当前位置:文档之家› 高精度磁尺基本原理简介

高精度磁尺基本原理简介

高精度磁尺基本原理简介
高精度磁尺基本原理简介

软磁材料技术发展与产业概况

软磁材料技术发展与产业概括 一、软磁材料技术基础 定义:能够迅速响应外磁场的变化,当磁化发生在矫顽力H c不大于100A/m (1.25Oe),这样的材料称为软磁体。 技术要求:能低损耗地获得高磁感应强度,即低损耗(P=涡流损耗Phv&磁损耗Pev)、高饱和磁感应强度(Ms),既容易受外加磁场磁化,也容易退磁,即高磁导率(μa)、高稳定性。低损耗可以保证能量转换效率高,器件不容易发热;高饱和磁感应强度可以保证提供磁场强度大,最高的Fe-0.35Co合金拥有2.45T的饱和磁化强度,纯铁的有2.15T;容易磁化和退磁可以保证器件灵敏度。 材料分类: 1.金属软磁,以硅钢片、坡莫合金、仙台合金等为代表,包括Fe系、Fe-Si系、 Fe-Al系、Fe-Ni系、Fe-Si-Al系、Fe-Co系、Fe-Cr系等 2.晶体软磁,又称铁氧体软磁材料,以Mn-Zn系、Ni-Zn系和Mg-Zn系为代表 的各种软磁铁氧体 3.非晶、纳米晶软磁材料,简称Finemet,有Fe基和Co 基两种非晶软磁材料;按制品形态分类: i.合金类,主要有硅钢片坡莫合金、非晶及纳米晶合金; ii.粉芯类,又称磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP); iii.铁氧体类:算是特殊的粉芯类,包括:锰锌系、镍锌系 常用软磁材料特性:

二、软磁材料的应用介绍 软磁材料在工业中的应用始于十九世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫

磁共振的基本原理

磁共振基本原理 磁共振成像的依据是与人体生理、生化有关的人体组织密度对核磁共振的反映不同。要理解这个问题,就必须知道核磁共振和核磁共振的特性。 一、核磁共振与核磁共振吸收的宏观描述 由力学中可知,发生共振的条件有二: 一是必须满足频率条件,二是要满足位相条件。 原子核是自旋的,它绕某个轴旋转(颇像个陀螺)。旋转时产生一定的微弱磁场和磁矩。将自旋的原子核放在一个均匀的静磁场中,受磁场作用,原子核的自旋轴会被强制定向,或与磁场方向相同,或与磁场方向相反。重新定向的过程中,原子核的自旋轴将类似旋转陀螺般的发生进动。不同类的原子核有不同的进动性质,这种性质就是旋转比(非零自旋的核具有特定的旋转比),用γ表示。进动的角频率ω一方面同旋转比有关;另一方面同静磁场的磁场强度 B 有关。其关系有拉莫尔(Larmor)公式(ω又称拉莫尔频率) : ω=γ·B (6-1) 静磁场中的原子核自旋时形成一定的微弱势能。当一个频率也为ω的交变电磁场作用到自旋的原子核时,自旋轴被强制倾倒,并带有较强的势能;当交变电磁场消除后,原子核的自旋轴将向原先的方向进动,并释放其势能。这种现象就是核磁共振现象(换言之,当电磁辐射的圆频率和外磁场满足拉莫尔公式时,原子核就对电磁辐射发生共振吸收),这一过程也称为弛豫过程,释放势能所产生的电压信号就是核磁共振信号.也被称为衰减信号(FID)。显然,核磁共振信号是一频率为ω的交变信号,其幅度随进动过程的减小而衰减。 图6-1表示几种原子核的共振频率与磁场强度的关系。这些频率是在电磁波谱的频带之内,这样的频率大大低于 X 线的频率,甚至低于可见光的频率。可见它是无能力破坏生物系统的分子的。在实际情况下,由于所研究的对象都是由大量原子核组成的组合体,因此在转入讨论大量原子核在磁场中的集体行为时,有必要引人一个反映系统磁化程度的物理量来描述核系统的宏观特性及其运动规律。这个物理量叫静磁化强度矢量,用 M表示。由大量原子核组成的系统,相当于一大堆小磁铁,在无外界磁场时,原子核磁矩μ的方向是随机的,系统的总磁矩矢量为 (6-2) 如果在系统的 Z 轴方向外加一个强静磁场B。,原子核磁矩受到外磁场的作用,在自身转动的同时又以 B。为轴进动,核磁矩取平行于 BO 的方向。按照波尔兹曼分布,在平衡状态下,处于不同能级的原子核数目不相等,使得原子核磁矩不能完全互相抵消,从而有 (6-3) 此时可以说系统被磁化了,可见 M 是量度原子核系统被磁化程度的量,是表示单位体积中全部原子核磁矩的矢量和。 图6-1几种原子核的共振频率与磁场强度的关系 1

磁导率

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr与1之差的绝对值是0.94×10-5)。然而铁磁质的μr可以大至几万。 非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。 所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。所以用铜裹住铁并不能阻断磁力,而且是远远不能。在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。 直截了当地讲,磁场无处不在,是不能阻断的。只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性

