当前位置:文档之家› 遥感图像处理考试

遥感图像处理考试

遥感图像处理考试
遥感图像处理考试

第四,五章

1.遥感图像辐射畸变的原因:

内部误差:○1光学镜头的非均匀性○2光电转换误差及探测器增益的变化。

外部误差:○1大气散射与吸收○2太阳位置○3地形起伏。

2.系统辐射误差校正

○1光学镜头的非均匀性引起的边缘减光现象的校正

○2坏线及条纹的修复

○3随机坏象元

3..辐射定标的定义

是指传感器建立每个探测元所输出信号的数值量化值(DN)与该探测器对应视场内的实际地物辐亮度值(Li)之间的定量关系。

作用:遥感信息定量化的前提,遥感数据的可靠性及应用的深度和广度在很大程度上取决于遥感器的定标精度。

4辐射定标方法

○1仪器实验室定标

○2机上或星上定标

○3场地定标:主要有3种方法,反射率基法,辐射量度法和辐照度基法,最常用的是反射率基法。

辐射校正场:

美国:白沙辐射校正场;

法国:马赛市Lacrau辐射校正场;

中国:青海省青海湖热红外辐射校正场,甘肃省郭煌戈壁可见光/近红外波段辐射校正场。

5.两个定标系数:

增益gain(斜率)偏移offset/bias(截距)L=Gain*DN+bias

6.程辐射Lp:

大气对辐射散射后,有相当一部分散射光直接进入传感器,这部分辐射称为程辐射。

去掉程辐射的主要方法有:直方图最小值去除法和回归分析法。

7.大气校正定义

消除由于大气散射和大气吸收引起的辐射误差的处理过程称为大气校正

8.大气校正方法

统计学方法:内部平均法平场域法经验线性法实测光谱回归法

辐射传递方程计算法

波段对比法:回归分析法直方图法

9.常见辐射传输模型:

Lowtran系列-6或-7 ,Modtran系列,Hitran 5S6S系列,6S ATCOR系列,FLAASH 其他

10.暗像元方法原理(暗目标法):

基本思路:假设整幅图像的大气散射影响均一,并认为一幅图像中某种或某几种地物其反射率接近0,即“暗目标”,如纯净的水体等。“暗目标”在图像中对应位置的图像亮度值应为0,但实际上由于大气的影响,该像元的亮度值一般大于0,则认为这个值就是大气程辐射值。

方法:将每一波段中每个像元的亮度值都减去本波段的最小值,使图像亮度动态范围得到改善。对比度增强,从而提高了图像质量

11.地面辐射校正:

太阳辐射校正:公式法波段比值法

地形辐射校正

12.太阳辐射校正

主要校正由太阳高度角导致的辐射误差,即将太阳光线倾斜照射时获取的图像校正为太阳光线垂直照射时获取的图像。

13.地形辐射校正

地形校正就是通过各种变换,将所有象元的辐射亮度变换到某一参考平面上(通常取水平面),从而消除由于地形起伏引起的影像灰度值(或亮度值)变化,是影像更好的反映地物光谱特征。

14.预处理:

因为遥感数据的几何校正和辐射校正是在信息提取之前进行的操作,所以通常称为预处理。内部误差:由传感器本身引起的误差。

外部误差:指传感器本身处在正常工作的条件下,由传感器以外的各因素引起的误差。14.几何校正:

定量地确定图像上的像元坐标(图像坐标)与目标物的地理坐标(地图坐标等)的对应关系(坐标变换式)。

15.几何粗校正:

是针对卫星运行和成像过程中引起的几何畸变进行的校正,即卫星姿态不稳、传感器内部变形等因素引起的变形。

16.几何精校正

定义:遥感图像的精校正是指消除图像中的几何变形,产生一幅符合某种地图投影或图形表达要求的新图像的过程。同时且要找到新图像中每一像元的亮度值。也就是利用地面控制点进行的几何校正,即通常所说的配准过程。

基本原理:回避成像的空间几何过程,直接利用地面控制点数据对遥感图像的几何畸变本身进行数学模拟,并且认为遥感图像的总体畸变可以看做是挤压、扭曲、缩放、偏移以及更高次的基本变形的综合作用的结果。

几何精校正的步骤:

⑴相对几何校正:几何精校正以数据集作为参照。如果数据集是图像,该过程称为相对校正。即以一幅图像为基础,纠正其他图像。

⑵绝对几何校正:如果基准数据是标准的地图,则称为绝对纠正,即以地图作为参考,纠正图像。

①选取地面控制点(GCP,Ground Control point);一个在影像上可以分辨并能在地图上精确定位的地表位置(如:交叉路口)。

②依据控制点对数据进行空间坐标变换,也就是在几何位置上校正畸变误差;

③取得变换后图像各像元的灰度值,即对图像进行重采样。17.重采样方法

最邻近内插法:将最邻近的像元的像元值赋予新像元。

双线性内插法:使用邻近4个点的像元值,按照其距内插点的距离赋予不同的权重,进行线性内插。

三次卷积内插法:使用内插点周围的16个像元值,用三次卷积函数进行内插。

17.控制点评判

地面控制点选取时应注意如下几点:

(1)地面控制点在图像上有明显的、清晰的定位识别标志,如道路交叉点、河流叉口、建筑边界等;

(2)地面控制点的地物不随时间而变化,以保证两幅不同时段的图像或地图几何校正是,可以同时识别出来;

(3)尽可能满幅均匀选取,特征变化大的地区应多选些地面控制点。

控制点的最少数目为(n+1)(n+2)/2

18.两个坐标间的关系

20.当选用一次项纠正时,可以纠正图像因平移、旋转、比例尺变化等引起的线性变形。当选用二次项纠正时,则在改正一次项各种变形的基础上,还改正二次非线性变形。如选用三次项纠正则改正更高次的非线性变形。

第六章

21.图像增强的概念

特定目的,突出遥感图像中某些信息,削弱或除去某些不需要的信息,改善图像视觉效果,使图像更易判读,或为后续的计算机处理提供方便

22.光谱变换方法:

对比度增强, 彩色增强, 代数运算, 多光谱变换,遥感图像融合。

23.对比度增强的定义

扩展原始的输入亮度值范围,使输出设备的整个动态范围或灵敏度得以利用,压缩不感兴趣的亮度值。

对比度增强的原因:○1地物本身的生物物理特征造成的低对比度;○2传感器的灵敏度

全局线性拉伸:适合直方图高斯分布或接近高斯分布的遥感影像

线性拉伸

分段线性拉伸:适合双峰或三峰的直方图的遥感影像

指数变换

对数变换

非线性拉伸平方根拉伸

高斯拉伸

直方图均衡化

直方图规定化(直方图匹配)

24.直方图规定化方法特点:

把直方图已知的图像变换为具有期望直方图图像的过程

直方图规定划原理:对两个直方图都作均衡化,变成归一化的均匀直方图。以此均匀直方图做中介,再对参考图像做均衡化的逆运算。

25.密度分割定义:

对单波段遥感图像按灰度分级,对每级赋予不同的色彩,使之变为一幅彩色图像。

26.色彩的基本属性

色彩具有三个基本属性:色调、饱和度和亮度(明度)。

(1)明度——颜色在视觉上引起的亮暗程度。0—1

明度取决于人眼的视觉感受性、背景、对比度、记忆与经验等因素。

(2)色调——颜色的类别。0—360

色调是识别、区分物体的主要标志。

色调主要取决于:入射光源的光谱组成物体对入射光的选择性吸收和反射特性

(3)饱和度——彩色的纯洁程度。0—1

饱和度取决于物体表面反射光谱辐射的选择

程度,光谱选择性越高,则饱和度越高。

26.彩色增强:对图像的色调进行调整,以达到改善视觉效果。

伪彩色增强:将单波段黑白图像的不同灰度级按线性或非线性映射函数变换成不同的彩色。彩色合成:包括真彩色合成、假彩色合成、模拟真彩色合成(解决遥感器中没有蓝色波段的问题。)

