当前位置:文档之家› 我国电炉炼钢的发展现状与前景

我国电炉炼钢的发展现状与前景

我国电炉炼钢的发展现状与前景
我国电炉炼钢的发展现状与前景

我国电炉炼钢的发展现状与前景

现代炼钢流程主要是转炉流程和电炉流程。2004年世界粗钢产量达10.548亿t,其中转炉钢66452万t,占63%,电炉钢35652万t,占33.8%。我国钢产量27470万t,其中转炉钢23271万t,占85.72%,电炉钢4167.1万t,仅占15.17%。

笔者在此分析了我国不同时期电炉钢比例逐年下降的原因,讨论了为什么要重视电炉钢的发展,指出了在目前我国废钢资源及电力紧缺的条件下,发展电炉炼钢的方法及技术措施,认为目前应考虑对发展我国现代电炉炼钢的第二轮投资。

国外电炉炼钢的发展情况

自上世纪中叶至今,尽管转炉炼钢技术取得了长足的进步。但世界电炉钢比例不断增长,从1950年的7.3%增长到2004年的33.8%。

电炉钢比例的增长,主要是由于跟高炉转炉长流程相比,电炉炼钢具有固定投资小,消耗铁矿石,焦炭,水等资源少,占地面积小,可比能耗低,对环境污染少,工厂可接近资源产地及市场,启动及停炉灵活等优点,符合全球可持续发展要求。

本世纪前四年,世界上年产钢500万吨以上的主要产钢国家各国粗钢产量稳步增长,电炉钢比例不同国家有增有减,总体上有所降低,从2001年至2003年电炉钢的比例从35%下降至33.1%。2004年虽然粗钢产量增长迅速,但世界电炉钢比例从33.1%上升至33.8%。我国现代电炉炼钢的发展情况

我国现代电炉炼钢始于1993年原冶金部和上海市在上海召开的“当代电炉流程和电炉工程问题研讨会”(以下简称第一次上海会议)。由于各级政府部门引导,支持钢铁企业进行了对现代电炉流程的一轮投资,依靠引进国外现代电炉流程先进技术,在我国建成了一批“三位一体”或“四位一体”的先进电炉流程。

从1993年至今,我国电炉钢生产的发展可分为三个阶段。

在1993年至2000年这一阶段,我国电炉钢产量在1800~2000万t波动,电炉钢比例逐年下降,从23.2%下降至15.7%。这是由于一方面淘汰了大量落后的小电炉,使得我国电炉钢产量下降,另一方面新投产的大电炉产量还是不够高,致使电炉钢产量在一个水平线上波动,另外由于转炉钢产量的迅速增长,电炉钢产量增长比较慢,致使电炉钢比例下降,但这也正好说明“第一次上海会议”的意义及影响,如果没有1993年的“第一次上海会议”,在小电炉大量被淘汰的情况下,2000年我国电炉钢的比例恐怕还会低很多。

从2000年至2003年,在世界电炉钢比例有所下降的同时,我国电炉钢比例却走出了低谷有所回升。从2000年的15.7%上升到2003年的17.6%。电炉钢比例回升说明在这一阶段,虽然全国钢产量迅速增长,但电炉钢增长的速度比钢总量增长的速度更快。

在2001-2003年间,我国钢生产迅速发展,年增长速率达20~22%,远高于世界同期增长速度。电炉钢增长速度更高,达27-28%,电炉钢比例回升了约2个百分点。

电炉钢比例有所回升的原因,除了国民经济发展的拉动以外,主要是由于上世纪九十年代钢铁企业在有关政府部门的引导和支持下,对发展我国现代电炉钢流程进行的一轮投资新增电炉钢生产能力的释放,一批现代电炉流程迅速投产、达产、超产以及我国电炉钢工作者在消化引进国外先进技术的基础上自主创新,开发具有中国特色的现代电炉炼钢技术方面取得了长足的进步,电炉冶炼周期大大缩短,生产率大大提高。

2004年以后进入第三阶段,在这一阶段,中国电炉钢比例正面临着1990年以来第二次逐年下降的局面,由于前一阶段我国对转炉流程进行大量投资导致的转炉钢生产能力的释放,使我国转炉钢产量大幅度增长,增长速度达27%,而电炉钢第一轮投资导致的潜能挖掘释放已经饱和,年增长速度大大降低到 6.7%,转炉钢增长速度高于电炉钢,从而使电炉钢比例又有所下降,估计这次下降的势头比1993-2000年那次更猛,1993-2000年每年平均约降低了一个百分点,而这次在2003-2004年间,一年内就下降了约二个百分点,从17.6%下降到15.2%。2005年我国钢产量将达到约3.5亿t,电炉钢比例可能低于13%。今后几年如不控制全国钢的总产量和转炉钢生产,较大幅度增加电炉钢产量,则电炉钢的比例还会迅速下降提高我国电炉钢比例的意义及技术措施

电炉钢比例的下降,从全球的观点出发,意味着铁矿石、焦煤、水等资源的消耗增加,土地利用率相对降低,CO2、废渣等排放量增加,对环境不利,从而影响全球的可持续发展战略,不利于子孙后代。

电炉钢比例的下降,不利于我国从一个钢铁大国转变为一个钢铁强国,我国从1996年开始,钢产量居世界第一,成为了一个钢铁大国,但目前还不是一个钢铁强国。

如何提高我国的电炉钢比例,应采取什么技术措施,我们认为:电炉炼钢在我国目前的废钢及电力紧缺的条件下,要坚持生产高附加值优钢和以缩短冶炼周期为核心降低操作成本的方向。