常见软磁材料

一). 粉芯类 1. 磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 磁芯的有效磁导率me及电感的计算公式为: me = DL/4N2S ′ 109 其中: D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。 (1). 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100; 初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2). 坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP是由81%Ni, 2%Mo, 及Fe粉构成。主要特点是: 饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300KHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用,粉芯中价格最贵。 高磁通粉芯HF是由50%Ni, 50%Fe粉构成。主要特点是: 饱和磁感应强度值在15000Gs左右;磁导率范围从14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC偏压、高直流电和低交流电上用得多。价格低于MPP。 (3). 铁硅铝粉芯 (Kool Mm Cores) 铁硅铝粉芯由9%Al, 5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;饱和磁感在1.05T左右;导磁率从26~125;磁致伸缩系数接近零,

磁光材料简介

磁光材料的研究现状 1.综述 磁光材料是具有磁光效应的材料,磁光效应包括法拉第效应、磁光克尔效应、塞曼效应和磁致线双折射效应(科顿-穆顿效应和瓦格特效应)等。磁光材料需要同时具备一定的光学特性和磁学特性。 1.1法拉第效应 法拉第效应指偏振光通过磁场下的介质后,偏振面因磁场作用而发生偏转。 其中是沿着光线传播方向看去偏振面的旋转角,叫做法拉第转角;V是Verdet 常数,与材料性质有关;B是磁感应强度在光线传播方向上的投影;d是光在介质中传播的距离。当磁感应强度投影B与光线传播方向同向时,偏振面右旋,<0;反之,偏振面左旋,>0。 与普通旋光效应不同的是,光线通过介质后再反射,原路返回再次通过介质,偏振面会在原来的基础上再旋转角,而不是恢复原状。这为利用法拉第效应的磁致旋光材料提供了一种新的应用空间,如磁光调制器、磁光隔离器等。 目前,对法拉第效应磁光材料的研究相对透彻,应用也相对广泛。以钇铁石榴石(,简称YIG)为代表的稀土铁石榴石()材料是常见的法拉第效应磁光材料[1]。 1.2磁光克尔效应 磁光克尔效应指线偏振光在磁化的介质表面反射后,在磁场作用下偏振面发生偏转,偏转角度称为磁光克尔转角。根据磁场强度方向的不同,磁光克尔效应分为三种:极向克尔效应:磁场方向垂直于介质表面,通常,随入射角的减小而增大; 横向克尔效应:磁场方向平行与介质表面且垂直于入射面,光线的偏振方向不会发生变化,p偏振光入射时会发生微小的反射率变化; 纵向克尔效应:磁场方向平行与介质表面且平行于入射面,随入射角的减小而减小,纵向克尔效应的强度比极向克尔效应小几个数量级,不易观察。 1 / 8

应用最广的是极向克尔效应,可用来进行磁光存储和观察磁体表面或磁性薄膜的磁畴分布。 1.3塞曼效应 塞曼效应指光源位于强磁场中时,分析其发光的谱线,发现原来的一条谱线分裂成三条或更多条。原子位于强磁场中时,破坏自旋-轨道耦合,一个能级分裂成多个能级,而且新能级间有一定的间隔,能级的分裂导致了谱线的分裂。能级分裂的方式与角量子数J和朗德因子g有关。 塞曼效应证明了原子具有磁矩,而且磁矩的空间取向量子化。塞曼效应可应用于测定角量子数和朗德因子,还可分析物质的元素组成。 1.4磁致线双折射效应 磁致线双折射效应指透明介质处于磁场中时,表现出单轴晶体的性质,光线入射能产生两条折射线。在铁磁和亚铁磁体中的磁致线双折射效应称作科顿-穆顿效应,反铁磁体中的磁致线双折射效应称作瓦格特效应[2]. 磁致线双折射效应可用于测量物质能级结构,研究单原子层磁性的微弱变化等2.研究现状 本章将介绍多种磁光材料的前沿应用和理论研究,并结合本人所学知识给出相应的评价和启发。个人评价用加粗字体给出。 2.1利用法拉第效应进行焊接检测[3] 根据法拉第效应,偏振光通过磁场中的介质后,偏振面转过一定角度,通过偏振角一定的偏振片后,就会表现为不同的亮度。工作时,将光源、起偏器、反射镜、直流电磁铁、光反射面、磁光薄膜、检偏器、CMOS成像装置和焊件按图1组装。 2 / 8

