动机——混合动力汽车(HEV)有一个和你在绝大部分汽车上找到的非常相似的汽油发动机,只是混合动力汽车(HEV)的发动机比传统的要小,并且利用了能降低排放和增加效率的先进技术。 燃油箱——混合动力汽车(HEV)燃油箱是汽油发动机的能量储存装置,汽油的能量 密度比蓄电池的高很多。 电动机——混合动力汽车(HEV)的电动机非常精密。先进的电子装置能使它即可以 充当电动机也可以充当发电机。例如,必要的时候它可以从蓄电池中获的能量来使汽车加速,另外作为发动机,它能使汽车减速,并把能量回收到蓄电池中。 发电机——发动机和电动机类似,只是它仅仅只能产生电能,它通常被用在大多数串联的混合动力汽车上。 蓄电池——混合动力汽车(HEV)的蓄电池是电动机的能量存储装置,跟油箱存储汽

最新 汽车动力总成系统匹配技术的创新分析-精品

汽车动力总成系统匹配技术的创新分析 前言 通过对汽车动力总成系统比配的技术研究可以为汽车产业的提供符合节能环保必要的技术改进。同时面对汽车动力总成系统的复杂程度不但加深,对控制系统中心技术的应用进行有效的分析,对汽车动力总成系统的有效优化有积极意义。 1.汽车动力总成系统的构成 首先根据本次实验的目的,选择有价值的构成单元进行。选择3.0L 245马力 V6自然吸气的发动机和德国奔驰speedtronic 7速变速箱为其基础动力构成单元。其发动机是德国研发的一款高端发动机,整台发动机是使用V字型的60度夹角和单缸四气门的排气系统构成。其发动机采用了多项现今的汽油机设计技术,具有整台发动机自身重量低,全铝金属设计,符合轻量化以及主/从联合双ECU技术和三层无声链传动系统以及低噪音结构等等。这些先进技术的应用使得发动机具有国际同步的优越性能。变速器的选择,是汽车动力总成系统平台匹配技术研究的一个重要构成单元,本次研究所采用多变所其是一个市场成熟度高的产品,通过选用德国奔驰speedtronic 7速变速箱作为实验的变速器,其具有齿轮咬合紧密和绩效的转换档位的落差,使得动力的联系性为同级别性能较为优越的,并可以自由的设定相应的行驶模式。自动变速器的动力传输主要通过液力变矩器进行。引起液体为一种非硬性的转换装置,其液力传动具有一个在密闭良好的工作空间内,泵轮等工作单元可以进行液体传动带来的动力旋转[1]。 其次,CAN通信网络等也是汽车动力总成系统的一个重要构成。汽车在发展过程中机电一体化程度加快是一个重要的趋势。通过电控系统来实现精确复杂控制是汽车电子技术发展的客观要求。汽车不仅仅是一个简单的交通工具,更是一个移动的科技体。通过多电脑的控制使得汽车机电一体化程度能为汽车带来显著的现代化变革。车载电筒系统包含ABS系统等多种构成。这些类型的构成可以让为汽车的行驶带来更多科技保障[2]。 并且,动力总成电控系统也是汽车动力总成系统的重要构成。目前发动机管理系统随着科技的发展已经进行了高度现代化的改进,本试验选择的CA12GV 发动机管理系统是通过德国博世公司所研发的,具有对多气道多电喷的电控有效控制。其对汽油发动机,尤其对自然吸气发动机具有良好的控制效果。3.0L 245马力 V6自然吸气的发动机控制系统中采用的是空气质量流量计为符合信号的传导,使得比压力传感装置的负荷信号传递给位精准。通过对空气质量的测量来对压力进行感应,整个共组效率获得有效的提升。在自动变速器系统中,对日本爱信的TB-68自动变速器使用于大型豪华后驱车的特点,可以对其进行公司自身的B-800系统管理。其具有正常模式和手动模式等多种模式的踩空,同时,在变速器出现故障后,可以自动将变速器固定到四档位置,施行自救过程,这是整个自动变速器管理控制系统最大的独特优点。 最后,通过对上诉构成单元的有效构成一个完整的汽车动力总成系统。进行匹配技术性能的研究。德国奔驰speedtronic 7速变速箱和3.0L 245马力V6自然吸气的发动机具有技术上的领先型,可以为动力总成系统提供性能完备的保障。CAN网络通信具有动力总成系统具有优越的控制辅助过程。使得该动

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式 XXEV 动力性计算 2最咼行驶车速的计算 最高车速的计算式如下: n r V max 0.377 - i g i o 0.377 2400 °.487 1 6.295