对于电炉流程冶炼工序,高附加值优质产品因时、因地具有不同的含义。目前我国高附加值优质产品,也就是能盈利的电炉钢品种包括:

a) 转炉流程不适合生产的高合金钢、高温合金、大型铸锻件用钢;一些大型机械(包括冶金机械)部件,特别是铸钢件,用随时可以启动、终止的电弧炉冶炼比较合适,对一些特厚板,用电炉生产大型钢锭的轧材比用电炉或转炉生产的连铸坯的轧材质量好,对于一些军工产品,即使转炉流程能够生产,但军方不愿意重复试车,还得让电炉流程生产;

b) 转炉流程能够生产但目前在国内产量还是不大的一些合金钢钟,如轴承钢、齿轮钢、弹簧钢等;

c) 过去仅能用转炉流程生产的、现代电炉流程也能生产的一些品种,如高附加值的板材(薄板、中板、厚板);

d) 优质碳素钢(特别是中、高碳钢)和低合金钢(包括使用量很大的螺纹钢)。

作者认为电炉应考虑生产普钢。世界上电炉钢的比例为1/3左右,但特钢比例约15%,电炉实际在生产特钢的同时,也在大量生产普钢,但为优质普钢。我国应充分利用“973”项目“新一代钢铁材料的重大基础研究”开发的HSLC钢及超细晶粒钢的研究成果,用现代化电炉流程来生产400MPa级铁素体+珠光体类型薄板及长材可能是提高我国电炉钢比例的一个重要途径,因为它可以取代目前只经吹氩、喂线精炼的同类小转炉钢(这类钢目前总产量超过亿吨)。

实践证明,用电炉流程生产的成分类似Q195的HSLC钢的屈服强度可达420MPa,成分类似16Mn或Q345不加Nb、V、Ti微合金元素的HSLC低C-Mn钢的屈服强度可大于450MPa。

关于降低操作成本,仍然要坚持以缩短电炉冶炼周期为核心,来发展现代电炉炼钢技术,这里主要谈一下电炉加部分铁水冶炼及采用集束氧枪强化用氧问题。

加部分铁水冶炼在缩短冶炼周期,提高生产率,降低电炉钢固定成本、人工成本、降低电耗方面具有显著效果。特别应该注意的是,现代电弧炉炼钢,为了缩短冶炼周期,除超高功率供电外,还必须提高配碳量,强化用氧,加生铁是最有效的方法,国外现代电炉炼钢有加40%生铁冶炼的。我国一般加20~30%的生铁块,电炉加部分铁水冶炼,实际上是以热铁水代替冷生铁,显然,这对节能具有重要作用,是一种技术进步,如果说欧洲、日本近十年来发展废钢预热为特征的电炉冶炼技术是对现代电炉技术发展作出的重大贡献,作者认为,目前我国广泛使用的电炉加部分铁水冶炼技术是我国对现代电炉技术发展作出的另一重大贡献,因为废钢预热的效果一般为吨钢节电60kWh,而加35%铁水冶炼吨钢节电120kWh 以上,且装备简单。

2003年,我国34台容量大于60t的电弧炉已有22台采用了电炉加部分铁水冶炼技术,其中16台生产率超过了8000t/t·a,7台超过了10000t/t·a。

电炉加部分铁水冶炼有一个最佳的铁水比,以冶炼周期最短为目标计算的最佳铁水比与平均供氧强度有关。

当平均供电强度一定时,随供氧强度提高最佳铁水比提高,最短冶炼周期下降。铁水供应充分的企业,在考虑了烟气除尘的能力及安全的前提下,提高供氧能力,适当增加铁水加入比是可以理解的。这是解决当前废钢及电力紧缺的一个对策。

提高电炉吨钢用氧量,是强化电炉冶炼、提高电炉节奏最有效手段之一。目前,电炉炼钢氧气产生的化学能在电炉总能量输入中所占的比例,从全废钢冶炼的20-30%,达到加铁水冶炼的50%以上。大量输入氧气已是现代电弧炉炼钢工艺的一个重要特点,先进电炉的供氧强度已达到1.5Nm3/t.min以上,冶炼时间缩短到50min以下。

如何高效地将氧气输入到电炉炉内,对提高电炉炼钢的冶炼节奏,降低生产成本是非常重要的。由于受电炉炉型的限制,电炉炉体及熔池高度相对比转炉浅,限制了电炉供氧强度的提高。因此为提高电炉的供氧强度,产生了各种吹氧方式:炉门吹氧方式,炉壁吹氧方式,EBT吹氧方式及目前普遍受到重视和迅速得到推广的炉壁集束供氧方式。

炉门吹氧系统是使用年代最长,最普遍的供氧方式,我国早期引进的炉门机械手装置,

目前国内完全能自主生产。它使国内电炉达到较高的冶炼水平,脱碳速度高于采用人工吹氧方式。

传统的炉壁及EBT区吹氧方式是旨在代替氧燃烧觜助熔,加速电炉炉内的废钢熔化及解决冶炼过程出现的冷区问题,同时达到炉内实现二次燃烧。传统炉壁吹氧方式的缺点是:当电炉炉料配碳较高时,脱碳速度不能满足冶炼节奏需要。电炉炉壁集束氧枪技术是集供氧、喷吹燃料、喷吹碳粉为一体的供氧喷吹技术。具有传统烧嘴的助熔功能,同时可通过炉壁喷吹集束氧气射流快速脱碳及喷吹碳粉实现炉渣泡沫化。

集束供氧技术的核心为:取代传统意义上的炉壁助熔烧嘴及炉门氧枪,而且能够根据冶炼进程的变化,最大限度加快助熔速度,实现“关起炉门炼钢”。采用集束射流技术,其氧气射流比传统超音速方式增加40-80%的射程,可获得满意的脱碳和升温效果。可形成炉中多点脱碳能力,加速熔池脱碳。

目前国内外部分先进电炉已采用该项技术,使电炉的技术经济指标大大提高。安阳钢铁公司100吨烟道竖炉电弧炉2006年4月7日采用北京科技大学开发的集束供氧技术,即在电炉炉壁采用四个USTB氧枪装置,助熔及脱碳采用双流道氧气射流集束氧枪喷吹工艺,系统可以根据不同冶炼阶段对氧气流量采用模块化供氧方式及分时段供氧曲线进行控制,获得了最佳的供氧效率及冶炼效果。喷碳粉造泡沫渣,采用炉前及炉后喷吹碳粉,保证了泡沫渣在整个炉内形成,同时节约了碳粉喷吹量,达到提高金属收得率及节电等冶炼效果。电炉生产2个月后的使用效果显示:该电炉在热装40%铁水条件下,冶炼电耗比原平均电耗220kWh/t又下降了60-80 kWh/t,达到160kWh/t以下,金属收得率提高2-3%,冶炼时间缩短3-5min,生产成本降低了80元/t以上,进一步缩短了与同容量转炉在操作成本上的差距,加铁水后的强脱碳操作未产生大沸腾现象,杜绝了炉壁及炉顶粘钢现象的发生,提高了生产效率。在其它厂多座电炉上也取得了类似效果。