铁粉基软磁材料介绍

铁粉基软磁材料介绍 1材料种类 海绵铁从1910年开始生产,但直到1946年瑞典赫格纳斯公司才建立起世界第一家铁粉厂,现在铁粉生产已成为一种工业。60年代建立起雾化制粉工艺,整个铁粉工业年产铁粉逾80万t。这种材料大部分用于粉末冶金工业,按严格技术要求生产终形制品。高纯度与高压缩性铁粉的开发,为粉末冶金制品开辟了软磁应用领域。 采用粉末冶金技术,压制铁粉并在高温下烧结,可得到相当于纯铁铸件的软磁部件。不损害压缩性的合金化方法的开发,提供了大量的合金化材料。合金添加剂提高电阻率,导致较低的涡流损耗。合金化材料在高温下烧结也可得到高磁导率。可是,合金添加剂也降低饱和磁感,而且合金含量在商业使用上还有一个限度。一般认为,这些材料适合于直流电应用,或很低频率的应用。 减少铁颗粒涡流损耗的另一种方法是在颗粒之间引入绝缘层。绝缘层可以是有机树脂材料或无机材料,因而这些材料是软磁复合材料。绝缘层可以有效地降低涡流损耗,但绝缘层的作用像气隙一样,因而也降低了磁导率。通常用降低绝缘层厚度、压制到高密度和进行热处理消除或减少应力来部分地恢复磁导率。性能的变化取决于所使用的频率。因而最近几年迅速发展了一系列材料与工艺。 软磁复合材料的最新开发,旨在生产可在较低频率下使用的部件。像电机一类通常是在50-60Hz频率下工作,但微型化趋势可能将频率增加到100Hz或300Hz。将低频应用的烧结软磁材料与50Hz应用的软磁复合材料对比一下是有趣的。这种对比是在50Hz与0 5T条件下进行的,因为在较高磁感下的涡流损耗比例相当大,对于烧结材料性能的测定是困难的。 高电阻率的烧结材料在50Hz下的总损耗接近于软磁复合材料的总损耗。而烧结材料的总损耗中涡流损耗占有很高比例,而软磁复合材料的总损耗几乎全是磁滞损耗。 对比软磁复合材料的直流磁滞曲线与50Hz时的磁滞曲线,这些曲线实际上是相同的,因而证实总损耗几乎全是磁滞损耗。一种高电阻率材料(含3%Si的烧结铁)在直流和在0 05Hz、0 5Hz和50Hz交流时的磁滞曲线的面积随频率的增加而增加,证实存在着涡流损耗。 低频到中频应用的传统材料是叠层钢片。堆叠钢片或堆叠前将钢片表面绝缘,可降低堆叠方向上的涡流。平行于钢片方向上显示出金属合金的高磁导率和损耗值。在低到中频使用的粉末材料几乎都是雾化铁粉。烧结材料要经受高达1250℃的高温,这保证了扩散与良好的颗粒接触。软磁复合材料在不高于500℃的温度进行热处理,因而它本身限制了烧结材料那样的颗粒接触。 表面绝缘的效果:纯铁粉与添加0 5%Kenolube的绝缘粉Somaloy500,均在800MPa压制(密度7 34g/cm3)并在空气中于500℃热处理30min。结果表明:在50Hz时的总损耗是相似的,但纯铁的总损耗由于较高比例的涡流损耗比例而从60Hz开始迅速增大。表面绝缘层能耐500℃热处理,并保持低的涡流损耗。 2工艺参数对性能的影响

磁共振的原理

磁共振的原理 固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率一致时,就会从交变电磁场中吸收能量以维持其进动,固体对入射的高频电磁场能量在上述频率处产生一个共振吸收峰。若产生磁共振的磁矩是顺磁体中的原子(或离子)磁矩,则称为顺磁共振;若磁矩是原子核的自旋磁矩,则称为核磁共振。若磁矩为铁磁体中的电子自旋磁矩,则称为铁磁共振。核磁矩比电子磁矩约小3个数量级,故核磁共振的频率和灵敏度比顺磁共振低得多;同理,弱磁物质的磁共振灵敏度又比强磁物质低。从量子力学观点看,在外磁场作用下电子和原子核的磁矩是空间量子化的,相应地具有离散能级。当外加高频电磁场的能量子hv等于能级间距时,电子或原子核就从高频电磁场吸收能量,使之从低能级跃迁到高能级,从而在共振频率处形成吸收峰。 利用顺磁共振可研究分子结构及晶体中缺陷的电子结构等。核磁共振谱不仅与物质的化学元素有关,而且还受原子周围的化学环境的影响,故核磁共振已成为研究固体结构、化学键和相变过程的重要手段。核磁共振成像技术与超声和X射线成像技术一样已普遍应用于医疗检查。铁磁共振是研究铁磁体中的动态过程和测量磁性参量的重要方法。

磁共振基本原理 磁共振(回旋共振除外)其经典唯象描述是:原子、电子及核都具有角动量,其磁矩与相应的角动量之比称为磁旋比γ。磁矩M 在磁场B中受到转矩MBsinθ(θ为M与B间夹角)的作用。此转矩使磁矩绕磁场作进动运动,进动的角频率ω=γB,ωo称为拉莫尔频率。由于阻尼作用,这一进动运动会很快衰减掉,即M达到与B平行,进动就停止。但是,若在磁场B的垂直方向再加一高频磁场b(ω)(角频率为ω),则b(ω)作用产生的转矩使M离开B,与阻尼的作用相反。如果高频磁场的角频率与磁矩进动的拉莫尔(角)频率相等ω =ωo,则b(ω)的作用最强,磁矩M的进动角(M与B角的夹角)也最大。这一现象即为磁共振。 磁共振也可用量子力学描述:恒定磁场B使磁自旋系统的基态能级劈裂,劈裂的能级称为塞曼能级(见塞曼效应),当自旋量子数S=1/2时,其裂距墹E=gμBB,g为朗德因子, 为玻尔磁子,e和me为电子的电荷和质量。外加垂直于B的高频磁场b(ω)时,其光量子能量为啚ω。如果等于塞曼能级裂距,啚ω=gμBB=啚

