基于LMS的自适应滤波器设计及应用
- 格式:docx
- 大小:274.12 KB
- 文档页数:15
数字信号处理课程要求论文基于LMS的自适应滤波器设计及应用学院名称:专业班级:学生姓名:学号:2013年6月摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。
目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。
收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。
自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。
作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。
研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。
本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。
最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。
关键词:自适应滤波器,LMS算法,Matlab,仿真1.引言滤波技术在当今信息处理领域中有着极其重要的应用。
滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。
滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。
滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。
Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。
基于LMS算法的自适应滤波器设计自适应滤波器是信号处理中常用的一种技术,可以根据输入信号的统计特性来调整滤波器参数,以实现信号的去噪、谱线增强等功能。
LMS (Least Mean Square,最小均方误差)算法是自适应滤波器中最常用的一种算法,它通过调整滤波器的权值,使得滤波器的输出信号与期望输出信号之间的均方误差最小。
本文将详细介绍基于LMS算法的自适应滤波器设计。
首先,我们先来了解LMS算法的原理。
LMS算法的核心思想是通过不断迭代调整滤波器的权值,使得滤波器的输出信号最小化与期望输出信号之间的均方误差。
算法的迭代过程如下:1.初始化滤波器权值向量w(0)为0;2.对于每个输入信号样本x(n),计算滤波器的输出信号y(n);3.计算实际输出信号y(n)与期望输出信号d(n)之间的误差e(n);4.根据误差信号e(n)和输入信号x(n)来更新滤波器的权值向量w(n+1);5.重复步骤2-4,直到满足停止条件。
在LMS算法中,滤波器的权值更新公式为:w(n+1)=w(n)+μ*e(n)*x(n)其中,w(n+1)为更新后的权值向量,w(n)为当前的权值向量,μ为步长参数(控制权值的调整速度),e(n)为误差信号,x(n)为输入信号。
1.确定输入信号和期望输出信号的样本数量,以及步长参数μ的值;2.初始化滤波器的权值向量w(0)为0;3.依次处理输入信号样本,在每个样本上计算滤波器的输出信号y(n),并计算出误差信号e(n);4.根据误差信号e(n)和输入信号x(n)来更新滤波器的权值向量w(n+1);5.重复步骤3-4,直到处理完所有的输入信号样本;6.得到最终的滤波器权值向量w,即为自适应滤波器的设计结果。
在实际应用中,自适应滤波器设计的性能往往与步长参数μ的选择密切相关。
较小的步长参数会使得权值更新速度过慢,容易出现收敛慢的问题;而较大的步长参数可能导致权值在稳定后开始震荡,使得滤波器的性能下降。
电路最优化设计课程设计报告基于LMS算法的自适应滤波器设计一、内容摘要通过学习自适应滤波器和LMS算法基本原理,设计了一个二阶加权自适应横向滤波器, 并在MATLAB软件平台实现了仿真,最后对仿真结果作出了分析。
二、设计目的通过设计自适应滤波器并在在MATLAB实现仿真,进一步加深了解自适应滤波原理和LMS自适应算法。
、设计原理自适应滤波器由参数可调的数字滤波器和自适应算法两部分组成。
输入信号x(n)通过参数可调数字滤波器后产生输出信号y(n),将其与参数信号d(n)进行比较,形成误差信号e(n)。