70km/h 43.5mph (2-1) 式中: n—电机转速(rpm); r—车轮滚动半径(m ); i g —变速器速比;取五档,等于1;i。一差速器速比。所以,能达到的理论最高车速为70km/h。 3最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 max arcsin(%山」0. d f) arcsin(2400 1 6.2950.9 0.015)8.20 m.g.r 18000 9.8 0.487

所以满载时最大爬坡度为tan(a-)*100%=14. 4%>14%,满足规定要求. 4电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1以最高设计车速确定电机额定功率 当汽车以最高车速匀速行驶时,电机所需提供的功率(kw)计算式为: 36咖盹八唱游心(2-1) 式中: n—整车动力传动系统效率〃(包括主减速器和驱动电机及控制器的工作效率),取0.86; m—汽车满载质量,取18000kg; g—重力加速度,取9.8m/s2; f—滚动阻力系数,取0.016; Cd—空气阻力系数,取0?6; A—电动汽车的迎风面积,取2?550x3?200=8?16m2(原车宽*车身高);最高车速,取70km/ho 把以上相应的数据代入式(2?1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw),即 二总制诃和E6+吆需型)x7。 =39.5kw<\ OOkw (3-2) 4.2满足以10km/h的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:a = tan-,(0.14) = 8°o 车辆在14%坡度上以10km/h的车速行驶时所需的电机峰值功率计算式为:

并联式式混合动力汽车的全速控制策略

并联式式混合动力汽车的全速控制策略 摘要:并联式混合动力汽车综合了传统汽车和电动汽车的优点,不仅具有低油耗、低排放等优点,而且续驶里程不受限制,是目前最有希望替代传统汽车的方案。因此,对混合动力汽车关键技术的研究具有非常重要的应用价值。利用瞬态优化控制策略,通过对发动机、电动机、电动机在不同功率进行分配组合,来确定混合动力系统最佳工作模式和工作点切换。本文利用混合动力汽车的数学模型,在MATLAB/Simulink环境中建立了前向仿真模型,进行整车控制策略的研究,并对全速范围的运行控制策略进行了验证。 关键词:并联式混合动力汽车 MATLAB/Simulink 全速范围1 引言 并联式混合动力电动汽车主要由发动机、电动/发电机、电池组、能量管理系统等部件组成,与串联式混合动力电动汽车不同的是,发动机和电动/发电机以机械能叠加的方式来驱动汽车,可以组合成不同的功率输出模式。发动机功率和电动/发电机功率约为电动汽车所需最大驱动功率的50%~100%,其能量利用率高。因此,可以采用小功率的发动机与电动/发电机,使得整个动力系统的装配尺寸、质量都较小,造价也更低,行程也可以比串联式混合动力电动汽车的长些,但布置结构相对复杂,实现形式也多样化,其特

点更加接近内燃机汽车。并联式式混合动力驱动系统通常应用在小型混合动力电动汽车上。 因此,并联式驱动系统最适合在城市间道路和高速公路上行驶,工况稳定,发动机经济性和排放性都会有所改善,和混联式混合动力电动汽车相比较而言结构简单,价格也容易被广大消费者接受,因此,在电池技术问题没有得到很好的解决的情况下,它有望在不久的将来成为汽车商业的主流产品。 2 并联式式混合动力汽车的关键技术 混合动力汽车兼具传统燃油汽车和纯电动汽车的优点,是二者的完美结合,这个结合的纽带就是混合动力汽车的整车控制系统,整车控制系统的主要功能是进行整车能量管理和混合动力系统的控制。整车控制系统如同混合动力汽车的大脑,指挥各个系统的协调工作,以达到效率、排放和动力性的最优,同时兼顾行驶的平稳性。整车控制系统根据驾驶员的操作,如加速踏板、制动踏板、变速杆的操作等,判断驾驶员的意图,在满足驾驶需求的前提下,最优的分配电机、发动机、电池等动力部件的功率输出,实现能量的最优管理,使有限的燃油发挥最大的功效。 目前的混合动力汽车都不需要外部充电,因此,与传统汽车一样,混合动力汽车的能量全部来自于发动机的燃料燃烧所释放的热能,电机驱动所需的电能是燃料的热能在车