软磁材料技术发展与产业概况

软磁材料技术发展与产业概括 —、软磁材料技术基础 定义:能够迅速响应外磁场的变化,当磁化发生在矫顽力H e不大于100A/m (1.250e),这样的材料称为软磁体。 技术要求:能低损耗地获得高磁感应强度,即低损耗(卩=涡流损耗Phv&磁损耗Pev)、高饱和磁感应强度(Ms),既容易受外加磁场磁化,也容易退磁,即高磁导率(由)、咼稳定性。低损耗可以保证能量转换效率咼,器件不容易发热;咼饱和磁感应强度可以保证提供磁场强度大,最高的F&0.35CO合金拥有2.45T的 饱和磁化强度,纯铁的有2.15T;容易磁化和退磁可以保证器件灵敏度。 材料分类: 1.金属软磁,以硅钢片、坡莫合金、仙台合金等为代表,包括Fe系、F&Si系、 F&AI 系、F&Ni 系、F&S-AI 系、F&Co系、F&Cr系等 2.晶体软磁,又称铁氧体软磁材料,以Mn-Zn系、Ni-Zn系和Mg-Zn系为代表的各种 软磁铁氧体 3.非晶、纳米晶软磁材料,简称Fin emet,有Fe基和Co基两种非晶软磁材料;按制品形态分类: i.合金类,主要有硅钢片坡莫合金、非晶及纳米晶合金; ii.粉芯类,又称磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High FluX)、坡莫合金粉芯(MPP); iii.铁氧体类:算是特殊的粉芯类,包括:锰锌系、镍锌系 常用软磁材料特性:

二、软磁材料的应用介绍 软磁材料在工业中的应用始于十九世纪末。随着电力工及电讯技术的兴起, 开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫

磁共振成像的基本原理和概念

磁共振成像的基本原理和概念 第一节磁共振成像仪的基本硬件 医用MRI仪通常由主磁体、梯度线圈、脉冲线圈、计算机系统及其他辅助设备等五部分构成。 一、主磁体 主磁体是MRI仪最基本的构件,是产生磁场的装置。根据磁场产生的方式可将主磁体分为永磁型和电磁型。永磁型主磁体实际上就是大块磁铁,磁场持续存在,目前绝大多数低场强开放式MRI仪采用永磁型主磁体。电磁型主磁体是利用导线绕成的线圈,通电后即产生磁场,根据导线材料不同又可将电磁型主磁体分为常导磁体和超导磁体。常导磁体的线圈导线采用普通导电性材料,需要持续通电,目前已经逐渐淘汰;超导磁体的线圈导线采用超导材料制成,置于液氦的超低温环境中,导线内的电阻抗几乎消失,一旦通电后在无需继续供电情况下导线内的电流一直存在,并产生稳定的磁场,目前中高场强的MRI仪均采用超导磁体。主磁体最重要的技术指标包括场强、磁场均匀度及主磁体的长度。 主磁场的场强可采用高斯(Gauss,G)或特斯拉(Tesla,T)来表示,特斯拉是目前磁场强度的法定单位。距离5安培电流通过的直导线1cm处检测到的磁场强度被定义为1高斯。特斯拉与高斯的换算关系为:1 T = 10000 G。在过去的20年中,临床应用型MRI仪主磁体的场强已由0.2 T以下提高到1.5 T以上,1999年以来,3.0 T的超高场强MRI仪通过FDA 认证进入临床应用阶段。目前一般把0.5 T以下的MRI仪称为低场机,0.5 T到1.0 T之间的称为中场机,1.0 T到2.0之间的称为高场机(1.5 T为代表),大于2.0 T的称为超高场机(3.0 T为代表)。 高场强MRI仪的主要优势表现为:(1)主磁场场强高提高质子的磁化率,增加图像的信噪比;(2)在保证信噪比的前提下,可缩短MRI信号采集时间;(3)增加化学位移使磁共振频谱(magnetic resonance spectroscopy,MRS)对代谢产物的分辨力得到提高;(4)增加化学位移使脂肪饱和技术更加容易实现;(5)磁敏感效应增强,从而增加血氧饱和度依赖(BOLD)效应,使脑功能成像的信号变化更为明显。 当然MRI仪场强增高也带来以下问题:(1)设备生产成本增加,价格提高。(2)噪音增加,虽然采用静音技术降低噪音,但是进一步增加了成本。(3)因为射频特殊吸收率(specific absorption ratio,SAR)与主磁场场强的平方成正比,高场强下射频脉冲的能量在人体内累积明显增大,SAR值问题在3.0 T的超高场强机上表现得尤为突出。(4)各种伪影增加,运动伪影、化学位移伪影及磁化率伪影等在3.0 T超高场机上更为明显。由于上述问题的存在,3.0 T的MRI仪在临床应用还有一定限制,尽管其在中枢神经系统具有优势,但是在体部应用还不太成熟,因此,目前以1.5 T的高场机最为成熟和实用。 MRI对主磁场均匀度的要求很高,原因在于:(1)高均匀度的场强有助于提高图像信噪比,(2)场强均匀是保证MR信号空间定位准确性的前提,(3)场强均匀可减少伪影(特别是磁化率伪影),(4)高度均匀度磁场有利于进行大视野扫描,尤其肩关节等偏中心部位的MRI检查,(5)只有高度均匀度磁场才能充分利用脂肪饱和技术进行脂肪抑制扫描,(6)高度均匀度磁场才能有效区分MRS的不同代谢产物。现代MRI仪的主动及被动匀场技术进步很快,使磁场均匀度有了很大提高。 为保证主磁场均匀度,以往MRI仪多采用2m以上的长磁体,近几年伴随磁体技术的进步,各厂家都推出磁体长度为1.4m~1.7m的高场强(1.5T)短磁体,使病人更为舒适,尤其适用于幽闭恐惧症的患者。 随介入MR的发展,开放式MRI仪也取得很大进步,其场强已从原来的0.2T左右上升到0.5T以上,目前开放式MRI仪的最高场强已达1.0T。图像质量明显提高,扫描速度更快,已经几乎可以做到实时成像,使MR“透视”成为现实。开放式MR扫描仪与DSA的一体