我国电炉炼钢的发展前景

尽管目前我国电炉炼钢面临重重困难,但我们认为前景是光明的,因为世界电炉钢生产发展的历史,发达国家从发展中国家走过来的历史表明,电炉钢比例逐年增长的总趋势不会改变,我国废钢的生成量会不断增加,废钢生铁比价会有所改变,加上国家宏观调控都会朝有利于电炉钢生产发展的方面变化。在中国工程院2005年4月在上海举办的“中国电炉流程与工程技术研讨会”(简称第二次上海会议)上殷瑞钰院士预测我国电炉钢比例至2020年可望达到25%,如果采用加35%铁水的电炉冶炼工艺,2020年我国电炉钢比例会超过30%,电炉钢生产前景是光明的。

目前应引导钢铁企业考虑对发展我国现代电炉炼钢的第二轮投资,新增现代电炉炼钢生产能力。历史经验证明,我国对现代电炉炼钢的第一轮投资,经过十年才达到产能充分释放,形成生产能力。再过十年。估计我国的废钢及电力紧缺的局面将会有大的改变,电炉炼钢的优势将会得以充分体现出来,到时候现抓电炉钢生产,就可能措手不及,失去机会,减少企业利润。

1993年美国有容量为100t以上的电炉40多座,2003年日本年产电炉钢2900万t,有100t 以上的电炉22座,而我国目前只有13座100t以上的电炉,根据不同条件,目前应考虑进

行新一轮的投资,适当的新建100t左右级别的现代电弧炉,否则,可能会导致新建不符合产业政策,容量小于60t以下的电弧炉,或使大批小容量的电炉重新起动。

韩国发展钢铁工业的一些经验值得借鉴。

1970年韩国颁布了“钢铁工业育成法”,考虑到韩国缺乏焦煤和铁矿石这一实际情况,为确保钢铁企业的规模效益,规定只允许浦项一家企业建高炉转炉生产流程,其余的发展电炉钢,电炉所需废钢除一半进口外,其余的在政府积极组织下回收,保证了生产能力为1000万t的大型钢铁联合企业浦项钢铁公司的建成,继而又建设了生产能力为1200万t的光阳厂,1985年电炉钢产量达到404万t,韩国在钢产量从1972年的60万t增长至2004年4752万t的同时,电炉钢比例保持了43.9%的高水平。

世界电炉钢产量不断增长,总产量占整个粗钢产量的1/3,但我国目前面临自1990年以来第二次逐年下降的局面。因此,针对我国目前废钢及电力紧缺的现状,从全球可持续发展和使我国由钢铁大国变为钢铁强国的战略出发,目前国家应通过宏观调控,扶持我国电炉钢的发展,引导钢铁企业对发展我国现代电炉炼钢流程进行第二轮投资。为发展我国的现代电炉钢生产,在技术上仍然应坚持电炉生产高附加值钢和降低操作成本的方向,电炉加部分铁水冶炼及采用集束氧枪强化供氧气是二项重要的技术。电炉钢厂除生产特钢外要积极创造条件生产普钢,特别是“973”项目开发的400MPa级铁素体+珠光体类型的HSLC钢及超细晶钢薄板及长材。

电炉炼钢原理简介

电炉炼钢原理简介 LELE was finally revised on the morning of December 16, 2020

炼钢工艺过程 造渣:调整钢、铁生产中熔渣成分、和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。 出渣:炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。 熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的条件。熔池搅拌可藉助于气体、机械、等方法来实现。 底吹:通过置于炉底的将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,,提高。 熔化期:炼钢的熔化期主要是对平炉和而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的。 氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或中进行。 精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。 还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。 炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉

电炉炼钢工艺

【本章学习要点】本章学习电炉炼钢的配料计算,装料方法及操作,电炉熔化期、氧化期、还原期的任务及其操作,出钢操作等。 电炉炼钢,主要是指电弧炉炼钢,是目前国内外生产特殊钢的主要方法。目前,世界上90%以上的电炉钢是电弧炉生产的,还有少量电炉钢是由感应炉、电渣炉等生产的。通常所说的电弧炉,是指碱性电弧炉。 电弧炉主要是利用电极与炉料之间放电产生电弧发出的热量来炼钢。其优点是:(1)热效率高,废气带走的热量相对较少,其热效率可达65%以上。 (2)温度高,电弧区温度高达3000℃以上,可以快速熔化各种炉料。 (3)温度容易调整和控制,可以满足冶炼不同钢种的要求。 (4)炉内气氛可以控制,可去磷、硫,还可脱氧。 (5)设备简单,占地少,投资省。 第一节冶炼方法的分类 根据炉料的入炉状态分,有热装和冷装两种。热装没有熔化期,冶炼时间短,生产率高,但需转炉或其他形式的混铁炉配合;冷装主要使用固体钢铁料或海绵铁等。根据冶炼过程中的造渣次数分,有单渣法和双渣法。根据冶炼过程中用氧与不用氧来分,有氧化法和不氧化法。氧化法多采用双渣冶炼,但也有采用单渣冶炼的,如电炉钢的快速冶炼,而不氧化法均采用单渣冶炼。此外,还有返回吹氧法。根据氧化期供氧方式的不同,有矿石氧化法、氧气氧化法和矿、氧综合氧化法及氩氧混吹法。 冶炼方法的确定主要取决于炉料的组成以及对成品钢的质量要求,下面我们扼要介绍几种冶炼方法: (1)氧化法。氧化法冶炼的特点是有氧化期,在冶炼过程中采用氧化剂用来氧化钢液中的Si、Mn、P等超规格的元素及其他杂质。因此,该法虽是采用粗料却能冶炼出高级优质钢,所以应用极为广泛。缺点是冶炼时间长,易氧化元素烧损大。 (2)不氧化法。不氧化法冶炼的特点是没有氧化期,一般全用精料,如本钢种或类似本钢种返回废钢以及软钢等,要求磷及其他杂质含量越低越好,配入的合金元素含量应进入或接近于成品钢规格的中限或下限。不氧化法冶炼可回收大量贵重合金元素和缩短冶炼时间。在缺少本钢种或类似本钢种返回废钢时,炉料中可配入铁合金,这种冶炼方法又叫做装入法,用“入”字表示,多用于冶炼高合金钢等钢种上。 不氧化法冶炼如果不采取其他有效措施相配合,则成品钢中的氢、氮含量容易偏高。为了消除这种缺点,从而出现了返回吹氧法。 (3)返回吹氧法。返回吹氧法简称返吹法,用“返”字表示。该法主要使用返回废钢并在冶炼过程中用氧气进行稍许的氧化沸腾,既可有利于回收贵重的合金元素,又能降低钢中氢、氮及其他杂质的含量。因此,该法多用于冶炼铬镍钨或铬镍不锈钢等钢种。 (4)氩氧混吹法。炉料全熔后,按比例将混合好的氩、氧气体从炉门或从炉底吹入,即相当于一台电炉又带一台AOD精炼炉。该法主要用于不锈钢的冶炼上,特点是铬的回收率高,成本低,操作灵活简便,且钢的质量好。