27.彩色合成:

将多波段黑白图像采用红、绿、蓝三色合成,变为彩色图像的处理技术。

合成的彩色与三个通道灰度值的关系:

与三通道的能量贡献有关,谁的贡献大就呈现出谁的颜色。

28.标准价彩色合成:彩色合成时,把近红外波段的影响作为合成图像中的红色分量,把红色波段的影响作为合成图像中的绿色分量,把绿色波段的影像作为合成图像中的蓝色分量进行合成的结果。

真彩色:红光波段赋予红光通道,绿光波段赋予绿光通道,蓝光波段赋予蓝光通道。

29.彩色变换:

在RGB系统中,经过对比度拉伸后,合成的彩色也往往缺乏饱和度,所以将RGB变换到HIS系统,并对饱和度分量进行对比度拉伸,以达到彩色增强的效果。

31.植被指数:根据地物光谱反射率的差异作比值运算可以突出图像中植被的特征、提取植被类别或估算绿色生物量,能够提取植被的算法称为NDVI。

32.多光谱变换:通过对多波段特征空间中的坐标旋转,以达到压缩数据量、去除噪声或便于图像特征的提取的目的。

33.主成分分析(PCA):也称主分量分析。它是研究如何把多个指标化为较少的几个综合指标的一种分析方法。综合后的新指标为原来指标的主成分或主分量。

作用:

1)去除波段间的相关性和图像增强

2)减少波段数,减少信息冗余。从几何角度看,就是缩小所在空间的维数。

34.缨帽变换(K-T变换):1976年由Kauth-Tomas提出,其目的是提出绿色植被的成分,它是一种正交变换。但旋转后的坐标轴不是指向主成分方向,而是指向与地面景物有密切关系的方向。

主成分变换与缨帽变换的共同点是都是多光谱。

缨帽变化几个有意义的分量:亮度、绿度、湿度。

35.遥感图像的融合:把具有互补的多源数据,按一定算法进行处理,获

得比任何单一数据更精确、更丰富的信息,生成新的时、空、光谱特征的合成图像。

融合的原因:单个传感器:特定的时、空、光谱分辨率,工作波

段等,无法全面反映目标特征。

图像融合:信息的优化、整合,信息量则增加

图像增强:针对单一数据源,信息没有增加

36.融合的类型:遥感数据与遥感数据:同一遥感器多波段、多时相;不同类型传感器。

遥感数据与非遥感数据:DEM、气象、水文、地球物理、地球化学等。

37.空间频率:

影像中任一特定部分单位距离内亮度值变化数量。如果在很短的距离内亮度值变化剧烈,则该区域称为高频区域,相反则称为低频区域。

空间频率增强或减弱的方法:空间卷积滤波(空间域滤波)低通滤波(平滑)

傅里叶变换(频率域滤波)高通滤波(锐化)38.平滑的作用:对图像的低频分量进行增强,同时削弱图像的高频分量,用于去除影像在获取和传输过程中受传感器和大气等因素导致的噪声。

39:图像锐化的作用:抑拟制图像中低频分量,突出地物边缘、轮廓或线状目标等高频分量。

锐化提高了边缘与周围像素间的反差,即边缘增强。

平滑则使图像边缘模糊。

40.各种算子

拉普拉斯算子——二阶微分

41.滤波器类型:○1理想高通滤波器○2Butterworth低通滤波器(特点:连续衰减,大大降低图像边缘的模糊程度。),Butterworth高通滤波器(锐化效果较好,边缘抖动不明显)○3指数低通滤波器,指数高通滤波器○4梯形低通滤波器,梯形高通滤波器

42.同态滤波作用:是减少低频,增加高频。消除不均匀照度的影响而又不损失图象节。

43.图像分割:是指把图像分成各具特性的区域并提取感兴趣目标的技术和过程。

基本思想:基于图像灰度值的两个基本特征:相似性(区域内部)和不连续性(区域之间)相似性分割:将相似灰度级的像素聚集在一起,形成图像中的不同区域。通过选择阈值,找到灰度值相似的区域,区域的外轮廓就是对象的边。

非连续性分割:首先检测局部不连续性,然后将它们连接起来形成边界,这些边界把图像分以不同的区域。先找边,后确定区域。

两种方法是互补的。有时将它们地结合起来,以求得到更好的分割效果。

基本方法:①基于边缘提取的分割法:先提取边界,再确定边界限定的区域;

②区域分割:从图像出发,按属性一致原则,确定每个像元的归属区域;

③区域生长:从像元出发,按属性一致原则,将属性接近的连通像元聚集成

区域;

④分裂-合并分割:综合②③,既存在图像划分,又有像元的合并。

44.边缘检测:基于边缘跟踪的图像分割方法的基本思路是先确定图像中的边缘像素,然后就可把它们连接在一起构成所需的边界。

(1) Roberts算子

(2) Sobel算子

(3) Prewitt算子

(4) 拉普拉斯二阶导数算子

44.边缘连接:将近邻的边缘点连接起来从而产生一条闭合的连通边界的过程。

过程:①提取可构成线特征的边缘;

②将边缘连成线。

原因:由于噪音的原因,边界的特征很少能够被完整地描述,在亮度不一致的地方会中断。

45.监督分类:选择具有代表性的典型实验区或训练区,用训练区中已知地面各类地物样本的光谱特性来“训练”计算机,获得识别各类地物的判别函数或模式,并以此对未知地区的像元进行分类处理,分别归入到已知的类别中。

46. 非监督分类:是在没有先验类别(训练场地)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度的大小进行归类合并(即相似度的像元归为一类)的方法。

48.彩色变换模型:

49.遥感分类的定义:

根据图像像元的光谱信息和空间信息特征的差异,将图像中的所有像元按其性质分为若干类别的过程。

分类方法:

1)根据是否需要分类人员事先提供抑制类别及其训练样本,对分类器进行训练和监督,可将遥感图像分类方法划分为监督分类和非监督分类。

监督分类:事先已经知道类别的部分信息(先验知识),对未知类别的样本进行分类的方法。

非监督分类:事先没有类别的先验知识,对未知类别的样本进行分类的方法。

2)根据一个像素被分到一个类还是多个类,可将遥感图像分类方法分为硬分类和软分类。

硬分类:图像上的一个像素只能被分到一个类的分类方法。

软分类:图像上的每一个像素可以同时被分到两个或两个以上类的方法。

50.相似性度量的几个指标:距离、相似性系数

常用的距离包括:绝对距离,欧式距离,马氏距离。

51. 分类的工作流程:

图像预处理

选择分类方法

特征选择和提取

选择合适的分类参数进行分类

分类后处理

精度评价

52.监督分类与非监督分类的几种常见方法:

非监督分类:K-均值法,ISODATA方法

监督分类:平行管道法,最小距离法,马氏距离法,最大似然法,波谱角法

其他分类:决策树分类,神经网络。

53.精度评价:

总体精度:分类图的分类结果与地面对应区域的实际类型相一致的概率。

用户精度:表示从分类结果图中任取一个随机样本,其所具有的类型与地面实际类型相同的条件概率。他反映分类图中各类别的可信度,即这幅图的可靠性。

制图精度:表示参考图的任一个随机样本,与分类图上同一地点的分类结果相一致的条件概率。它反映用于产生这张分类图的方法的好坏。

漏分误差:是实际的某一类地物有多少被错误的分到其他类别。

错分误差:是图像中被划为某一类地物实际上有多少应该是别的类别。

54.直方图均衡化的特点。

1)各灰度级中像素出现的频率近似相等;