高度尺操作使用方法

高度尺操作使用方法 高度尺构造 1. 校正 将测量爪在干净的水平台上归零,然后用标准块进行校正,如测量值与标准值有偏差,测量时,则对高度尺进行相对应的加减。 2. 高度尺的使用 高度尺主要用于高度的测量和精密的划线。 先把测量爪在要测量的物体尺寸一端归零,再把测量爪移至要测量的物体尺寸的另一端,显示屏上所显示的数值即为零件的高度 测量时所需测量的物体需水平垂直放置,不能倾斜。 正确的测量方法如图: 尺身 紧固螺钉 游标

错误的测量方法: 3.高度尺的读数 读数时首先以游标零刻度线为准在尺身上读取毫米整数,即以毫米为单位的整数部分。然后看游标上第几条刻度线与尺身的刻度线对齐,若没有正好对齐的线,则取最接近对齐的线进行读数。如有零误差,则一律用上述结果减去零误差(零误差为负,相当于加上相同大小的零误差),读数结果为: L=整数部分+小数部分-零误差 判断游标上哪条刻度线与尺身刻度线对准,可用下述方法:选定相邻的三条线,如左侧的线在尺身对应线左右,右侧的线在尺身对应线之左,中间那条线便可以认为是对准了,如图 如果需测量几次取平均值,不需每次都减去零误差,只要从最后结果减去零误差即可。 5.使用注意事项 A.测量前,用干净清洁的布反复擦拭尺身表面,清净底座和测量爪的工作 面,检查测量爪是否磨损; B.清净平台工作面,将高度尺置于其上,松开紧固螺钉,移动尺框,检查是 否正常; C.移动尺框时,活动要自如,不应有过松或过紧,更不能有晃动现象; D.测量时,用力要均匀,测力约3-5N,以保证测量准确性; E.测量零件时,零件上不能有异物,并在常温下测量; F.使用时,轻拿轻放,避免测量爪被碰撞到,不可掉到地上

非晶纳米晶软磁材料应用市场概况

非晶/纳米晶软磁材料应用市场概况 非晶态软磁合金材料为20世纪70年代问世的一种新型材料,因具有铁芯损耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们的极大重视,被誉为21世纪新型绿色节能材料。其技术特点为:采用超急冷凝固技术使合金钢液到薄带材料一次成型;采用纳米技术,制成介于巨观和微观之间的纳米态(10-20nm)软磁物质。非晶、纳米晶合金的优异软磁特性都来自于其特殊的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以使其磁致伸缩趋近于零。【表1】列出了非晶/纳米晶软磁材料的典型性能及主要应用领域。 表1 非晶/纳米晶软磁材料的典型性能及主要应用领域

近年来,随着信息处理和电力电子技术的快速发展,各种电器设备趋向高频化、小型化、节能化。 在电力领域,非晶、纳米晶合金均得到大量应用。其中铁基非晶合金的最大应用是配电变压器铁芯。由于非晶合金的工频铁损仅为硅钢的1/5~1/3,利用非晶合金取代硅钢可使配电变压器的空载损耗降低60﹪~70﹪。因此,非晶配电变压器作为换代产品有很好的应用前景。纳米晶合金的最大应用是电力互感器铁芯。电力互感器是专门测量输变电线路上电流和电能的特种变压器。近年来高精度等级(如级、级、级)的互感器需求量迅速增加。传统的冷轧硅钢片铁芯往往达不到精度要求,虽然高磁导率玻莫合金可以满足精度要求,但价格高。而采用纳米晶铁芯不但可以达到精度要求、而且价格低于玻莫合金。 在电力电子领域,随着高频逆变技术的成熟,传统大功率线性电源开始大量被高频开关电源所取代,而且为了提高效率,减小体积,开关电源的工作频率越来越高,这就对其中的软磁材料提出了更高的要求。硅钢高频损耗太大,已不能满足使用要求。铁氧体虽然高频损耗较低,但在大功率条件下仍然存在很多问题,一是饱和磁感低,无法减小变压器的体积;二是居礼温度低,热稳定性差;三是制作大尺寸铁芯成品率低,成本高。目前采用功率铁氧体的单个变压器的转换功率不超过20kW。纳米晶软磁合金同时具有高饱和磁感和很低的高频损耗,且热稳定性好,是大功率开关电源用软磁材料的最佳选择。采用纳米晶铁芯的变压器的转换功率可达500kW,体积比功率铁氧体变压器减少50﹪以上。目前在逆变焊机电源中纳米晶合金已经获得广泛应用,在通讯、电动交通工具、电解电镀等领域用开关电源中的应用正在积极开发之中。 在电子信息领域,随着计算机、网络和通讯技术的迅速发展,对小尺寸、轻重