混合动力汽车发展现状及趋势

混合动力汽车成长现状及趋势 令狐采学 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的位置。本文主要对混合动力汽车成长的必定性,及其我国在成长中存在的一系列问题进行了阐发。指出了混合动力汽车的优缺点,并为其在未来的成长中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的成长,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极年夜的挑战。因此汽车行业不克不及不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重年夜的进展。可是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池自己的污染等问题,使得电动汽车的成长进度和财产化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电念头和帮助动力单位组合作为驱动力,帮助动力单位实际上是一台小型燃料发机或动力发机电组。这样既利用了发念头继续工作时间长,动力性好的优点,又可以阐扬电念头无污染、低噪声的好处。在现阶段,混合动力有很好的成长前景。 1.国内外成长现状 1.1国外成长现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的

重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款年夜量生产的混合动力汽车。自第一代Prius 开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到7月31日,累计销量已超出268万辆。目前市场上正热销的两款车型辨别为丰田Prius和本田Insight。在4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最优越,本田Insight被认为同级中最省油,本田CRZ具有运动气概受到人们的关注。日本国内对混合动力汽车财产有长期的成长规划,政府年夜力搀扶财产技术成长,出台一系列税收优惠政策及奖励办法,增进混合动力汽车销售,拉动内需;规划长远成长战略。 美国三年夜汽车公司原来只是小批量生产、销售过电动汽车,而混合动力和燃料电池电动汽车还未能实现财产化,日本的混合动力电动汽车在美国市场上占据了主导位置。美国能源部与三年夜汽车公司于1993年签订了混合动力电动汽车开发合同,并于1998年在北美国际汽车展上出了样车。9月通用汽车、戴姆勒·克莱斯勒与宝马集团签署了关于构建全球合作联盟,以共同开发混合动力推进系统的合作。美国混合动力汽车销量达到29.032万辆虽然占美国汽车市场份额只有 2.8%,但从起呈逐年上升趋势预计,美国的混合动力汽车将达到87.2万辆,市场占有率将达到5%。 1.2国内成长现状 目前,我国在新能源汽车的自主立异过程中,坚持了政府支持,以核心技术、关键部件和系统集成为重点的原则,确立了以混合电动汽车、纯电动汽车、燃料电池汽车为“三纵”,以整车控制系统、机电驱动系统、动力蓄电池/燃料电池为“三横”的研发规划,通过产学研紧密合作,我国混合动力汽车的自主立异取得了一定进展。 形成了具有完全自主知识产权的动力系统技术平台,建立了混合动力汽车技术开发体系。混合动力汽车的核心是电池(包含电池管理系统)技术。除此之外,还包含发念头技术、机电控制技术、整车控制技术等,发念头和机电之间动力的转换和衔接也是重点。

电动汽车动力匹配设计规范.(DOC)

XXXXXX Q/XXX X X X X X X X X X X有限公司企业标准 XXXXXXXXXXXXXXXXXXXX 电动汽车动力匹配设计规范 XXXX-XX -XX 发布 XXXX-XX -XX 实施 XXXXXXXX有限公司发布

Q/XXX XXXXXXX-201X 目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (3) 4.1 评价指标 (3) 4.2 计算方法 (4) 4.3 基础数据收集和输入 (10) 4.4 计算任务和匹配优化 (10) 4.5 计算结果输入及数据分析 (13)

Q/XXX XXXXXXX-201X 前言 我公司缺少关于动力匹配方面的设计规范,给整车动力性、经济性方面的计算造成障碍。自本规范下发之日起,本文件将指导后续工作中动力性、经济性的计算。 本标准按照GB/T 1.1—2009给出的规则起草。 本标准由XXXX提出。 本标准由XXXX负责起草。 本标准主要起草人:XXX 本标准于XXXX年XX月首次发布。

Q/XXX XXXXXXX-201X 电动汽车动力匹配设计规范 1范围 本规范规定了电动汽车动力匹配设计规范的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本规范适用于XXXX整车动力性能匹配与计算。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 12534-1990 汽车道路试验方法通则 GB/T 12544-2012 汽车最高车速试验方法 GB/T 12543-2009 汽车加速性能试验方法 GB/T 18386-2005 电动汽车能量消耗率和续驶里程试验方法 GB/T 19596-2004 电动汽车术语 3术语和定义 GB/T 19596中界定的术语和定义适用于本标准。下列术语和定义适用于本文件。 3.1 续驶里程 电动汽车在动力蓄电池完全充电状态下,以已定的行驶工况,能连续行程的最大距离,单位为km。 3.2 能量消耗率 电动汽车经过规定的试验循环后动力蓄电池重新冲带你至试验前的容量,从电网上得到的电能除以行驶里程所得的值,单位为Wh/km。 3.3 最高车速 电动汽车能够往返各持续行程3 km距离的最高平均车速。 3.3 30分钟最高车速 电动汽车能够持续行驶30 min以上的最高平均车速。 3.4 加速能力V1至V2 电动汽车从速度V1加速到速度V2所需的最短时间。 3.5 爬坡车速 电动汽车在给定坡度的坡道上能够持续行驶1 km以上的最高平均车速。 3.6