2)原图像上像素出现频率小的灰度级被合并,实现压缩;出现频率高的灰度级被拉伸,突出细节信息

3)改变了灰度值与影像结构的关系,因此不宜从均衡处理后的影像提取纹理或生物物理信息。

前两章

1.图像的概念:

是以不同的形式和手段观测客观世界而获得的可以直接或间接作用于人眼,进而产生视觉的一种实体。(它是客观对象的一种相似性的描述或写真,它包含了被描述或写真对象的信息)。

2.图像的分类

(1)人眼的视觉特点:可见图像、不可见图像。

(2)图像的明暗程度和空间坐标的连续划分:数字图像、模拟图像。

(3)波段的数量:单波段图像、多波段图像。

(4)时间特性:静态图像、动态图像。

3.数字图像

是指数字形式表达的遥感图像,最基本单元是像素,每个像素具有空间位置特征和属性特征。

4.模拟图像

指空间坐标和明暗程度连续变化的,计算机无法直接处理的图像,属于可见图像。

5.几种通用的遥感数字图像处理系统

ENVI、ERDAS、PCI、ERMAPPER。

1、遥感平台(了解)

地面、航空、航天;气象、陆地、海洋。

2、影响获取(成像)方式:

(1)摄影成像

(2)扫描成像:线性扫描仪、掸扫式扫描仪、推扫式扫描仪。

(3)雷达成像

3.常用平台

4、图像数字化的两个过程:采样和量化。

采样:将空间上连续的图像变换成离散点(即像素)的操作称为采样。

量化:将像素灰度值转换成整数灰度级的过程。

5、数字图像的存储方式(结构):

BSQ:像素按波段顺序依次排列的数据格式(即将每个波段的全部像元亮度值放在一个单独文件中)。

BIL:同一行不同波段的数据保存在数据块中。

BIP:一像素为核心,像素的各个波段数据保存在一起,打破了像素空间位置的连续性。

其它数据格式:HDF、TIFF、GeoTIFF

6. 单波段图像统计

影像的一元统计学描述:包括影像各波段最小值、最大值、值域、均值、标准差、偏度、峰度等。

影像的多元统计学描述:包括协方差和相关系数等。协方差是关于其均值的关联变化。

7. 纹理

纹理是由灰度分布在空间位置上反复交替变化而形成的,因而在图像空间中相隔某距离的两像素之间会存在一定的灰度关系,这种关系被称为是图像中灰度值的空间相关特性。

8.灰度共生矩阵

(GLCM,又称为灰度联合概率矩阵法):是对图像上保持某距离的两像素分别具有某灰度值的状况进行统计得到的,它描述了成对像素的灰度值组合分布,它能够良好的表征图像表面灰度分布的周期规律。(书上P54 有详细介绍)

9.纹理参数:

(1)角二阶矩

(2)熵

(3)对比度:

(4)均匀性

(5)相异性

(6)方差

(7)均值

10. 直方图的作用:

(1)根据直方图的形态可以大致推断图像的反差,然后可通过有目的地改变直方图形态来改善图像的对比度。

(2)通过直方图的形态还可以有助于解译图像。

遥感数字图像处理-要点_百度文库

遥感数字图像处理-要点 1.概论 遥感、遥感过程 遥感图像、遥感数字图像、遥感图像的数据量 遥感图像的数字化、采样和量化 通用遥感数据格式(BSQ、BIL、BIP) 遥感图像的模型:多光谱空间 遥感图像的信息内容: 遥感数字图像处理、遥感数字图像处理的内容 遥感图像的获取方式主要有哪几种? 如何估计一幅遥感图像的存储空间大小? 遥感图像的信息内容包括哪几个方面? 多光谱空间中,像元点的坐标值的含义是什么? 与通用图像处理技术比较,遥感数字图像处理有何特点?遥感数字图像处理包括那几个环节?各环节的处理目的是什么? 2.遥感图像的统计特征 2.1图像空间的统计量 灰度直方图:概念、类型、性质、应用 最大值、最小值、均值、方差的意义 2.2多光谱空间的统计特征 均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义波段散点图概念及分析 主要遥感图像的统计特征量的意义 两个重要的图像分析工具:直方图、散点图 3.遥感数字图像增强处理 图像增强:概念、方法 空间域增强、频率域增强 3.1辐射增强:概念、实现原理 直方图修正,线性变换、分段线性变换算法原理 直方图均衡化、直方图匹配的应用 3.2空间增强 邻域、邻域运算、模板、模板运算 空间增强的概念 平滑(均值滤波、中值滤波)原理、特点、应用 锐化、边缘增强概念

方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点? 计算图像经过下列操作后,其中心象元的值: – 3×3中值滤波 –采用3×3平滑图像的减平滑边缘增强 –域值为2的3×1平滑模板 – Sobel边缘检测 – Roberts边缘检测 –模板 3.3频率域处理 高频和低频的意义 图像的傅里叶频谱 频率域增强的一般过程 频率域低通滤波 频率域高通滤波 同态滤波的应用 3.4彩色增强 彩色影像的类型:真彩色、假彩色、伪彩色

(完整版)ERDAS遥感图像处理实验报告

西北农林科技大学 ERDAS实验报告 专业班级:地信111 姓名:杨登贤 学号:2011011506 2013/12/20 ERDAS实验报告

一.设置一张三维图。 (3) 1.底图与三维图 (3) 2.参数设置 (5) (1)三维显示参数 (5) (2)三维视窗信息参数 (6) (3)太阳光源参数 (6) (4)显示详细程度 (6) (5)观测位置参数 (7) 二.(几何纠正几何畸变图像处理):几何纠正结果图。 (7) (2)选择合适的坐标变换函数(即几何校正数学模型) (8) (3)数据控制点采集表 (9) (4)多项式模型参数 (9) (5)图像重采样参数 (10) (6)结果图 (10) 三.(数据输入\ 输出):镶嵌图(根据不同条件做出不同的几张)。 (11) 1.图像色彩校正设置 (12) 四.(图像增强处理):傅里叶高通/低通滤波图或效果图空间增强效果图。 (13) 1.空间增强卷积处理 (13) (1)原图像 (13) (2)卷积增强设置参数 (13) (3)卷积增强处理图像 (14) 2.傅里叶变换 (14) (1)快速傅里叶变换设置参数 (14) (2)低通滤波 (15) (3)高通滤波 (16) 五.光谱增强。 (18) 1.主成分变换 (18) (1)参数设置 (18) (2)处理图像 (19) 2.缨帽变换 (19) (1)参数设置 (19) (2)处理图像 (20) 3.指数计算 (20) (1)参数设置 (20) (2)处理图像 (21) 4.真彩色变换 (21) (1)参数设置 (21) (2)处理图像 (22) 六.(非监督分类):非监督分类结果图分类后处理结果图去除分析结果图。 (23) 1.参数设置 (23) 2.非监督分类结果图 (24) 3.分类后处理结果图 (25)

遥感数字图像处理实习1

(1)以多波段组合方式将GeoTIFF格式的白银市TM原始数据转换为ENVI Standard 格式: 利用Basic Tools/Layer Stacking弹出对话框然后Import File,弹出对话框,导入GeoTIFF格式的TM原始数据,选择波段1、2、3、4、5和7, 点击OK,利用Choose选择输出路径及文件名,同时可以利用Reorder Files对输入的文件根据自己的需要进行调换顺序,点击OK输出ENVI Standard格式的数据。 (2)查询并记录影像文件的基本信息、投影信息,以及各个波段直方图信息,然后编辑头文件: 利用Basic Tools/Resize Data弹出对话框里面选择要查看的影像,左 边会出现其基本信息,如图所示:也有投影信息,既可以用来看单波段的也可以看合成后整个影像的信息。在对话框下,合成影像的名字上右击,选择Quick Statistics弹出对话框,在此对话框中点击Select Plo下拉菜单,选择单波段或者多波段的直方图,相应的对话框中会出现直方图(在结果与分析中记录),还可以右击选择edit修改横、纵坐标的单位。 同样的在合成影像的名字上右击,选择Edit Head,弹出对话框