磁性材料介绍

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。

锰产业调研报告

锰产业调研报告 广西大锰锰业集团有限公司 2015年11月

目录 一、锰矿资源概述 (3) 1.世界锰矿资源情况 (3) 2.我国锰矿资源情况 (4) 二、锰系产品简介 (9) 1.锰矿资源采选(略) (9) 2.锰系铁合金 (10) 3.电解金属锰 (10) 4.电解二氧化锰 (10) 5.四氧化三锰 (11) 6.高锰酸钾 (11) 7.锰锂复合氧化物 (12) 8.其他锰盐 (12) 三、中国锰行业发展现状 (13) 1.锰系铁合金现状 (13) 2.电解金属锰现状 (16) 3.其他锰产业现状 (20) 4.广西锰产业现状 (23) 四、我国锰产业存在的问题 (25) 五、锰行业未来发展战略与定位 (29)

锰产业调研报告 一、锰矿资源概述 1.世界锰矿资源情况 锰以化合物的形式广泛分布在自然界中,几乎各种矿石及硅酸盐的岩石中均含有锰。锰矿最常见的是无水和含水的氧化锰和碳酸锰。全球锰矿资源比较丰富,但分布很不均匀。 世界陆地锰矿资源量合计约57亿吨,可供开发且有商业价值的锰矿储量约10亿吨,95%以上分布在南非、乌克兰、澳大利亚、巴西、印度、中国、加蓬、哈萨克斯坦和墨西哥等国,其中绝大多数为氧化锰矿石。南非是世界上拥有锰矿资源总量最多的国家,探明锰矿储量达1.5亿吨,占世界锰矿石总储量的26.5%。当前世界锰矿储量情况详见表1-1。 表1-1 世界锰矿储量表(金属量)万吨 除陆地锰矿资源外,地球大洋底也有极其丰富的锰矿资

源,锰结核是其中一种,是锰的重要潜在资源。锰结核是沉淀在大洋底的铁、锰氧化物的集合体,含有30多种金属元素,其中锰、铜、钴、镍等有价金属具有巨大的商业经济价值。锰结核广泛地分布在世界海洋2000~6000米水深海底的表层,其丰度约为4400吨/平方公里,估计总储量在3万亿吨。 世界高品位锰矿(含锰35%以上)资源主要分布在南非、澳大利亚、加蓬和巴西等,也是全世界重要的锰矿石生产国。2014年,全世界锰矿石产量(原矿产量)约为7000万吨,其中:中国达3500万吨、南非900万吨、澳大利亚750万吨、加蓬380万吨。详见表1-2。 表1-2 2014年世界锰矿石生产情况表万吨 2.我国锰矿资源情况 根据国土资源部统计资料,我国已在大陆地区23个省区市发现并勘查锰矿,查明锰矿区450个,查明资源储量5.68亿吨(矿石量)。详见图1-1。

常见软磁磁芯种类及比较

?磁粉芯:磁粉芯是一种具有均匀分布式气隙的材料,拥有许多优秀的磁特性-高电阻,低磁滞和低涡流损耗,以及在直流和交流条件下极佳的电感稳定 性。美磁的磁粉芯材料不使用有机粘结剂,因此,

不会有使用铁粉芯时出现的热老化现象。分布气隙 材料相互之间具有合金颗粒绝缘层。这允许随着电 流的不断增加达到软饱和,提供故障保护。具有离 散气隙的磁芯(铁氧体)具有高电感,使曲线中出 现转折,造成急速饱和。具有分布气隙的磁芯在高 温条件下拥有较理想的B m a x和直流偏置。具有离 散气隙的磁芯(铁氧体)将在气隙周围造成边缘磁 通,损耗显著增加。美磁公司现提供四种不同的磁 粉芯材料,点击以下名称,即可得到各种不同材料 的优势、用途、以及规格尺寸。 铁硅铝铁硅高磁通钼坡莫 ? ?铁氧体:铁氧体是由F e2O3和其他二价的金属氧化 物(如N i O,Z n O)等粉末混合烧结而成。经由机器压 制,然后在窑里1300度C的烧结和加工,以满足 各种需求。相较于其他类型磁性材料,铁氧体的 优势为宽泛的频率范围下内高电阻率,以及低涡流 损耗。加上高磁导率的特性,使得铁氧体成为许多 应用的理想选择,如高频变压器,宽带变压器,可 调电感器和其它高频率从10千赫至50兆赫的电路 中应用。铁氧体在材料和形状的选择上都相当灵 活。美磁提供的铁氧体磁芯是氧化氮由铁(Fe), 锰(Mn),和锌(Zn)组成,通常被称为锰锌铁氧体。 铁氧体有低矫顽力,亦称为软磁铁氧体。由于在 高频率下的磁损低,它们广泛用于开关模式电源