国内外研究现状及发展趋势

国内外研究现状及发展趋势 世界银行2000年研究报告《中国:服务业发展和中国经济竞争力》的研究结果表明,在中国有4个服务性行业对于提高生产力和推动中国经济增长具有重要意义,它们是物流服务、商业服务、电子商务和电信。其中,物流服务占1997年服务业产出的42.4%,是比重最大的一类。进入21世纪,中国要实现对WTO缔约国全面开放服务业的承诺,物流服务作为在服务业中所占比例较大的服务门类,肯定会首先遭遇国际物流业的竞争。 物流的配送方式从手工下单、手工核查的方式慢慢转变成现今的物流平台电子信息化管理方式,从而节省了大量的人力,使得配送流程管理自动化、一体化。 当今出现一种智能运输系统,即是物流系统的一种,也是我国未来大力研究的方向。它是指采用信息处理、通信、控制、电子等先进技术,使人、车、路更加协调地结合在一起,减少交通事故、阻塞和污染,从而提高交通运输效率及生产率的综合系统。我国是从70年代开始注意电子信息技术在公路交通领域的研究及应用工作的,相应建立了电子信息技术、科技情报信息、交通工程、自动控制等方面的研究机构。迄今为止以取得了以道路桥梁自动化检测、道路桥梁数据库、高速公路通信监控系统、高速公路收费系统、交通与气象数据采

集自动化系统等为代表的一批成果。尽管如此,由于研究的分散以及研究水平所限,形成多数研究项目是针对交通运输的某一局部问题而进得的,缺乏一个综全性的、具有战略意义的研究项目恰恰是覆盖这些领域的一项综合性技术,也就是说可以通过智能运输系统将原来这些互不相干的项目有机的联系在一起,使公路交通系统的规划、建设、管理、运营等各方面工作在更高的层次上协调发展,使公路交通发挥出更大的效益。 1.国内物流产业发展迅速。国内物流产业正处在前所未有的高速增长阶段。2008年,全国社会物流总额达89.9万亿元,比2000年增长4.2倍,年均增长23%;物流业实现增加值2万亿元,比2000年增长1.9倍,年均增长14%。2008年,物流业增加值占全部服务业增加值的比重为16. 5%,占GDP的比重为6. 6%。预计“十一五”期间,我国物流产业年均增速保持在15%以上,远远高于美国的10%和加拿大、西欧的9%。 2.物流专业化水平与服务效率不断提高。社会物流总费用与GDP 的比例体现了一个国家物流产业专业化水平和服务效率。我国社会物流总费用与GDP的比例在近年来呈现不断下降趋势,“十五”期间,社会物流总费用占GDP的比例,由2000年的19.4%下降到2006年的18. 3%;2007年这一比例则下降到18. 0%,标志着我国物流产业的专业化水平和服务效率不断提高。但同发达国家相比较,我国物流

(完整版)电炉炼钢技术操作规程

电炉炼钢技术操作规程 一九八八年六月 目录 电炉炼钢基本技术操作规程 第一章冶炼前的准备 1 第二章扒补炉、装铁 4 第三章熔化期 6 第四章气化期8 第五章还原期12 第六章不氧化、返回吹氧法、返回单渣法操作要点18 第七章加入铁合金的规定19 第八章电炉炼钢的配料23 第九章渣洗操作规程64 第十章炼渣操作规程66 附录一烤炉制度70 附录二炉体标准76 附录三电炉工具标准77 附录四冶炼、铸锭操作记录项目78 电炉炼钢分钢种技术操作规程 工艺一 炭素弹簧钢、硅猛弹簧钢、炭素工具钢、猛及猛硅合金结构钢技术操作规程83 铬、铬猛、铬钼及铬猛钼合金结构钢冶炼技术操作规程93 铬猛增钛合金结构钢冶炼技术操作规程98