然后点击Edit Attributes/Band Name弹出对话框,选中波段输入修改 后名字,点击OK即可进行波段名字的修改。点击Edit Attributes/Wavelengths弹出进行相应的波长的修改。 (3)在View视窗中,利用影像缩小、放大、漫游工具识别影像中的土地利用/土地覆盖类型: 可以结合当地的google earth上高分辨率的遥感影像,进行识别,利用Viewer视窗下Tools/SPEAR/Google Earth/Jump to Location可以在google earth上显示View主视窗中相应选中地物对应的位置。 (4)利用Viewer视窗打开影像,分别选取4、3、2和7、4、2波段组合进行假彩色合成,观察实习内容中所要求地物的色调变化: 利用File/Open Image File,选择第1步合成的ENVI Standard 格式的数据,弹出对话框,在其中选择RGB Color,将R、G、B分别设为4、3、2波段,点击Load Band,在Viewer#1中出现了4、3、2波段组合的假彩色图像,再在此窗口中,点击Display/New Display,弹出Viewer#2,选择RGB Color,将R、G、B分别设为7、4、2波段,点击Load Band,在Viewer#2中出现了7、4、2波段组合的假彩色图像,在Viewer窗口中右击选择Link Displays,弹出对话框,点击OK,可以把两个窗口中同一位置进行连接起来, 即其中一个窗口放大、缩小、漫游到某个位置,另外一个也跟着漫游到其相对应的位置。这样可以进行地物色调变化的对比。 (5)提取6种地物在不同波段的数值(Digital Number,DN),做光谱剖面图: 在Viewer视窗中Tools/Profile/Z Profile(Spectrum)弹出对话框,在其 Options下拉菜单中勾选Plot Key,对话框中出现了Viewer视窗中选中的目标地物的X,Y坐标,然后勾选Collect Spectra,鼠标箭头变为十字箭头,在目标地物中取九个点(本来图上就有一个,总共是十个点),然后在选择File/Save Plot As/ASCII弹出对话框 ,点击Select All Items,利用Choose选择输出路径和文件名,点击 OK,将其保存为.txt格式。选六种地物,重复以上操作,提取不同波段的数值(Digital Number,DN)。将.txt格式的文件用excel打开,然后用插入函数中的average函数求出每种地物的平均DN值,然后做出光谱剖面(光谱图如结果与分析中所示)。 (6)使用Excel制作6种地物的样本特征光谱统计表: 在Excel中分别使用插入函数中的AVERAGE、VAR、STDEV、MAX和MIN函数求出各地物样本DN值在各个波段的平均值、方差、标准差、最大值和最小值。然后,在07版Excel 的“Microsoft Office 按钮”,单击“Excel 选项”。“加载项”,然后在“管理”框中,选择“Excel 加载项”,单击“转到”弹出“加载宏”,在弹出来的对话框中选择“分析工具库”,并点击确定。然后从“工具”中找到“数据分析”,从“数据分析”对话框中选择“协方差”,并导入某种地物需求协方差的数据区域并选择“逐行”进行,最后选择数据输出区域并确定,则可得该地物的协方差矩阵。同理,在从“数据分析”对话框中选择“相关系数”,进行相应操作,可求得相关系数矩阵。(在结果与分析中附有个地物的样本特征光谱统计表)(7)制作散点图: 在Excel中,打开6种地物的样本DN数据(5步骤产生的),选择band2和band4做散

图像处理期末考试整理

数字图像处理与计算机视觉复习Ace Nirvana整理 第一章绪论 1.1前言 人类传递信息的主要媒介是语音和图像。 听觉信息20%,视觉信息>60%,其他(如味觉、触觉、嗅觉) <20%,“百闻不如一见”。 医学领域:1895年X射线的发现。 1.2数字图像处理的起源 数字图像处理的历史可追溯至二十世纪二十年代。 最早应用之一是在报纸业,当时,引入巴特兰电缆图片传输系统,图像第一次通过海底电缆横跨大西洋从伦敦送往纽约传送一幅图片。 第一台能够进行图像处理的大型计算机出现在20世纪60年代。数字图像处理的起源可追溯至利用这些大型机开始的空间研究项目,可以说大型计算机与空间研究项目是数字图像处理发展的原动力。 计算机断层是一种处理方法,在这种处理中,一个检测器环围绕着一个物体(或病人),一个X射线源,带有检测器的同心圆绕着物体旋转,X射线通过物体并由位于环上对面的相应的检测器收集起来,然后用特定的重建算法重建通过物体的“切片”的图像,这些切片组成了物体内部的再现图像。 计算机断层技术获得了1979年诺贝尔医学奖。 从20世纪60年代至今,数字图像处理技术发展迅速,目前已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。 如今图像处理技术已给人类带来了巨大的经济和社会效益。不久地将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 1.3图像处理的应用意义 (1)图像是人们从客观世界获取信息的重要来源 人类是通过感觉器官从客观世界获取信息,即通过耳、目、口、鼻、手通过听、看、味、嗅和触摸的方式获取信息。在这些信息中,视觉信息占60%~70%。 视觉信息的特点是信息量大,传播速度快,作用距离远,有心理和生理作用,加上大脑的思维和联想,具有很强的判断能力。其次是人的视觉十分完善,人眼灵敏度高,鉴别能力强,不仅可以辨别景物,还能辨别人的情绪,由此可见,图像信息对人类来说是十分重要的。 (2)图像信息是人类视觉延续的重要手段 人的眼睛只能看到可见光部分,但就目前科技水平看,能够成像的并不仅仅是可见光,一般来说可见光的波长为0.38 um ~0.8um ,而迄今为止人类发现可成像的射线已有多种,如:gamma射线:0.003nm~0.03nm x射线:0.03nm~3 nm 紫外线:3nm~300 nm可见光:300nm~800nm红外线:0.8um~300um微波:0.3 cm~100 cm无线电波:100cm~。 (3)图像处理技术对国计民生有重要意义 图像处理技术发展到今天,许多技术已日趋成熟。在各个领域的应用取得了巨大的成功和显著的经济效益。如在工程领域、工业生产、军事、医学以及科学研究中的应用已十分普遍。 在工业生产中的设计自动化及产品质量检验中更是大有可为。在安全保障及监控方面图像处理技术更是不可缺少的基本技术;至于在通信及多媒体技术中图像处理更是重要的关键技术。因此,图像处理技术在国计民生中的重要意义是显而易见的。