(SMPS),射频(RF)变压器和电感器。按照形状的不同,分成环形、E、I、U、EER、EC、UR和其他形状,以及罐形磁芯(Pot Core)。 ?绕带磁芯:绕带磁芯是由高磁导率镍铁合金的细带缠绕制成,可用的合金包括Or t h o n o l?、Sq u a r e P e r m a l l o y80、Su p e r m a l l o y和Al l o y48,或晶粒取向硅铁Ma g n e s i l?。各种材料的生产厚度介于 0.0005”和0.004”之间(以满足广泛的频率应 用),缠绕成的环形磁芯重量从不足一克到几百千克不等。所有材料均带有酚醛树脂或塑料、铝或绝缘涂层铝的保护罩。马格尼西合金材料还可以不装箱或者采取环氧封装。绕带磁芯专门用于磁性放大器、变换式和逆变式变压器、电流互感器和静态磁性设备。

常见材料学专业名词中英文对译

常见材料学专业名词中英文对译 材料科学 Material Science 物料科学定义Material Science Definition 加工性能 Machinability 强度 Strength 抗腐蚀及耐用 Corrosion & resistance durability 金属特性 Special metallic features 抗敏感及环境保护 Allergic, re-cycling & environmental protection 化学元素 Chemical element 元素的原子序数 Atom of Elements 原子及固体物质 Atom and solid material 原子的组成、大小、体积和单位图表The size, mass, charge of an atom, and is particles (Pronton,Nentron and Electron) 原子的组织图 Atom Constitutes 周期表 Periodic Table 原子键结 Atom Bonding 金属与合金Metal and Alloy 铁及非铁金属 Ferrous & Non Ferrous Metal 金属的特性 Features of Metal 晶体结构Crystal Pattern 晶体结构,定向格子及单位晶格Crystal structure, Space lattice & Unit cell X线结晶分析法 X – ray crystal analyics method 金属结晶格子Metal space lattice 格子常数Lattice constant 米勒指数Mill's Index 金相及相律Metal Phase and Phase Rule

常见软磁磁芯种类及比较

常见软磁磁芯种类及比较 从事设计变压器和电感器工程师在面临磁芯的选型时,通常会问:使用哪一种材料最 好? 这个问题没有通用答案,材料的选择取决于应用场合与使用频率。选择任何材料都只 是一种折中方案。例如,某些材料能够使温升程度降至最低,但是比较昂贵。但是, 如果用户愿意忍受较高程度的温升,可能大且较便宜的组件便可胜任。最佳材料的选 择首先依赖于您是否将其应用于电感器或变压器。从这一点出发,操作频率和成本也 很重要。不同的材料适用于不同的频率范围、操作温度和磁通密度。将磁芯的选择范 围缩小至某个特定类型后,建议试用各个不同的磁芯,然后做出最终选择。下面表格 是各种常见的软磁材料比较表。 常见软磁材料比较表 软磁磁性材料组合饱和磁通密度(T)磁导率磁芯损耗相对成本温度稳定磁粉芯材料 ?铁硅铝铁·硅·铝 1.05 14-125 低低佳 ?铁硅铁·硅 1.6 60 高低佳 ?高磁通铁·鎳 1.5 14-160 中等中等更佳 ?钼坡莫铁·鎳·鉬 0.75 14-550 最低高最佳 铁氧体材料锰锌 0.45 900-10K 最低最低差 绕带磁芯铁·鎳·鉬 0.7 100K 极低极高极佳 铁粉芯铁 1.2-1.5 3-100 最高最低差 ?磁粉芯:磁粉芯是一种具有均匀分布式气隙的材料, 拥有许多优秀的磁特性-高电阻,低磁滞和低涡流 损耗,以及在直流和交流条件下极佳的电感稳定 性。美磁的磁粉芯材料不使用有机粘结剂,因此,

不会有使用铁粉芯时出现的热老化现象。分布气隙 材料相互之间具有合金颗粒绝缘层。这允许随着电 流的不断增加达到软饱和,提供故障保护。具有离 散气隙的磁芯(铁氧体)具有高电感,使曲线中出 现转折,造成急速饱和。具有分布气隙的磁芯在高 温条件下拥有较理想的B m a x 和直流偏置。具有 离散气隙的磁芯(铁氧体)将在气隙周围造成边缘 磁通,损耗显著增加。美磁公司现提供四种不同的 磁粉芯材料,点击以下名称,即可得到各种不同材 料的优势、用途、以及规格尺寸。 铁硅铝铁硅高磁通钼坡莫 ? ?铁氧体: 铁氧体是由Fe2O3和其他二价的金属氧化 物(如N i O,Z n O)等粉末混合烧结而成。经由机器 压制,然后在窑里1300度C的烧结和加工,以满 足各种需求。相较于其他类型磁性材料,铁氧体 的优势为宽泛的频率范围下内高电阻率,以及低涡 流损耗。加上高磁导率的特性,使得铁氧体成为许 多应用的理想选择,如高频变压器,宽带变压器, 可调电感器和其它高频率从10千赫至50兆赫的电 路中应用。铁氧体在材料和形状的选择上都相当灵 活。美磁提供的铁氧体磁芯是氧化氮由铁(Fe), 锰(M n),和锌(Zn)组成,通常被称为锰锌铁氧体。 铁氧体有低矫顽力,亦称为软磁铁氧体。由于在 高频率下的磁损低,它们广泛用于开关模式电源