铬钼铝合结冶炼技术操作规程104 镍、铬镍合结钢冶炼技术操作规程109 铬镍钨合金结构钢冶炼技术操作规程117 铬硅、铬猛硅、铬猛硅镍合结钢冶炼技术规程122 铬钒、铬钼钒、铬镍钼钒、铬镍钨钒、名镍钒合结钢冶炼支术操作规程127 中碳铬镍(钨)合结钢冶炼技术、操作规程133 硅猛钼钒合结钢技术操作规程137 炮钢冶炼技术操作规程140 硼钢冶炼技术操作规程145 合结钢电极棒冶炼技术操作规程150 含铝、钛合结钢电极棒冶炼技术操作规程155 高碳铬轴承钢冶炼技术操作规程161 铬、猛、铬猛、名猛钼、铬镍钼、铬镍钒、铬硅合金工具钢冶炼技术操作规程167 钨、铬钨、铬钨硅、铬钨猛、铬钨钼钒、铬钨钒硅合工钢冶炼技术操作规程172 3Cr2W8V合金工具钢冶炼技术操作规程178 高铬合金工具钢冶炼技术操作规程183 高速工具钢冶炼技术操作规程189 不锈钢冶炼基本操作195 铬、铬钼、铬钼钒不锈钢冶炼技术操作规程210 2Cr13 Ni4 Mn9不锈钢冶炼技术操作规程214 1Cr11Ni2W2MoV、1Cr12Ni2 WMoVNb冶炼技术操作规程217

电弧炉炼钢的时代特点及炉外精炼

钢铁冶炼新技术讲座 -----电弧炉炼钢的时代特点及炉外精炼 主讲人: 王国宣 2005年7月 一、电弧炉炼钢的时代特点 1、变为初炼炉 进入20 世纪80年代后,随着炉外精炼技术、工艺、装备的快速发展,原冶炼工艺中在电弧炉内完成的合金钢、特殊钢的脱氧、合金化、除气、去夹杂的电炉“重头戏”移到炉外精炼炉去进行了。电弧炉及转炉皆变为只须向炉外精炼炉提供含碳、硫、磷、温度、合金化合格或基本合格的钢水就算完成任务的炼钢初炼炉。改变和结束了原电弧炉的熔时长(三个多小时)、老三期操作(熔化期、氧化期、还原期)以及产量低、渣量大、炉容小、成本高的状况。 2、炉容大型化 随着电炉—炉外精炼—连铸—直接轧材工艺的发展,这种短流程(相对于焦化、烧结—高炉—转炉—炉外精炼炉—连铸—)轧材工艺而言的轧机产量要求电炉与之相匹配,例如长材年产50-80 万t、板材100-200 万t 、热轧卷年产200万t以上,因此单一匹配电炉的炉容量和生产率,生产速率必须与轧机相衔接. 目前, 较多采用公称炉容量80-120万t 左右的电弧炉,从趋势看炉容量仍在提高。变压器向超高功率发展(1000KV A/t)。 3 、电炉转炉化 氧气顶吹转炉依靠铁水为原料,吹氧冶炼故冶炼周期短(20min左右),产量高,即获得了比电炉高的多的生产率和生产速率( 科技工作者在20 世纪50年代在电弧炉上吹氧(炉门和炉顶)兑入约30%~50%的铁水(EOF 炉),把转炉的工艺优势移植过来,电炉的冶炼周期大大缩短,目前均在45min 左右( 故电炉顶吹氧、热装铁水、电炉双炉壳很快得到推广。 4、电弧炉钢产量大幅增长 在上述三项电炉自身工艺变化的同时,随着社会发电技术,能力的增长(核电站、水力发电等)及社会废钢量的增加,直接还原铁DRI、HBI、Fe3C 技术工艺的发展,都为电弧炉快速发展提供了条件. 因此,世界各国电弧炉钢产量由1950 年占世界总产钢量的6.5%增至1990 年的27.5% , 2003 年的36%. 5、提质、降耗、防污染使电弧炉获得新的活力 电弧炉使用废钢为原料与使用高炉铁水的转炉相比,总能耗是高炉-转炉工艺的1/2~1/3。从两种工艺排放出的CO2气体污染源的数量看,电弧炉为641kg/t钢, 高炉-转炉工艺为1922kg/t钢,是高炉-转炉工艺的1/3. 电弧炉在上述优势的基础上,近几年加之采用的钢水搅拌(电磁搅拌、底吹Ar 气、直流炉等)、炉底出钢(EBT和RBT)等新技术,使电弧炉终点钢水的气体含量(N.H.O)、非金属夹杂物含量也大幅下降,无疑提高了钢水的质量。新的电弧炉废钢预热技术(SSF 坚式电炉、con-steel 康钢电炉、danieei丹尼利电炉)降低电炉电极消耗的直流炉、高阻抗交流炉及泡沫渣等技术、氧焰烧嘴技术、超高功率等技术的投入使电弧炉冶炼电耗一般降至400Kh/t 左右, 电极消耗从原4-5Kg/t 降至1-2Kg/t、冶炼周期一般在50min 以下.随着环保治理从控制污染排放总量和末端治理阶段已进入实施清洁生产阶段,要求电弧炉采取措施使废气、烟尘、燥声达标之外,还应减少污染源及对CO、NOX、二恶英、SO2的治理措施( 在采用直流电弧炉和高阻抗低电流的技术后使电弧炉闪烁、高次谐波的电网污染也大大减少。 二、电弧炉近期目标及技术措施