e(n)通过某种自适应算法对滤波器参数进行调整,最终使e(n)的均方值最小。
最小均方误差LMS准则的目的在于使滤波器输出与期望信号误差的平方的统计平均值最小。
图1为LMS自适应横向滤波器原理图。
图1 LMS自适应横向滤波器原理图改自适应滤波器的输入矢量为:X(n) =[x(n)x(n -1)…x(n —m - 1)]T( 1)加权矢量为:W(n) =[W1( n) W2 (n)…W M (n)] 丁( 2)滤波器的输出为:My( n) = ' w i (n)x( n -i 亠1) = W T (n) X (n) =X T( n)W (n) (3)i 土y(n)相对于滤波器期望输出d( n)的误差为:e( n) =d( n) -y(n) =d( n) -W T (n)X( n) (4)根据最小均方误差准则,最佳的滤波器参量应使得性能函数均方误差f(W)二In) =E[e2(n)]为最小,上式称为均方误差性能函数。
假定输入信号x(n)和期望相应d(n)是联合平稳过程,那么在时刻n的均方误差是加权矢量的二次函数,其表达式为:'(n) =E[d2( n) —2P T W( n) W T (n ) R x W (n)] ( 5)式中:E[d (n)]是期望响应d(n)的方差;P=E[d(n)X(n)]是输入矢量X(n)和期望响应d(n)的互相矢量;R x=E[X(n)X T(n)]是输入矢量X(n)的自相关矩阵。
使用LMS算法设计FIR自适应滤波器自适应滤波器是统计信号处理的一个重要组成部分。
在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。
凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供一种吸引人的解决方法,而且其性能通常远优于用常方法设计的固定滤波器。
此外,自适应滤波器还能提供非自适应方法所不可能提供的新的信号处理能力。
通过《现代信号处理》这门课程的学习,掌握了自适应滤波器的基本理论、算法及设计方法。
本文中对最小均方误差(LMS)算法进行了认真的回顾,最终采用改进的LMS 算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真。
一、自适应滤波器理论基础1、基本概念凡是有能力进行信号处理的装置都可以称为滤波器。
在近代电信装备和各类控制系统中,滤波器应用极为广泛;在所有的电子部件中,使用最多,技术最复杂要算滤波器了。
滤波器的优劣直接决定产品的优劣,所以,对滤波器的研究和生产历来为各国所重视。
滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的交流电。
您可以通过基本的滤波器积木块——二阶通用滤波器传递函数,推导出最通用的滤波器类型:低通、带通、高通、陷波和椭圆型滤波器。
传递函数的参数——f0、d、hHP、hBP 和hLP,可用来构造所有类型的滤波器。
转降频率f0为s项开始占支配作用时的频率。
设计者将低于此值的频率看作是低频,而将高于此值的频率看作是高频,并将在此值附近的频率看作是带内频率。
阻尼d用于测量滤波器如何从低频率转变至高频率,它是滤波器趋向振荡的一个指标,实际阻尼值从0至2变化。
高通系数hHP是对那些高于转降频率的频率起支配作用的分子的系数。
带通系数hBP是对那些在转降频率附近的频率起支配作用的分子的系数。
低通系数hLP是对那些低于转降频率的频率起支配作用1的分子的系数。
基于LMS和RLS的自适应滤波器的应用仿真————————————————————————————————作者:————————————————————————————————日期:湖南大学计算机与通信学院课程作业2题目:基于LMS和RLS的自适应滤波器的应用仿真基于LMS 和RLS 的自适应滤波器应用仿真1. 自适应滤波原理自适应滤波器是指利用前一时刻的结果,自动调节当前时刻的滤波器参数,以适应信号和噪声未知或随机变化的特性,得到有效的输出,主要由参数可调的 数字滤波器和自适应算法两部分组成,如图1所示图1 自适应滤波器原理图x(n)称为输入信号,y(n)称为输出信号,d (n )称为期望信号或者训练信号,e(n)为误差僖号,其中,e(n )=d (n)—y (n).自适应滤波器的系数(权值)根据误差信号e (n ),通过一定的自适应算法不断的进行改变,以达到使输出信号y(n )最接近期望信号图中参数可调的数字滤波器和自适应算法组成自适应滤波器。