遥感数字图像处理重点

遥感数字图像处理重点 第一章概论 图像:对客观对象的一种相似性的描述或写真。 数字图像:是以数字形式存储和表达的遥感图像。 根据人眼的可视性,图像可分为可见图像和不可见图像。 图像具有空间坐标和数值,根据其连续性,图像可分为数字图像和模拟图像。 数字图像最基本的单位是像素,像素的基本属性特征为像素值,其高低反映了图像的明暗程度和能量高低。像素的属性是位置和灰度值; 遥感数字图像处理的内容: (1)图像增强:目的是压抑和去除噪声,增强显示图像整体,使图像更容易理解、解译和判读。方法:彩色合成、图像拉伸、图像平滑、锐化、图像融合。 (2)图像校正:主要是对传感器和环境造成的图像退化进行模糊消除、噪声滤除、几何失真或非线性校正。方法:辐射校正和几何校正。 (3)信息提取:根据地物光谱特征和几何特征,确定提取规则,并以此为基础从校正后的遥感图像的中提取各种有用信息的过程。方法:图像分割、图像分类。 遥感数字图像处理系统的典型功能包括: ○1不同传感器图像数据的测存取和转换○2几何校正○3辐射校正○4图像增强处理○5统计分析○6图像变换○7图像分类○8专题制图○9专业工具,如雷达图像处理工具。 第二章遥感数字图像的获取和储存 遥感图像是通过遥感平台上的传感器获取的,不同的传感器具有不同的辐射、电磁波谱、时间、空间分辨率。 遥感是通过非接触传感器获取测量对象信息的过程,是信息的获取、传输、处理以及判读和应用的过程。遥感的实施依赖于遥感系统。 传感器又称遥感器,是收集和记录电磁辐射能量信息的装置,是信息获取的核心部件。 传感器的分辨率:传感器区分自然特征相似或光谱特征相似的相邻地物的能力。分为:(1)辐射分辨率:传感器区分所接受到的电磁波辐射强度差异的能力。 (2)光谱分辨率:传感器记录的电磁波谱的波长范围和数量。 (3)空间分辨率:遥感图像上能够详细区分的最小单元的尺寸或大小。 (4)时间分辨率:传感器对同一空间区域进行重复探测时,相邻两次探测的时间间隔。图像数字化:数字化的两个过程是采样和量化。 (1)采样:分波谱采样和空间采样,通过空间采样,空间上连续的图像变换成离散点。 (2)量化:将像素灰度级转换成整数灰度级的过程。量化后,图像像素的原有灰度值转换为灰度级。 元数据:关于图像数据特征的表述,是数据的数据,主要参数包括:图像获取的日期和时间、投影参数、几何纠正精度、图像分辨率、辐射校正参数等。

遥感图像处理 分类 实验报告

Lab6 non-parametric classification and post classification 12021005龚鑫烨Objection:the major object of the current lab section are to implement non-parametric classification based on BP networks and support vector machines algorithms,with a full mastery of post-classification operation. Data: the subset of spot 5 imagery covering NJ. Steps: 1、identify a training dataset and an independent set of validation data for built-up, forest,cropland,grassland and water. 2、Implementing above-mentioned non-parametric algorithms to classify your image. 3、Validating your classification. 4、Refining your classification by implementing the majority filtering and modeling process if possible. 实验步骤: 1、将数据加载到envi中

遥感数字图像处理考试知识点整理

遥感 第一章 1遥感数字图像;遥感数字图像的分类方式和对应类别。 (1)定义:遥感数字图像是数字形式的遥感图像。不同的地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 (2)可见图像和不可见图像 单波段和多波段,超波段 数字图像和模拟图像 2遥感图像的成像方式(三大种:摄影、扫描、雷达)。 (1)摄影,扫描属于被动遥感 雷达属于主动遥感 (2)摄影:根据芦化银物质在关照条件下回发生分解这一机制,将卤化银物质均匀涂在片基上,制成感光胶片 扫描:扫描类遥感传感器逐点逐行地以时序方式获取的二维图像 雷达:由发射机向侧面发射一束窄波段,地物反射的脉冲,由无线接收后被接收机接收 3遥感图像的数字化(模数转换)过程——两大过程:采样、量化,名词解释。 采样:将空间上连续的图像变换成离散点的操作称为采样,即:图像空间位置的数字化。采样是空间离散。 量化:遥感模拟图像经离散采样后,可得到由M×N个像素点组合表示的图像,但其灰度(或彩色)仍是连续的,还不能用计算机处理。它们还要进一步离散并归并到各个区间,分别用有限个整数来表示,这称之为量化,即:图像灰度的数字化。量化属于亮度属性离散。 遥感图像数字化过程两个特点:亮度和空 4遥感数字图像的存储空间大小的计算。 图像的灰度级有:2,64,128,256 存储一幅大小为M*N,灰度量化位数G的图像,所需要的存储空间(图像数据量)为M*N*G(bit) 1B=8bit 1KB=1024B 1MB=1024KB 1GB=1024MB TM空间分辨:1,2,3,4,5,7为30米,6为120米 5遥感数字图像的分辨率(时间、空间、光谱、辐射分辨率); (1)时间分辨率:指对同一地点进行遥感采样的时间间隔即采样的时间频率,也称重访周期空间分辨率:指图像像素所代表的相应地面范围的大小,空间分辨率愈高,像素所代表的范围愈小 光谱分辨率:光谱分辨率是指成像的波段范围,分得愈细,波段愈多,光谱分辨率愈高 辐射分辨率:是传感器区分反射或发射的电磁波辐射强度差异的能力。高辐射分辨率可以区分信号强度的微小差异。 (2)常见传感器和空间分辨率书17-18页 6遥感数字图像的数据(数据级别、数据存储格式、元数据定义) (1)数据级别: 0级产品:未经过任何校正的原始图像数据 1级产品:经过了初步辐射校正的图像校正 2级产品:经过了系统级的几何校正,即根据卫星的轨道和姿态等参数以及地面系统中的有关参数对原始数据进行几何校正。产品的几何精度由上述参数和处理模型决定。 3级产品:经过几何精校正,即利用地面控制点对图像进行了校正,使之具有了更精确的地理坐标信息。产品的几何精度要求在亚像素量级上。 不同点:不同级别的产品使用条件不同,但是他们都是数据的集合,是信息量的汇总。一般来说,都是由元数据和图像基本数据两部分数据汇总的结果。

遥感图像处理实验

哈尔滨工业大学 遥感图像处理及遥感系统仿真 实验报告 项目名称:《遥感图像处理及遥感系统仿真创新》 姓名:蒋国韬 学号:24 院系:电子与信息工程学院 专业:遥感科学与技术 指导教师:胡悦 时间:2017年7月

实验一:遥感数字图像的增强 一、实验目的: 利用一幅城市多光谱遥感图像,分析其直方图,并利用对比度增强和去相关拉伸方法对遥感图像进行增强。 二、实验过程: 1.用multibandread语句读取一幅多光谱遥感图像(7波段,512x512图像)的可 见1,2,3波段(分别对应R,G,B层); 2.显示真彩色图像; 3.通过研究直方图(imhist),分析直接显示的真彩色图像效果差的原因;

4.利用对比度增强方法对真彩色图像进行增强(imadjust,stretchlim); 5.画出对比度增强后的图像红色波段的直方图;

6.利用Decorrelation去相关拉伸方法(decorrstretch)对图像进行增强;

7.显示两种图像增强方法的结果图像。

三、实验分析: (1)高光谱影像由于含有近百个波段,用matlab自带的图像读写函数imread和imwrite往往不能直接操作,利用matlab函数库中的multibandred函数,可以读取多波段二进制图像。512×512为像素点,7位波段数,bil为图像数组的保存格式,uint8=>uint8为转换到matlab 的格式,[3 2 1]的波段分别对应RGB三种颜色。 (2)直接观察真彩复合图像发现,图像的对比度非常低,色彩不均匀。通过观察红绿蓝三色的波段直方图,可以观察到数据集中到很小的一段可用动态范围内,这是真彩色复合图像显得阴暗的原因之一。另外,根据三种颜色的三维散点图,如下