偏心底出钢(EBT)电弧炉(EAF)冶炼工艺

1前言 传统电炉炼钢“老三期”工艺操作:装料熔化、氧化扒渣、造渣还原、带渣出钢,带入钢包中的是还原性炉渣,带渣出钢对进一步脱硫、脱氧、吸附夹杂等是有益无害的。而当电炉功能分化后,超高功率电炉与炉外精炼相配合,电炉出钢时的炉渣是氧化性炉渣。理论与实践证明,这种氧化性炉渣带入钢包精炼过程将会给精炼带来极为不利的影响。于是,围绕避免氧化渣进入钢包精炼过程,出现了一系列渣钢分离方法。其中,效果最好、应用最广泛的是EBT法(Eccentric Bottom Tapping) ,即偏心底出钢法,简称“EBT” 。 本文概述偏心底出钢电炉的结构特点及其优越性,重点介绍偏心底出钢电炉的冶炼工艺,以及偏心底出钢电炉的出钢口填料及其操作。 2EBT电弧炉的特点 EBT电炉结构是将传统电炉的出钢槽改成出钢箱,出钢口在出钢箱底部垂直向下。出钢口下部设有出钢口开闭机构,开闭出钢口,出钢箱顶部中央设有操作口,以便出钢口的填料操作与维护。 EBT电炉主要优越性在于,它实现了无渣出钢和增加了水冷炉壁使用面积。优点如下: (1)出钢倾动角度的减少。简化电炉倾动结构:降低短网阻抗:增加水冷炉壁使用面积,提高炉体寿命。 (2)留钢留渣操作。无渣出钢,改善钢质量,有利于精炼操作:留钢留渣,有利电炉冶炼、节约能源。 (3)炉底部出钢。降低出钢温度,节约电耗:减少二次氧化,提高钢的质量:提高钢包寿命。 由于EBT电炉诸多优点,在世界范围迅速得到普及。现在建设电炉,尤其与炉外精炼配合的电炉,一定要求无渣出钢,而EBT是首选。 EBT电炉的出钢操作。出钢时,向出钢侧倾动约5°后,开启出钢机构,出钢口填料在钢水静压力作用下自动下落,钢水流入钢包,实现自动开浇出钢。当钢水出至要求的约95%时迅速回倾以防止下渣,回倾过程还有约5%的钢水和少许炉渣流入钢包中,炉摇正后(炉中留钢10%~15%,留渣≥95%)检杳维护出钢口,关闭出钢口,加填料,装废钢,重新起弧熔炼。3EBT电炉的冶炼工艺 3.1冶炼工艺操作 EBT电炉冶炼己从过去包括熔化、氧化、还原精炼、温度、成分控制和质量控制的炼钢设备,变成仅保留熔化、升温和必要精炼功能(脱磷、脱碳)的化钢设备。而把那些只需要较低功率的工艺操作转移到钢包精炼炉内进行。钢包精炼炉完全可以为初炼钢液提供各种最佳精炼条件,可对钢液进行成分、温度、夹杂物、气体含量等的严格控制,以满足用户对钢材质量越来越严格的要求。尽可能把脱磷,甚至部分脱碳提前到熔化期进行,而熔化后的氧化精炼和升温期只进行碳的控制和不适宜在加料期加入的较易氧化而加入量又较大的铁合金的熔化,对缩短冶炼周期,降低消耗,提高生产率特别有利。 EBT电炉采用留钢留渣操作,熔化一开始就有现成的熔池,辅之以强化吹氧和底吹搅拌,为提前进行冶金反应提供良好的条件。从提高生产率和降低消耗方面考虑,要求电炉具有最短的熔化时间和最快的升温速度以及最少的辅助时间(如补炉、加料、更换电极、出钢等),以期达到最佳经济效益。 (1)快速熔化与升温操作 快速熔化和升温是当今电弧炉最重要的功能,将第一篮废钢加入炉内后,这一过程即开始进行。为了在尽可能短的时间内把废钢熔化并使钢液温度达到出钢温度,在EBT电炉中一般采用以下操作来完成:以最大可能的功率供电,氧一燃烧嘴助熔,吹氧助熔和搅拌,底吹搅拌,泡沫渣以及其它强化冶炼和升温等技术。这些都是为了实现最终冶金目标,即为炉外精炼提供成分、温度都符合要求的初炼钢液为前提,因此还应有良好的冶金操作相配合。

国内外测试仪器发展现状及趋势

国内外测试仪器发展现状及趋势 科学是从测量开始的—这是19世纪著名科学家门捷列夫的名言。到了21世纪的今天,作为信息产业的三大关键技术之一,测试测量行业已经成为电子信息产业的基础和发展保障。 而测试仪器作为测试测量行业发展不可或缺的工具,在测试测量行业的发展中起到了巨大的作用。中国“十一五”期间,由于国家不断增加基础建设的投入力度,在旺盛市场需求的带动下,对仪器需求不断增加,同时测试仪器市场也正在快速发展。 全球测试仪器市场情况及分析 国内电子测量仪器行业在经过一段沉寂后,慢慢开始复苏。产品大幅增长主要有两个原因,一是市场的巨大需求,特别是通信、广播电视市场的巨大发展,引发了电子测量仪器市场的迅速增长,二是电子测量仪器行业近几年迅速向数字化、

智能化方向发展,推出了部分数字化产品,因而在若干个门类品种上取得了较快增长。从近期中国仪表行业发展的情况来看势头喜人的,与全国制造业一样,虽然遇到了不少困难但仍然保持了向上发展的态势。 尽管中国仪器市场正在快速的发展着,但与国外仪器生产企业比较仍然有很大的差距。中国主要科研单位、学校以及企业等单位中使用的高档、大型仪器设备几乎全部依赖进口。同时,国外公司还占有国内中档产品以及许多关键零部件市场60%以上的份额。世界测试仪器市场对中国的影响依然非常大。目前,在世界电子测量仪器市场上,竞争日趋激烈。以往,测试仪器生产厂商主要都将仪器产品的高性能作为竞争优势,厂商开发什么,用户买什么。而今则已变成厂商努力开发用户需要的仪器,并且把更便宜、更好、更快、更易使用的测试仪器作为奋斗目标。在信息化的推动下,全世界测试仪器市场将继续保持增长的势头。人们普遍认为,电子测量仪器市场的前景依然乐观。 国际仪器发展趋势和国内现状 一、国际趋势