自适应滤波算法是滤波器系数权值更新的控制算法,根据输入信号与期望信号以及它们之间的误差信号,自适应滤波算法依据算法准则对滤波器的系数权值进行更新,使其能够使滤波器的输出趋向于期望信号。
原理记数字滤波器脉冲响应为:h(k )=[h 0(k ) h 1(k) … h n-1(k)]T输入采样信号为:x (k)=[x(k ) x(k —1) … x(k-n-1)] 误差信号为:)()()(^k y k y k e -= ()()()()Te k y k h k x k =-优化过程就是最小化性能指标J(k),它是误差的平方和:21()[()()()]kT i J k y i h k x i ==-∑求使J(k )最小的系数向量h(k ),即使J(k )对h (k )的导数为零,也就是0)()(=k dh k dJ 。
把J (k )的表达式代入,得:12[()()()]()0kTi y i hk x i x i =-=∑和11()()()()()kkTTT i i xi y i h k x i x i ===∑∑由此得出滤波器系数的最优向量:11()()()()()kTTi k Ti xi y i h k x i xi ===∑∑这个表达式由输入信号自相关矩阵()xx c x 和输入信号与参考信号的相关矩阵()yx c k 组成,如下所示,维数都为(n,n ): 1()()()kTxx i c k xi x i ==∑1()()()kTyx i c k xi y i ==∑系数最优向量也可以写成如下形式:1()()()T opt yx xx h k c k c k -=自相关和互相关矩阵的递归表达式如下:()(1)()()T xx xx c k c k x k x k =-+ ()(1)()()Tyx yx c k c k y k x k =-+把()yx c k 的递归表达式代入系数向量表达式,得:1()()()T yx xx h k c k c k -=即1()[(1)()()]()TTyx xx h k c k x k y k c k -=-+考虑到(1)(1)(1)Tyx xx c k h k c k -=--可以记1()()[(1)(1)()()]xx xx h k c x c k h k y k x k -=--+用前面得到的表达式求出(1)xx c k -,并代入上式:1()(){[()()()](1)()()}T xx xx h k c x c k x k x k h k y k x k -=--+ 或 1()(1)()[()()()()(1)]T xx h k h k c x y k x k x k x k h k -=-+--则滤波器系数的递归关系式可以记作1()(1)()[()()()()(1)]T xx h k h k c x y k x k x k x k h k -=-+--其中()()()(1)T e k y k x k h k =--e(k )表示先验误差.只因为它是由前一个采样时刻的系数算出的,在实际中,很多时候由于h(k )计算的复杂度而不能应用于实时控制。
基于LMS和RLS算法的自适应滤波器仿真自适应滤波器是一种可以自动调整其权重参数来适应不断变化的信号环境的滤波器。
常用的自适应滤波算法包括最小均方(LMS)和最小二乘(RLS)算法。
本文将对基于LMS和RLS算法的自适应滤波器进行仿真,并分析其性能和特点。
首先,介绍LMS算法。
LMS算法是一种基于梯度下降的自适应滤波算法。
其权重更新规则为:w(n+1)=w(n)+μ*e(n)*x(n),其中w(n)为当前时刻的权重,μ为步长(学习速率),e(n)为当前时刻的误差,x(n)为输入信号。
通过不断迭代和更新权重,LMS算法可以使滤波器的输出误差逐渐减小,从而逼近期望的输出。
接下来,进行LMS自适应滤波器的仿真实验。
考虑一个声纳系统的自适应滤波器,输入信号x(n)为声波信号,输出信号y(n)为接收到的声纳信号,期望输出信号d(n)为理想的声纳信号。
根据LMS算法,可以通过以下步骤进行仿真实验:1.初始化权重w(n)为零向量;2.读取输入信号x(n)和期望输出信号d(n);3.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n),其中^T表示矩阵的转置;4.计算当前时刻的误差e(n)=d(n)-y(n);5.更新权重w(n+1)=w(n)+μ*e(n)*x(n);6.重复步骤2-5,直到滤波器的输出误差满足预设条件或达到最大迭代次数。