油电混合动力汽车详解 (1)

油电混合动力汽车详解 【汽车探索详解】如今节能减排已经成为一件很热门的事同时也是一件很重要的事,大到胡爷爷和奥巴马碰面都要谈。而对于汽车领域来说,同样也很热门,各个厂家都在竭尽所能的推出各种环保汽车。为汽车寻找代替能源,降低油耗甚至实现零油耗零排放,已经成为每一家车企的目标。 但在这乊前,油电混合动力系统显然更有实际意义。下面我们将为大家简单介绍混合动力系统的分类和简单工作原理,以及如今各个厂家的混合动力代表车型。 1.目前兲于油电混合动力汽车有很的说法,微混合、轻度混合动力、重混合动力、插入式混合动力等等,汽车探索为您解读它们分别是什么意思。 2.为您介绍混合动力汽车的发动机有什么特色,所用的电池有哪几种。 混合动力汽车由来已久,可能您会觉得难以置信,混合动力汽车已经有了上百年的历史。大名鼎鼎的费迪南德·保时捷在上世纪末就为一家名为Jacob Lohner的公司开发出一款油电混合动力汽车,甚至造出了四驱版本。 Lohner-Porsche的四驱车型

Lohner-Porsche的赛车型号 美国专利局兲于“Mixed Drive for Autovehicles”的专利 如果您有机会查一查美国专利局那些被尘封的资料,会惊奇的发现今年的3月2日距美国的第一个混合动力汽车专利已经过去了整整一个世纪!1909年,身在比利时的德国人Henri Pieper取得了一项名为“Mixed Drive for Autovehicles”的专利。 分类:目前主要以并联、混联为主,按混合度分类的说法也很常见 现代的混合动力汽车是仍上世纪90年代末才开始逐渐发展起来的。按照其工作斱式,大体上可以分为串联、并联和混联三种。 串联式:已经被淘汰 简单地说,串联式混合动力汽车的工作斱式就是用传统发动机直接通过发电机为电池充电,然后完全由电动机提供的动力驱动汽车。其目的在于使发动机长时间保持在最佳工作状态,仍而达到减排的效果。这种斱式的好处是发动机可以不受行驶状态的影响,一直处于最佳工作状态,对于改善排放大有好处,但转换效率偏低。这种斱式由于局限比较多,目前已不多见。丰田曾经将这种斱式应用在考斯特上,并迚行了批量生产。

汽车动力传动系统参数优化匹配方法

1 机械传动汽车动力传动系统参数的优化通常包括发动机性能指标的优选,机械变速器传动比的优化和驱动桥速比的优化,以下分别阐述。 7.1汽车发动机性能指标的优选方法 在汽车设计中,发动机的初选通常有两种方法: 一种是从保持预期的最高车速初步选择发动机应有功率来选择的,发动机功率应大体上等于且不小于以最高车速行驶时行驶阻力功率之和;一种是根据现有的汽车统计数据初步估计汽车比功率来确定发动机应有的功率。 在初步选定发动机功率之后,还需要进一步分析计算汽车动力性和燃料经济性,最终确定发动机性能指标(如发动机最大转矩,最大转矩点转速等)。 通常在给定汽车底盘参数、整车性能要求(如最大爬坡度max i ,最高车速m ax V ,正常行驶车速下百公里油耗Q ,原地起步加速时间t 等),以及车辆经常运行工况条件下,就可以选择发动机的最大转矩T emax ,及其转矩n M ,最大功率max e P 及其转速P n ,发动机最低油耗率min e g 和发动机排量h V 。 在优选发动机时常常遇到两种情况:一种情况是有几个类型的发动机可供选择,在整车底盘参数和车辆经常行驶工况条件确定时,这属于车辆动力传动系合理匹配问题,可用汽车动力传动系统最优匹配评价指标来处理。 第二种情况是根据整车性能要求和汽车经常行驶工况条件来对发动机性能提出要求,作为发动机选型或设计的依据,而这时发动机性能是未知的。 对于计划研制或未知性能特性指标的发动机性能可看作为发动机设计参数和运行参数的函数,此时,外特性和单位小时燃油消耗率可利用表示发动机的简化模型。 优选汽车发动机参数的方法: (1) 目标函数F (x ) 目标函数为汽车行驶的能量效率最高。 (2) 设计变量X ],,,,[max h M p e em V n n P T X

相关主题
文本预览
相关文档 最新文档