遥感数字图像处理教程期末复习题

遥感数字图像处理教程 第一章概论 1.1图像和遥感数字图像 1.1.1图像和数字图像 本书定义图像为通过镜头等设备得到的视觉形象 根据人眼的视觉可视性可将图像分为可视图像和不可视图像。可视图像有图片、照片、素描和油画等,以及用透镜、光栅和全息技术产生的各种可见光图像。不可见图像包括不可见光成像和不可测量值 按图像的明暗程度和空间坐标的连续性,可将图像分为数字图像和模拟图像。数字图像是指用计算机存储和处理的图像,是一种空间坐标和灰度不连续、以离散数字原理表达的图像。在计算机,数字图像表现为二维阵列,属于不可见图像。模拟图像指空间坐标和明暗程度连续变化的、计算机无法直接处理的图像,属于可见图像。 利用计算机技术,可以实现模拟图像和数字图像之间相互转换。把模拟图像转化为数字图像成为模/数转换,记作A/D转换; 数字图像最基本的单位是像素。像素是A/D转换中国的取样点,是计算机图像处理的最小单位;每个像素具有特定的空间位置和属性特征。 1.1.2遥感数字图像 遥感数字图像时数字形式的遥感图像。不同的地物能够反射或辐射不同长波的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 遥感数字图像中的像素成为亮度值。亮度值的高低由遥感传感器所探测到的地物电磁波的辐射强度决定。由于地物反射或辐射电磁波的性质不同受大气的影响不同,相同地点不同图像的亮度值可能不同。 图像的每个像素对应三维世界中的一个实体、实体的一部分或多个实体。在太阳照射下,一些电磁波被这个实体反射,一些被吸收。反射部分电磁波到达传感器被记录下来,成为特定像素点的值。 1.2压感数字图像处理 1.2.1遥感数字图像处理概述 遥感数字图像处理是利用计算机图像处理系统对遥感图像中的像素进行系列操作的过程。遥感数字图像处理主要包括三个方面 1.图像增强,使用多种方法,如:灰度拉伸、平滑、瑞华、彩色合成、主成分变换K-T变换、代数运算、图像融合等压抑、去除噪声、增强整体图像或突出图像中的特定地物的信息,是图像更容易理解、解释和判读、 图像增强着重强调特定图像特征,在特征提取、图像分析和视觉信息的显示很有用。 2.图像校正:图像校正也成图像回复、图像复原,主要是对传感器或环境造成的退化图像进行模糊消除、噪声滤除、几何失真或非线性校正。 信息提取:根据地物光谱特征和几何特征,确定不同地物信息的提取规则。 1.2.2 遥感数字图像处理系统 数字图像处理需要借助数字图像处理系统来完成。一个完整的遥感数字图像处理系统包括硬件系统和软件系统两大部分。 1.硬件系统 包括计算机、数字化设备、大容量存储、显示器和输出设备以及操作台 1)计算机 是图像处理核心,大的存和高的CPU速度有助于加快处理的进度。 2)数字化设备

遥感图像处理实习总结

遥 感 实 习 总 结 专业:摄影测量与遥感技术班级: 姓名: 学号:

为期两周的遥感数字图像处理结束了,在老师的精心安排下,我们全身心的投入到这次实习中。虽然是满天的时间,但是由于教室还有其他人占用并不能在那全天使用,所以说是两周实习但是我们能用是时间依然很少,我们要力抓每一分每一秒,熟练操作遥感数字图像处理软件。整个实习是以黄河水院为基础图形。通过格式变换、几何校正、图像剪裁、图像分类,以及最后的专题地图制作。 实习的过程简单又复杂,简单的是,只要动手,计算机几乎自动化的替你操作,复杂的是,在操作过程中,又有好多选项和注意的事项,有很多参数的设置很有讲究。所以在练习中我遇到好多问题,并通过解决这些问题进一步加深了对软件和课本知识的理解。 首先我们进行的是数据预处理。我们需要进行遥感图像的几何校正。由于各种误差所以遥感图像存在着几何变形,因此需要在操作前进行几何校正。流程如下:第一步:显示图像文件(打开两个视窗窗口),第二步:启动几何校正模块,第三步:启动控制点工具,第四步:地面控制点(GCP)的采集,第五步:采集地面检查点,第六步:图象重采样,第七步:保存几何校正模式。其中最关键最难的就属地面控制点的采集,我们使用的是二次多项式,所以得选取六个控制点然后再选出六个检查点。但是图像存在着误差,而我们要把误差控制在一个像素以内,这就更加困难了。在进过长时间的摸索和练习,精度慢慢的就达到了,但是

图纠正后依旧不是很好,在询问同学后发现原来是点的分布不是很均匀,所以导致了图的变形。在图的校正后就得进行图范围的裁剪得到所需的范围。裁剪有两种方法一种是规则分幅裁剪,一种是不规则分幅裁剪。规则分幅裁剪需要知道坐标,而不规则分幅裁剪则只需要在图上手选出需要裁剪的范围。而我们没有坐标只能用不规则分幅裁剪。 第二项就是图象增强处理,主要包括:空间、辐射、光谱增强处理的主要方法。空间增强:包括卷积增强处理,辐射增强:直方图均衡化处理,光谱增强:主成份变换、缨穗变换、色彩变换。这一项比较简单,通过指导书和上课的学习,这些增强只要知道步骤就能很快完成。 第三项我认为也是最关键的一项,遥感图像的分类,所谓的遥感图像的分类就是通过人工目译或计算机自动分类处理相结合识别出地物属性。我们做的分类是非监督分类,在进行的分类评价时,应用分类叠加方法来评价分类结果、分类精度及定义时应注意分类文件在上,而且取消栅格参数中清楚选示选项,以使两图像叠加显示。非监督分类步骤如下:第一步:显示原图像与分类图像,第二步:打开分类图像属性并调整字段显示顺序,第三步:给各个类别赋相应的颜色,第四步:不透明度设置,第五步:确定类别专题意义及其准确程度,第六步:标注类别的名称和相应颜色,第七步:将相同的类进行合并,最后分为五大类:建筑物、道路(空闲地)、水系、草地和灌木林。

《遥感数字图像处理》试卷

东南大学2008—2009学年考试试题 课程名称:遥感数字图像处理 学号姓名成绩 一、单项选择题(2分×20=40分) 1.遥感技术是利用地物具有完全不同的电磁波()或()辐射特征来判断地物目标和自然现象。 A.反射发射 B.干涉衍射 C.反射干涉 D.反射衍射 2.TM6所采用的10.4~12.6um属于()波段。 A.红外 B.紫外 C.热红外 D.微波 3.彩红外影像上()呈现黑色,而()呈现红色。 A.植被 B. 水体 C.干土 D.建筑物 4.影响地物光谱反射率的变化的主要原因包括()。 A. 太阳高度角 B.不同的地理位置 C. 卫星高度 D.成像传感器姿态角 5.红外姿态测量仪可以测定()。 A. 航偏角 B. 俯仰角 C.太阳高度角 D. 滚动角 6.下面遥感卫星影像光谱分辨率最高的是()。 A. Landsat-7 ETM+ B.SPOT 5 C.IKONOS-2 D. MODIS 7.下面采用近极地轨道的卫星是()。 A. Landsat-5 B. SPOT 5 C. 神州7号 D. IKONOS-2 8.下面可获取立体影像的遥感卫星是()。 A. Landsat-7 B.SPOT 5 C.IKONOS-2 D. MODIS 9.侧视雷达图像的几何特征有()。 A.山体前倾 B.高差产生投影差 C.比例尺变化 D. 可构成立体像对 10.通过推扫式传感器获得的一景遥感影像,在()属于中心投影。 A.沿轨方向 B. 横轨方向 C. 平行于地球自转轴方向 D. 任意方向 11. SPOT 1-4 卫星上装载的HRV传感器是一种线阵()扫描仪。 A. 面阵 B. 推扫式 C. 横扫式 D. 框幅式 12.()只能处理三波段影像与全色影像的融合。 A.IHS变换 B.KL变换 C. 比值变换 D. 乘积变换 13.()是遥感图像处理软件系统。 A. AreInfo B.ERDAS C. AUTOCAD D. CorelDRAW 14.一阶哈达玛变换相当于将坐标轴旋转了()。 A.30° B. 45° C. 60° D.90° 15.遥感影像景物的时间特征在图像上以()表现出来。 A. 波谱反射特性曲线 B.空间几何形态 C. 光谱特征及空间特征的变化 D.偏振特性 16.遥感传感器的分辨率指标包括有()。 A.几何分辨率 B.光谱分辨率 C.辐射分辨率 D.时间分辨率 17.遥感图像构像方程是指地物点在图像上的()和其在地物对应点的大地坐标之间的数学关系。 A.投影差 B. 几何特征 C.图像坐标 D. 光谱特征