然后,介绍RLS算法。
RLS算法是一种递推最小二乘的自适应滤波算法。
其基本思想是通过不断迭代更新滤波器的权重,使得滤波器的输出误差的二范数最小化。
RLS算法具有较好的收敛性和稳定性。
接下来,进行RLS自适应滤波器的仿真实验。
基于声纳系统的例子,RLS算法的步骤如下:1.初始化滤波器权重w(n)为一个较小的正数矩阵,初始化误差协方差矩阵P(n)为一个较大的正数矩阵;2.读取输入信号x(n)和期望输出信号d(n);3.计算增益矩阵K(n)=P(n-1)*x(n)/(λ+x^T(n)*P(n-1)*x(n)),其中λ为一个正则化参数;4.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n);5.计算当前时刻的误差e(n)=d(n)-y(n);6.更新滤波器权重w(n+1)=w(n)+K(n)*e(n);7.更新误差协方差矩阵P(n)=(1/λ)*(P(n-1)-K(n)*x^T(n)*P(n-1));8.重复步骤2-7,直到滤波器的输出误差满足预设条件或达到最大迭代次数。
第11 -12期2016年12月山西焦煤科技Shanxi Coking Coal Science &TechnologyNo. 11 - 12Dec. 2016•试验研究•基于LMS算法自适应滤波器的仿真应用宋海鹰(西山煤电集团公司官地矿,山西太原030022)摘要自适应系统理论由于可以通过学习与适应外界的变化来解决经典系统设计方法中存在 的局限性,受到国内外学者的广泛关注。
本文在滤波器经典设计方法的基础上,结合LM S改进算法,研究了基于自适应FIR(Finite Impulse Response,有限冲击响应)滤•波器的消噪系统。
在仿真与应用 部分,利用MATLAB进行了自适应F IR滤波器的设计与仿真,并通过对加噪声的音频信号进行处理 验证了滤波的效果。
研究表明,跟传统方法相比,自适应F IR滤波器具有较小的通阻带纹波,接近理 想特性。
关键词自适应系统;LM S改进算法;自适应H R滤波器;消噪系统中图分类号:TD67 文献标识码:A文章编号=1672 -0652(2016) 11 -12 -0040 -04信号处理技术对于推动现实生活中各个领域的发展起着重要作用,其中滤波器是进行信号处理的重 要组成部分。
滤波器作为滤除无关信号,得到所需信 号输出的一种抽象器件,通常被用于去除噪声或提取 特定频率段的信号。
而在现代滤波器中,自适应滤波 器是由自适应算法通过调整滤波器系数,以达到最优 滤波的时变最佳滤波器。
自适应滤波器的结构可用 IIR、F IR或格形滤波器等结构来实现。
其中,F IR滤 波器具有严格的线性相位,可用快速傅里叶变换(FFT)实现,具备运算速度比其它系统快且稳定,有 限精度运算误差小的优势tK2].在自适应滤波器的算法构建中,WitJrow和Hoff 教授在研究自适应理论时提出了LMS(Least mean square,最小均方)算法,由于其容易实现而很快得到 了广泛应用,成为自适应滤波的标准算法。
用于消除工频干扰自适应滤波器的设计与仿真一、背景及意义脑科学研究不仅是一项重要的前沿性基础研究,而且是一项对人类健康有重要实际意义的应用研究。
随着社会的发展、人类寿命的延长,因脑衰老、紊乱或损伤而引起的脑疾患,对社会财富消耗和家庭的负担日益增大。
许多国家纷纷将脑科学的研究列入国家规划,并且制订长远的研究计划。
人们把21 世纪看成是脑科学研究高潮的时代。
在脑电信号的实际检测过程中,往往含有心电、眼动伪迹、肌电信号、50Hz工频干扰以及其它干扰源所产生的干扰信号,这给脑电分析以及脑电图的临床应用带来了很大的困难。
因此如何从脑电中提取出有用的信息是非常具有挑战性,且又很有学术价值、实用价值的研究课题。
本论文从信号处理的角度出发,采集脑电波,使得在强干扰背景下的脑电信号得以提取,还原出干净的脑电波,用于临床医学、家庭保健等。
医生可以利用所采集到的脑电波来进行对病人神经松弛训练,通过脑电生物反馈技术实现自我调节和自我控制。
运用生物反馈疗法,就是把求治者体内生理机能用现代电子仪器予以描记,并转换为声、光等反馈信号,因而使其根据反馈信号,学习调节自己体内不遂意的内脏机能及其他躯体机能、达到防治身心疾病的目的。
这种反馈疗法是在一定程度上发掘人体潜能的一种人—机反馈方法。
有研究表明脑电生物反馈对多种神经功能失调疾病有明显疗效。
对于有脑障碍或脑疾病的人,也可以随时监测其脑电信号,及早地发现问题,避免不必要的损失。