常见软磁基础知识和比较

常见软磁基础知识和比较 (一). 粉芯类 ?1. 磁粉芯 ?磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。磁芯的有效磁导率me及电感的计算公式为:me = DL/4N2S ′ 109 其中:D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。 ?(1). 铁粉芯常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100; 初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 ?(2). 坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。MPP是由81%Ni, 2%Mo, 及Fe粉构成。主要特点是: 饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300KHz 以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常

软磁材料静态磁参数的测量

软磁材料静态磁参数的测量 1. 实验目的 ⑴ 学习磁滞回线的测量方法。 ⑵ 了解磁性材料的基本特性。 2. 实验内容 (1) 测静态磁化曲线及磁滞回线。 (2) 根据磁滞回线确定材料的c r m H B B ,,,max μ等参数。 3. 实验原理 ⑴ 磁滞特性 - 磁性材料大体上可以分为永磁材料和软磁材料。永磁材料包含稀土永磁(钕铁硼、钐钴等),金属永磁(AlNiCo )和铁氧体永磁;软磁材料包含金属软磁(硅钢Fe-Si ,坡莫合金Fe-Ni 、金属铁粉芯FeNiAl 等),铁氧体软磁(锰锌、镍锌、镁锌、锂锌)和其它软磁材料。本实验主要讨论软磁材料磁参数的测量。铁磁性材料除了具有高的磁导率以外,还有一个磁滞特性。当一个材料磁化时磁感应强度不仅与当时的磁场强度H 有关,而且与该材料以前的磁化状态有关。如图1所示,曲线OA 表示铁磁性材料从没有磁性开始磁化,磁感应强度B 随磁场强度H 增加而增加,称为磁化曲线。当H 增加到H S 时,磁感应强度B 达到B S ,基本上不再随H 的增加而增加,即达到磁饱和。称B S 为饱和磁感应强度,H S 为饱和磁场强度。当磁性材料磁化以后,如果使H 减小,B 将不沿着原路返回,而是沿着另一条曲线AR 下降。如果H 从H S 变到-H S ,再从-H S 变到H S ,B 将随着H 的变化而形成一条如图1所示的磁滞回线ARC ’A ’R ’ CA 。其中,当0=H 时,r B B =,r B 称为剩余磁感应强度。要使磁感应强度下降到零,就必须加一反向磁场C H -,C H 称为矫顽力。一般来说,矫顽力小的磁

性材料称为软磁材料,矫顽力大的磁性材料称为硬磁材料。必须指出的是:在反复磁化(S S S H H H →-→)的开始几个循环内,每一次循环的B-H 曲线不一定沿着相同的路径进行,只有经过十几次反复磁化以后,每次循环的路径才趋于相同,形成一个稳定的磁化曲线,把这一过程称为“磁锻炼” 。只有经过“磁锻炼”后所形成的磁滞回线才能代表该材料的磁滞性质。 在主要磁化曲线的各点上求出B 与μ0H 之比,即可得到μ和H 之间的关系曲线(图1上没有画出)。 ⑵ 磁滞回线的测量 为了使大家深入了解软磁测量的物理过程,在介绍软磁自动测量软件之前,我们首先介绍手动测量磁滞回线的方法。由于软磁材料在较低的磁场下就能达到饱和磁化,所以在研究软磁材料的磁性时,往往将样品做成如图2所示的具有闭合磁路的环形,在样品磁环上均匀地绕以磁化线圈,把这种磁化线圈称为螺绕环。螺绕环产生的磁场不强,最多为几千安培/米,但是对软磁材料来说完全可以使其达到饱和。一个均匀绕制的螺绕环等效于一个首尾相接的螺线管,因此,沿着轴线方向的磁场是均匀的。如果样品的内半径为R 1,外半径为R 2,磁环的平均半径为R ,螺绕环的匝数为N 1,通过的电流为I ,则螺绕环内的磁场为 ()121I R N H π= 上式中N 1和R 在实验过程中均为已知的结构参数,因此可以通过对磁化电流I 的测量来得到磁场强度H 。 磁化曲线和磁滞回线的测量可以归结为各磁化电流下磁感应强度B 的测量。图3(a )给出了冲击法测量磁参数的电路图。用冲击法测量磁感应强度B 就是在被测磁环样品C 上再绕上匝数为N 2的探测线圈(也称为“次级线圈”),探测线圈N 2与冲击电流计G 串联,当磁化线圈N 1(亦称“初级线圈”)中的磁化电流突然改变I ?时,磁场强度改变为H ?,样品的磁感应强度也相应地改变B ?,在探测线圈中的磁通量变化为B S N ?=?Φ2,S 是样品的横截面积。通过测量冲击电流计最大偏转量m ax n ,就可以用下式求出B ?:

相关主题
文本预览
相关文档 最新文档