遥感原理复习资料

遥感原理试题(1) 代码:428 一、名词解释(40分,每题4分) 1、维恩位移定律 2、光谱分辨率 3、发射率 4、合成孔径雷达 5、反射波谱特性曲线 6、成像光谱仪 7、主动遥感 8、航空遥感 9、数字图像 10、航片数字化 二、选择题(20分,每空2分) 1、下列遥感卫星中,图像空间分辨率最高的是() A 、IKONOS B、LANDSAT7 C、QUICKBIRD D、SPOT5 2、下列遥感传感器中,图像光谱分辨率最高的是() A、MODIS B、MSS C、TM D、HRV 3、下列遥感卫星中,由印度发射的是() A、NOAA B、EOS C、CBERS D、IRS 4、太阳辐射的峰值波长位于()波段 A、可见光 B、近红外 C、远红外 D、微波 5、常温地物发射辐射的峰值波长位于()波段 A、可见光 B、近红外 C、远红外 D、微波 6、干涉雷达的英文简称是() A、SAR B、INSAR C、DINSAR D、LIDAR 7、彩色遥感图像的三原色是() A、红黄绿 B、红黄蓝 C、红黄青 D、红绿蓝 8资源卫星一般选择太阳同步轨道,是为了() A、保持大致相同的比例尺 B、保持大致相同的光照条件 C、形成较大的区域覆盖 D、方便轨道控制 9、SPOT HRV图像的成像方式是() A、摄影 B、线阵列CCD C、面阵列CCD D、光机扫描 10、下列软件中()不是遥感图像处理软件 A、PCI B、ENVI C、MAPINFO D、ERDAS 三、简答题(60分,每题10分) 1、大气对太阳辐射主要有哪些影响?设计遥感器时如何考虑这些影响? 2、光机扫描仪成像与线阵列CCD成像的比较。 3、微波遥感的特点? 4、简述遥感数字影像增强处理的目的,例举一种增强处理方法,说明其原理。 5、什么情况下需要对遥感图像进行灰度重采样?例举一种重采样方法,说明其原理。 6、航片和高分辨率卫星图像目视判读需要用到哪些判读标志?

《遥感数字图像处理》试卷及答案

2008—2009学年考试试题 课程名称:遥感数字图像处理 学号姓名成绩 一、单项选择题(2分×20=40分) 1.遥感技术是利用地物具有完全不同的电磁波(A)或()辐射特征来判断地物目标和自然现象。 A.反射发射 B.干涉衍射 C.反射干涉 D.反射衍射 2.TM6所采用的10.4~12.6um属于(C )波段。 A.红外 B.紫外 C.热红外 D.微波 3.彩红外影像上( B)呈现黑色,而( A)呈现红色。 A.植被 B. 水体 C.干土 D.建筑物 4.影响地物光谱反射率的变化的主要原因包括(A)。 A. 太阳高度角 B.不同的地理位置 C. 卫星高度 D.成像传感器姿态角 5.红外姿态测量仪可以测定(B)。 A. 航偏角 B. 俯仰角 C.太阳高度角 D. 滚动角 6.下面遥感卫星影像光谱分辨率最高的是(D)。 A. Landsat-7 ETM+ B.SPOT 5 C.IKONOS-2 D. MODIS 7.下面采用近极地轨道的卫星是(A)。 A. Landsat-5 B. SPOT 5 C. 神州7号 D. IKONOS-2 8.下面可获取立体影像的遥感卫星是( B)。 A. Landsat-7 B.SPOT 5 C.IKONOS-2 D. MODIS 9.侧视雷达图像的几何特征有(A )。 A.山体前倾 B.高差产生投影差 C.比例尺变化 D. 可构成立体像对 10.通过推扫式传感器获得的一景遥感影像,在(B)属于中心投影。 A.沿轨方向 B. 横轨方向 C. 平行于地球自转轴方向 D. 任意方向 11. SPOT 1-4 卫星上装载的HRV传感器是一种线阵(B)扫描仪。 A. 面阵 B. 推扫式 C. 横扫式 D. 框幅式 12.(A)只能处理三波段影像与全色影像的融合。 A.IHS变换 B.KL变换 C. 比值变换 D. 乘积变换 13.(B)是遥感图像处理软件系统。 A. AreInfo B.ERDAS C. AUTOCAD D. CorelDRAW 14.一阶哈达玛变换相当于将坐标轴旋转了(B)。 A.30° B. 45° C. 60° D.90° 15.遥感影像景物的时间特征在图像上以(C)表现出来。 A. 波谱反射特性曲线 B.空间几何形态 C. 光谱特征及空间特征的变化 D.偏振特性 16.遥感传感器的分辨率指标包括有(C)。 A.几何分辨率 B.光谱分辨率 C.辐射分辨率 D.时间分辨率 17.遥感图像构像方程是指地物点在图像上的( C)和其在地物对应点的大地坐标之间的数学关系。 A.投影差 B. 几何特征 C.图像坐标 D. 光谱特征

《遥感数字图像处理》试卷A(B)卷

河南大学环境与规划学院2005~2006学年第一学期期末考试 《遥感数字图像处理》试卷A(B)卷 一、名词解释:(每题2分,共8分) 1、几何畸变: 2、数字镶嵌: 3、影像增强: 4、遥感影像分类: 二、填空(每空1分,共22分) 1、遥感数据的处理流程包括:(1)观测数据的输入;(2); (3);(4);(5)处理结果的输出。 2、在遥感数据的处理流程中,所采集的数据包括和数字数据两种,后者多记 录在特殊的数字记录器中(HDDT等),所以必须变换到一般的数字计算机都可以读出的等通用载体上。 3、在Erdas Imagine图标面板菜单条中,主要包括综合菜单(Session Menu)、菜 单、菜单、菜单、帮助菜单(Help Menu)。 4、在图像分类界面中,包括、、分类结果处理、知识工程 师、专家分类器。 5、在视图窗口中,主要有六部分组成:菜单条、工具条、、状态条、滑动 条、标题条。 6、在窗口中,可查阅或修改图像文件的有关信息,如投影信息、统计信息 和显示信息等。 7、三维图像操作的内部原理是将图像与叠加生成三维透视图,并在此基础 上的空间操作。 8、用户从遥感卫星地面站购置的TM图像数据或其他图像数据,往往是经过转换以后的单 波段普通数据文件,外加一个说明头文件。 9、遥感影像的降质可归结为两类:即遥感影像的和。 10、影像变换与增强的实质是:影像的和,实际 上是改善影像的质量以获得最好的主观效果。 11、影像对比度扩展又称反差增强。常常采用以达到易于识别的目的。 12、常用的直方图调整方法有以下两种:和直方图规定化。前者又称直方图 平坦化,将减少影像灰度等级来换取对比度的扩大。 13、滤波增强技术有两种:和。前者是在影像的空间变量内 进行的局部运算,使用空间二维卷积方法;后者使用傅氏分析等方法,通过修改原影像的傅氏变换式实现滤波。 三、单项选择题(每题2分,共20分)