二、脑电数字信号处理的研究现状脑电的监护设备在国内外品种繁多,高新技术含量高,技术附加值高,相比而言,我国的产品较国际高水平产品落后10-15 年。
但近年来,国内产品也逐步利用高新技术使产品向自动化、智能化、小型化、产品结构模块化方向发展。
国内产品在抗干扰、数字处理、实时传输数据等方面已有很大进展,使脑电检测不再是只能在屏蔽室进行。
目前,脑电信号的数字滤波从原理上来看,主要有FIR滤波器和IIR滤波器。
FIR滤波器可以提供线性滤波,但存在阶数较高,运算较为复杂的缺点[11];而IIR滤波器是一种非线性滤波器,它可以用较少的阶数实现性能良好的滤波,是目前运用较广泛的一种滤波器[10]。
lms自适应滤波器原理LMS自适应滤波器原理引言:LMS(Least Mean Square)自适应滤波器是一种常用的数字信号处理技术,它被广泛应用于自适应滤波、信号降噪、通信系统和控制系统等领域。
本文将介绍LMS自适应滤波器的原理及其应用。
一、LMS自适应滤波器简介LMS自适应滤波器是一种基于最小均方(Least Mean Square)误差准则的自适应滤波器。
其基本原理是通过不断调整滤波器的权值,使得输出信号尽可能接近期望输出信号,从而达到滤波的目的。
LMS算法是一种迭代算法,通过不断更新滤波器的权值,逐步逼近最优解。
二、LMS自适应滤波器的工作原理1. 输入信号与滤波器权值的乘积LMS自适应滤波器的输入信号经过滤波器产生的输出信号,与期望输出信号进行比较,得到误差信号。
误差信号与滤波器权值的乘积,即为滤波器的输出。
2. 更新滤波器权值LMS算法通过不断更新滤波器的权值,使得滤波器的输出逐步接近期望输出。
权值的更新是根据误差信号和输入信号的乘积,以及一个自适应因子进行的。
自适应因子的选择对算法的收敛速度和稳定性有重要影响。
3. 收敛判据LMS自适应滤波器的收敛判据是通过计算滤波器的平均误差来判断滤波器是否已经达到稳态。
当滤波器的平均误差小于一定阈值时,认为滤波器已经收敛。
三、LMS自适应滤波器的应用LMS自适应滤波器广泛应用于信号降噪、通信系统和控制系统等领域。
1. 信号降噪LMS自适应滤波器可以通过不断调整滤波器的权值,将噪声信号从输入信号中滤除,从而实现信号的降噪处理。
在语音信号处理、图像处理等领域有着重要的应用。
2. 通信系统LMS自适应滤波器可以用于通信系统中的均衡处理。
在通信信道中,由于传输过程中的噪声和失真等因素,信号会发生失真和衰减。
LMS自适应滤波器可以通过适当调整滤波器的权值,实现信号的均衡,提高通信系统的性能。
3. 控制系统LMS自适应滤波器在控制系统中常用于系统辨识和自适应控制。
数字信号处理课程要求论文基于LMS的自适应滤波器设计及应用学院名称:专业班级:学生姓名:学号:2013年6月摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。
目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。
收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。
自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。
作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。
研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。
本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。
最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。
关键词:自适应滤波器,LMS算法,Matlab,仿真1.引言滤波技术在当今信息处理领域中有着极其重要的应用。
滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。
滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。
滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。
Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。