转炉、电炉、平炉炼钢各有什么优缺点

采用的炼钢方法有转炉炼钢、电炉炼钢和平炉炼钢等,而主要发展趋势为纯氧顶吹转炉炼钢。至1976年,转炉钢已占世界钢总产量的70%。 (1)纯氧顶吹转炉炼钢法 这种方法是1952年以后发展起来的新技术,它是目前世界上采用较多也是较先进的一种方法。纯氧顶吹转炉炼钢有以下优点: (i)生产速度快由于用纯氧吹炼,就会高速降碳,快速提温,大大缩短冶炼时间。一座300t 转炉吹炼时间不到20min,包括辅助工作时间在内,一共不超过1h。 (ii)品种多、质量好纯氧顶吹转炉既能炼普通钢,也能炼普通低碳钢。如首都钢厂采用这种方法成功地试炼了一百多种钢材。由于用纯氧吹炼,钢中氮、氢等有害气体含量较低。 (iii)基建投资和生产费用低纯氧顶吹转炉的基建投资相当于同样生产量的平炉车间的60~70%,生产费用也低于平炉。 目前纯氧顶吹转炉随着氧枪的多孔喷头的研制成功,大大提高了单位时间内的供氧量,并由于操作技术上的革新(例如,用电子计算技术来调节、控制冶炼过程),不论转炉容量的大小,吹炼时间基本上相差不多,即使300t转炉,净吹氧时时也可缩短到12min左右。在一定限度内,炉容量越大,经济效果越好,因此顶吹转炉迅速走向大型化。现在世界上最大的转炉为350t,并且正在研究建造400~450t转炉。 (2)电炉炼钢法 电炉炼钢法主要利用电弧热,在电弧作用区,温度高达4000℃。冶炼过程一般分为熔化期、氧化期和还原期,在炉内不仅能造成氧化气氛,还能造成还原气氛,因此脱磷、脱硫的效率很高。 以废钢为原料的电炉炼钢,比之高炉转炉法基建投资少,同时由于直接还原的发展,为电炉提供金属化球团代替大部分废钢,因此就大大地推动了电炉炼钢。世界上现有较大型的电炉约1400座,目前电炉正在向大型、超高功率以及电子计算机自动控制等方面发展,最大电炉容量为400t。 国外150t以上的电炉几乎都用于冶炼普通钢,许多国家电炉钢产量的60~80%均为低碳钢。我国由于电力和废钢不足,目前主要用于冶炼优质钢和合金钢。 (3)平炉炼钢法 五十年代以前,平炉钢占世界钢产量的85%。近年来,除浇铸大型铸件或供水压机等成材的大钢锭,平炉炼钢仍在发挥其作用外,由于纯氧顶吹转炉炼钢技术的发展,转炉钢的产量大幅度增长,世界各国平炉钢产量才逐年下降。平炉炼钢法的最大缺点是冶炼时间长(一般需要6~8h),燃料耗损大(热能的利用只有20~25%),基建投资和生产费用高。一个年产1200万吨钢的钢厂,只要建成六个250~300t的纯氧顶吹转炉就够了,如果修建平炉却

电炉炼钢工艺技术操作规程(20103)教材

天津钢铁集团有限公司作业文件(天津天钢集团有限公司) 电炉炼钢工艺技术操作规程 (试行) 提出部门:生产技术部 起草人:王宝明 初审人:蔡振胜 审核人:时东生 批准人:许克亮 发布日期:2010-3-12 实施日期:2010-3-12 受控状态:发放编号:

目录 1 电炉铁水倒罐站工艺技术操作规程(试行) 2 电炉铁水倒罐除尘工艺技术操作规程(试行) 3 110t超高功率电弧炉除尘工艺技术操作规程(试行) 4 110t超高功率电弧炉炼钢工艺技术操作规程(试行) 5 110吨LF炉工艺技术操作规程(试行) 6 110吨VD炉工艺技术操作规程(试行) 7 方/圆坯连铸工艺技术操作规程(试行)

电炉铁水倒罐站工艺技术操作规程(试行)

1 技术参数 1.1 鱼雷罐车 1.1.1 鱼雷罐车外行尺寸 两钩舌内侧距×全宽×全高:23800×3551×4355mm 1.1.2 装载量及铁水密度 新罐衬时,公称容量260t,自重~260t 旧罐衬时,最大容量300t,自重~220t 铁水密度:6.8~7.0t∕m3 1.1.3 轨距、车钩中心高 轨距1435mm;车钩中心高(重车时)880±10mm 1.1.4 罐体倾动性能及动力 动力电源: AC 380V DC 220V 倾翻速度:炼钢作业时0.15r/min 铸铁机作业0.015~0.0015r/min 倾翻角度:平常作业时±120°,最大角度±180° 手动复位:手柄转动17圈,罐体回转1度 1.1.5 罐体装置 罐口耐火砖内径φ1300㎜。 耳轴倾转中心与罐体中心的偏心量90㎜。 1.1.6 电源连接 采用手动连接。 1.2 铁水包 1.2.1 铁水包内容积8.65m3 ;正常铁水装入量50~60t。 1.2.2 包壳重19t;衬砖重18.6t ;内衬厚215㎜。 1.2.3 包衬材质:内衬高铝粘土砖,工作层铝碳化硅碳砖。 1.2.4 铁水包外形尺寸:全高4090㎜;桶体高2940㎜; 上口直径φ2910㎜;下口直径φ2560㎜;耳轴内距4400㎜。 1.2.5 砌衬后铁水包内尺寸:包底距上沿高度2600㎜; 上口直径2480㎜;下口直径2130㎜。 1.2.6 装入量为50 t铁水包净空≥560㎜; 装入量为60 t铁水包净空≥320㎜。 1.3 铁水称量车