遥感数字图像处理考试知识点整理

'. 遥感 第一章 1遥感数字图像;遥感数字图像的分类方式和对应类别。 (1)定义:遥感数字图像是数字形式的遥感图像。不同的地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 (2)可见图像和不可见图像 单波段和多波段,超波段 数字图像和模拟图像 2遥感图像的成像方式(三大种:摄影、扫描、雷达)。 (1)摄影,扫描属于被动遥感 雷达属于主动遥感 (2)摄影:根据芦化银物质在关照条件下回发生分解这一机制,将卤化银物质均匀涂在片基上,制成感光胶片 扫描:扫描类遥感传感器逐点逐行地以时序方式获取的二维图像 雷达:由发射机向侧面发射一束窄波段,地物反射的脉冲,由无线接收后被接收机接收 3遥感图像的数字化(模数转换)过程——两大过程:采样、量化,名词解释。 采样:将空间上连续的图像变换成离散点的操作称为采样,即:图像空间位置的数字化。采样是空间离散。 量化:遥感模拟图像经离散采样后,可得到由M×N个像素点组合表示的图像,但其灰度(或彩色)仍是连续的,还不能用计算机处理。它们还要进一步离散并归并到各个区间,分别用有限个整数来表示,这称之为量化,即:图像灰度的数字化。量化属于亮度属性离散。 遥感图像数字化过程两个特点:亮度和空 4遥感数字图像的存储空间大小的计算。 图像的灰度级有:2,64,128,256 存储一幅大小为M*N,灰度量化位数G的图像,所需要的存储空间(图像数据量)为M*N*G(bit) 1B=8bit 1KB=1024B 1MB=1024KB 1GB=1024MB TM空间分辨:1,2,3,4,5,7为30米,6为120米 5遥感数字图像的分辨率(时间、空间、光谱、辐射分辨率); (1)时间分辨率:指对同一地点进行遥感采样的时间间隔即采样的时间频率,也称重访周期空间分辨率:指图像像素所代表的相应地面范围的大小,空间分辨率愈高,像素所代表的范围愈小 光谱分辨率:光谱分辨率是指成像的波段范围,分得愈细,波段愈多,光谱分辨率愈高 辐射分辨率:是传感器区分反射或发射的电磁波辐射强度差异的能力。高辐射分辨率可以区分信号强度的微小差异。 (2)常见传感器和空间分辨率书17-18页 6遥感数字图像的数据(数据级别、数据存储格式、元数据定义) (1)数据级别: 0级产品:未经过任何校正的原始图像数据

遥感图像处理 图像配准、图像裁剪 实验报告

Lab3 geometric correction and projection transformation of remotely sensed data Objective : The purpose of the current lab section is to adequately understand the mathematic principles and methods of geometric correction (co-registration) and projection transformation . In addition,you guys need to gain hands-on experience or skill to perform them in ENVI and ERDAS environments. 实验过程: 一、envi中图像配准 1、根据控制点的坐标对图像进行配准 1)加载中山陵地形图 2) 选择map 菜单下的registration菜单,选择select gcps:image to map 设置投影信息:基于经纬度的投影(geographic lat/lon),选择基准面为WGS—84

3)开始配准 依次移动一级窗口中的光标到四个图廓点的位置,在三级放大窗口中把十字司放在经纬线的交点的中间位置,输入该点的经纬度于编辑对话框中:

点击add point,完成对控制点的编辑 4)选择option菜单下的wrap file将配准好的地图生成一幅新的影像

修改生成图像信息,改为50带的UTM投影,基准面为WGS-84,保存 2、图像到图像的配准 1)加载全色波段影像作为待配准的影像

遥感数字图像处理考题整理

一、名词解释 1、数字图像是指用计算机存储和处理的图像,是一种空间坐标和灰度都不连续的、以离散数学原理表达的图像。 2、遥感数字图像是数字形式的遥感图像。 3、空间分辨率是指遥感图像上能够详细区分的最小单元的尺寸或大小。空间分辨率通常用像素大小、解像力或视场角来表示。 4、直方图均衡化指对原始图像的像素灰度进行某种映射变换,使变换后图像灰度的概率密度呈均匀分布,即变换后的灰度级均匀分布。 5、几何精纠正又称几何配准,是把不同传感器具有几何精度的图像、地图或数据集中的相同地物元素精确地彼此匹配、叠加在一起的过程。 几何校正指校正图像中存在的空间位置的变形等几何误差的过程。 6、辐射校正指消除数据中依附在辐亮度中的各种失真的过程。 包括三部分:传感器端的辐射校正、大气校正和地表辐射校正。 7、开运算指使用同一个结构元素对图像先进行腐蚀后进行膨胀的运算。 作用是消除细小目标,在纤细处分离目标,平滑较大目标的边界时不明显改变面积的作用。 8、闭运算指使用同一个结构元素对图像先进行膨胀后进行腐蚀的运算。 作用是填充目标内细小空洞,连接近邻目标,在不明显改变目标面积的情况下平滑其边界。 二、选择题 1、遥感数字处理软件:ERDAS IMAGEINE、ENVI、PCI Geomatica 2、侧视雷达图像的影像特征 1)垂直飞行方向的比例尺由小变大 2)造成山体前倾朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉长与中心投影相反,还会出现不同地位点重影现象 3)高差产生的投影差与中心投影影像差位移的方向相反,位移量不同4不同设站对同一地区获取的雷达图像也能构成立体影像。 3、航空像片几何特征: 1)地物点通过摄影中心与其成像点共一条直线。 2)投影中心到像平面的距离为物镜主距f。 3)地面起伏使得各处影像比例尺不同。 4)地物由于成像平面倾斜其成像会发生变形。 5)高差的物体成像在像片上有投影差 4、颜色叠加 5、影像统计 均值:像素值的算术平均值,反映的是图像中地物的平均反射强调,大小由图像中主体地物的光谱信息决定。 中值:指图像所有灰度级中处于中间的值,当灰度级数为偶数时,则取中间两灰度值的平均值。由于一般遥感图像的灰度级是连续变化的,因而大多是情况下,中值可以通过最大灰度值和最小灰度值来获得。 众数:图像中出现次数最多的灰度值,反映了图像中分布较广的地物反射能量。

遥感数字图像处理实验报告

实验一 遥感图像统计特性 一、实验目的 掌握遥感图像常用的统计特性的意义和作用,能运用高级程序设计语言实现遥感图像统 计参数的计算。 二、实验内容 编程实现对遥感图像进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。 三、实验原理 1.均值 像素值的算术平均值,反映图像中地物的平均反射强度。 11 00 (,) N M j i f i j f MN --=== ∑∑ 2.方差(或标准差) 像素值与平均值差异的平方和,反映了像素值的离散程度。也是衡量图像信息量大小的 重要参数。 11 2 00 2[(,)] N M j i f i j f MN σ--==-= ∑∑ 3. 相关系数 反映了两个波段图像所包含信息的重叠程度。f , g 分别为两个波段的图像,它们之间的 相关系数计算公式为: 11 [((,))((,))] (,)M N f g f i j e g i j e C f g ---?-= ∑∑ 其中, e f , e g 分别为两个波段图像的均值。 四、实验步骤和内容 1.实验代码 clc clear all I =imread ('m1.jpg'); whos I %显示图像信息 figure (1),imshow (I ); R =double (I (:,:,1)); G =double (I (:,:,2)); B =double (I (:,:,3)); %求图像的R,G,B 的均值,avg=mean(mean(I))

%求图像的R,G,B的均值 mean(R(:)) mean(G(:)) mean(B(:)) %求R,G,B的方差 varR=var(R(:)); varG=var(G(:)) varB=var(B(:)) %求RG,RB,GB的相关系数 corrcoef(R(:),G(:)) corrcoef(R(:),B(:)) corrcoef(B(:),G(:)) 2.原始图像 Figure 1原始图像3.实验结果 R,G,B的均值

相关主题
文本预览
相关文档 最新文档