同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。
然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。
这就促使人们开始研究自适应滤波器。
自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。
可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。
自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。
2. 自适应滤波器的基础理论所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。
所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。
最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。
自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。
数字结构是指自适应滤波器中各组成部分之间的联系。
自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。
自适应算法则用来控制数字滤波器参数的变化。
自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波器、RLS自适应滤波器等等。
自适应滤波器实际上是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要预先知道关十输入信号和噪声的统计特性,它能够在工作过程中逐步了解或估计出所需的统计特性,并以此为依据自动调整自身的参数,以达到最佳滤波效果。
自适应滤波器的特性变化是由自适应算法通过调整可编程滤波器系数来实现的。
图给出了自适应滤波器的一般结构,其中输入信号二x(n)通过可编程滤波器后产生输出信号(或响应)y(n),将其与参考信号d(n)进行比较,形成误差信号e(n),并以此通过某种自适应算法对滤波器参数进行调整,最终使得e(n)的均方值最小。
利用抽头延迟线做成的横向滤波结构的自适应滤波器,通称为自适应横向滤波器(或自适应FIR 滤波器)。
它是研究所有自适应滤波算法的基本结构,由于其结构简单、成本较低,也是工程领域最常用的一种自适应滤波器。
……图 单输入自适应滤波器 自适应横向滤波器的结构图如图所示,)()........(),(10n w n w n w N 为可调节抽头权系数表示在n 时刻的系数值。
它利用正规直接形式实现全零点传输函数,而不采用反馈调节。
权系数的调节过程是首先自动调节滤波器系数的自适应训练步骤,然后利用滤波系数加权延迟抽头上的信号来产生输出信号,将输出信号与期望信号进行对比,所得的误差值通过一)(n d图 自适应滤波器的原理图定的自适应控制算法再用来调整权值,以保证滤波器处在最佳状态,其抽头加权系数集正好等于它的冲激响应,达到实现滤波的目的。
自适应递归滤波器是指零点和极点都能自适应调整的滤波器,它的传输函数中分子和分母通常具有独立的迭代步长因子。
对有些利用横向滤波器实现时需要数百个甚至上千个抽头系数,可以考虑使用自适应递归滤波器。
缺点是递归滤波器要求对极点的稳定性进行监视,而且收敛速度很慢。
采用得最多的自适应递归滤波器结构是如图2-3所示的直接形式结构,自适应滤波器传输函数分母的系数为)().........(),(10n b n b n b N ,传输函数分子的系数为)().........(),(10n a n a n a N ,其中N 和M 分别是自适应滤波器分母和分子的阶数。
3. 自适应滤波算法最小均方误差(LMS )算法LMS 算法是基于最小均方误差准则(MMSE)的维纳滤波器和最陡下降法提出的,依据输入信号在迭代过程中估计梯度矢量,并更新权系数以达到最优的自适应迭代算法。
这算法不需要计算相应的相关函数,也不需要进行矩阵运算。
自适应滤波器最普通的应用就是横向结构。
滤波器的输出信号y(n)是()()()()()∑-=-=*=10N i i Ti n x n w n x n w n y (3-1)图 自适应递归滤波器T 表示转置矩阵, n 是时间指针,N 是滤波器次数。
这个例子就是有限脉冲响应滤波器的形式,为x(n)和w(n)两个矩阵卷积。
这种自适应算法使用误差信号()()()n y n d n e -= (3-2)为了方便起见,将上述式子表示为向量形式,则上述式子表示为:()()()T y n w n x n =* (3-3)误差序列可写为()()()()()()n x n w n d n y n d n e T *-=-= (3-4)其中d(n)是期望信号,y(n)是滤波器的输出。
使用输入向量x(n)和e(n)来更新自适应滤波器的最小化标准的相关系数。
显然,自适应滤波器控制机理是用误差序列e(n)按照某种准则和算法对其系数{wi(n)},i=1,2,…,N 进行调节的,最终使自适应滤波的目标(代价)函数最小化,达到最佳滤波状态。
本节所用的标准是最小均方误差(MSE )即()2e E e n ⎡⎤=⎣⎦ (3-5)E[]表示算子期望。
假如公式中的y(n)被公式(3-4)取代,式(3-5)就可以表示为()[]()()()P n w n w R n w n e E e T T *-**+=22 (3-6)()()T R E x n x n ⎡⎤=*⎣⎦是N N ⨯自相关矩阵,是输入信号的自相关矩阵。
()()[]n x n d E P *=是1*N 互相关向量,也指出了期望信号)(n d 和输入信号向量)(n x 的相互关矢量。
由式(3-6)可见,自适应滤波器的代价函数是延迟线抽头系数的二次函数。
当矩阵R 和矢量P 己知时,可以由权系数矢量w 直接求其解。
最优解[]TN o w w w w ***=-110 最小化MSE ,源自解这个公式 ()0=n w δδε(3-7)将式(3-6)对w 求其偏导数,并令其等于零,假设矩阵R 满秩(非奇异),可得代价函数最小的最佳滤波系数:P R w *=-10 (3-8) 这个解称为维纳解,即最佳滤波系数值。
因为均方误差(MSE)函数是滤波系数w 的二次方程,由此形成一个多维的超抛物面,这好像一个碗状曲面又具有唯一的碗底最小点,通常称之为自适应滤波器的误差性能曲面。
当滤波器工作在平稳随机过程的环境下,这个误差性能曲面就具有固定边缘的恒定形状。
自适应滤波系数的起始值{wi(0)},i=1,2,…,N 是任意值,位于误差性能曲面上某一点,经过自适应调节过程,使对应于滤波系数变化的点移动,朝碗底最小点方向移动,最终到达碗底最小点,实现了最佳维纳滤波。
对于LMS 算法梯度v(n)通过假设平方误差。
2(n)作为公式(3-7)的MSE 来预测。
因此,梯度预测可以单一化表示为:()()[]()()()n x n e n w n e n *-==∇22δδ (3-9) 在实际应用中,2u 经常用来代替u 。
瞬间梯度预测产生的Widrow 一Hoff LMS 算法,w(n)为自适应滤波器在n 时刻的滤波系数或权矢量。
按照最陡下降法调节滤波系数,则在n+1时刻的滤波系数或权矢量w(n+l)可以用下列简单递归关系来计算:()()()()12w n w n u e n x n +=+** (3-10) u 是自适应步长来控制稳定性和收敛率。
这种瞬时估计是无偏的,因为它的期望值E[]等于最陡下降法的梯度矢量。
以任意初始向量w(0)来开始,向量w(n)集中在最佳解决方法w0,假如选u max 10u λ<< (3-11)m ax λ为矩阵R 的最大特征值,受限制于[]()()1max 000N i Tr R r Nr λ-=<==∑ (3-12)Tr[]为指示矩阵的轨迹,()()20r E x n ⎡⎤=⎣⎦是平均输入功率。
对于自适应信号处理应用,最重要的实际考虑是收敛速度,决定滤波器跟踪不稳定型号的能力。
总体来说,权向量要获得收敛只有当最缓慢的权集中一点。
这个最慢的时间 min 1t u λ= (3-13)这个指出时间连续相反的以u 的比例收敛,并且依靠输入矩阵的自相关特征值。
具有全异的特征值,规定时间是受最慢模式的限制。
以梯度预测为基础的自适应导致噪声矩阵的权向量,因此会有性能的损失。
这个自适应处理的噪声导致稳态权向量随意的改变为最适宜的权向量。
稳态权向量的精度通过超额的最小均方误差来测量。
这个LMS 算法超过EMS 的是[]min ε**=R Tr u excessEMS (3-14) m in ε是MSE 在稳态的最小值。
公式(3-15)和(3-16)产生LMS 算法基本协定:为了在稳态获得高精度(低超自适应滤波算法及应用研究额MSE),需要u 的最小值,但是也会降低收敛率。