国内外公路研究现状与发展趋势

第1章绪论 1.1我国公路现状 交通运输业是国民经济中从事运送货物和旅客的社会生产部门,是国民经济和社会发展的动脉,是经济社会发展的基础行业、先行产业。交通运输主要包括铁路、公路、水运、航空、管道五种运输方式,其中,铁路、水运、航空、管道起着“线”的作用,公路则起着“面”的作用,各种运输方式之间通过公路路网联结起来,形成四通八达、遍布城乡的运输网络。改革开放以来,灵活、快捷的公路运输发展迅速,目前,在综合运输体系中,公路运输客运量、货运量所占比重分别达90%以上和近80%。高速公路是经济发展的必然产物,在交通运输业中有着举足轻重的地位。在设计和建设上,高速公路采取限制出入、分向分车道行驶、汽车专用、全封闭、全立交等较高的技术标准和完善的交通基础设施,为汽车快速、安全、经济、舒适运行创造了条件。与普通公路相比,高速公路具有行车速度快、通行能力大、运输成本低、行车安全、舒适等突出优势,其行车速度比普通公路高出50%以上,通行能力提高了2~6倍,并可降低30%以上的燃油消耗、减少1/3的汽车尾气排放、降低1/3的交通事故率。 新中国成立以来,经过60多年的建设,公路建设有了长足发展。2011年初正值“十一五”规划结束,“十二五”规划伊始。“十一五”时期是我国公路交通发展速度最快、发展质量最好、服务水平提升最为显著的时期。经过4年多的发展,公路交通运输紧张状况已实现总体缓解,基础设施规模迅速扩大,运输服务水平稳步提升,安全保障能力明显增强,为应对国际金融危机、保持经济平稳较快发展、加快经济发展方式转变、促进城乡区域协调发展、保障社会和谐稳定、进一步提高我国的综合国力和国际竞争力作出了重要贡献。 “十一五”前4年,全国累计完成公路建设投资2.93万亿元,年均增长近16%,约为“十一五”预计总投资的1.2倍,也超过了“九五”和“十五”的投资总和。公路建设投资的快速增长,极大地拉动和促进了国民经济的迅猛发展。从公路建设投资占同期全社会固定资产总投资的比重来看,“十一五”期间基本保持在4.5%左右。 在投资带动下,公路网规模不断扩大,截至2009年底,全国公路网总里程达到386万公里,其中高速公路6.51万公里,二级及以上公路42.52万公里,分别较"十五"末增加36.4万公里、2.5万公里和9.4万公里;全国公路网密度由“十五”末的每百平方公里34.8公里提升至40.2公里。预计到2010年底,全国公路网总里程将达到395万公里,高速公路超过7万公里,分别较“十五”末增加45.3万公里与3万公里。农村公路投资规模年均增长30%,总里程将达到345万公里,实现全国96%的乡镇通沥青(水泥)路。 “十一五”期间公路的快速发展,为扩大内需、拉动经济增长作出了突出贡献。特别是2008年以来,为应对国际金融危机,以高速公路为重点,建设步伐进一步加快,“十一五”末高速公路里程将达到"十五"末的1.78倍。“十一五”期间全社会高速公路建设累计投资达2万亿元,直接拉动GDP增长约3万亿元,拉动相关行业产出

国内外研究现状和发展趋势

北京市绿化隔离带可持续经营技术及效益评价 二、项目所属领域国内外研究开发现状和发展趋势 1、由城市绿地到城市林业的发展 城市绿地是城市中一种特殊的生态系统,它是城市系统中能够执行“吐故纳新”负反馈调节机制的子系统。这个系统一方面能为城市居民提供良好的生活环境,为城市生物提供适宜的生境;另一方面能增强城市景观的自然性、促进城市居民与自然的和谐共生。它是城市现代化和文明程度的重要标志。 绿地(green space)一词,各国的法律规范和学术研究对它的定义和范围有着不同的解释,西方城市规划概念中一般不提城市绿地,而是开敞空间(Open Space),我国建国以来一直延用原苏联的绿地概念,包括城市区域内的各类公园、居住区绿地、单位绿地、道路绿化、墓地、农地、林地、生产防护绿地、风景名胜区、植物覆盖较好的城市待用地等。 尽管各国关于开敞空间(或绿地)的定义不尽相同,但它们都强调了开敞空间(或绿地)在城市中的自然属性,即都是为了保持、恢复或建立自然景观的地域。绿地作为城市的一种景观,是城市中保持自然景观,或使自然景观得到恢复的地域,是城市自然景观和人文景观的综合体现,是城市中最能体现生态性的生态空间,是构成城市景观的重要组成部分。在结构上为人工设计的植物景观、自然植物景观或半自然植物景观。绿地在城市中的功能和作用主要包括:组织城市空间的功能、生态功能(改善生态环境的功能、生物多样性保护功能)、游憩休闲功能、文化(历史)功能、教育功能、社会功能、城市防护和减灾功能。 城市绿地发展和研究进程包括:城市绿地思想启蒙阶段、城市绿地规划思想形成阶段、城市绿地理论和方法的发展阶段、城市绿地生态规划和建设阶段。 吴人韦[1]、汪永华[2]、胡衡生[3]等从城市公共绿地的起源开始介绍了国外城市绿地的发展历程,认为国外的城市绿地建设经历了从公园运动(1843~1887)、公园体系(1880~1890)、重塑城市(1898~1946)、战后大发展(1945~1970)、生物圈意识(1970年以后)等一系列由简单到复杂的城市绿地发展过程,其中“重塑城市”阶段提出了“田园城市”和城市绿带概念,绿带网络提供城区间的隔离、交通通道,并为城市提供新鲜空气。“有机疏散”理论中的城市与自然的有机结合原则,对以后的城市绿化建设具有深远的影响。1938年,英国议会通过了绿带法案(Green Belt Act)。1944年的大伦敦规划,环绕伦敦形成一道宽达5英里的绿带。1955年,又将该绿带宽度增加到6~10英里。英国“绿带政策”的主要目的是控制大城市无限蔓延、鼓励新城发展、阻止城市连体、改善大城市环境质量。早在1935年,莫斯科进行了第一个市政建设总体规划,规划在城市用地外围建立10公里宽的“森林公园带”;1960年调整城市边界时,“森林公园带”进一步扩大为10~15公里宽,北部最宽处达28公里;1971年,莫斯科采用环状、楔状相结合的绿地布局模式,将城市分隔为多中心结构。目前,德国城市森林建设已取得了让世人瞩目的成绩,其树种主要为乡土树种,基本上是高大的落叶乔木(栎类、栗类、悬铃木、杨树、核桃、欧洲山毛榉等)[4]。在绿化城

炼钢工艺流程

炼钢工艺流程 造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣 的量减至最小。 出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放 出,以防回磷等。 熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。 电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。 熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将 炉料熔化及升温,并造好熔化期的炉渣。 氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧 化精炼大多移到钢包或精炼炉中进行。 精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。 还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功 率和超功率电弧炉炼钢操作已取消还原期。 炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢 包处理型炉外精炼及钢包精炼型炉外精炼等。 钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进

中国管理研究的现状及发展前景

徐淑英《光明日报》( 2011年07月29日11 版) 过去20多年来,中国管理学研究关注西方情境的研究课题,验证西方发展出来的理论,并借用西方的研究方法论。而旨在解决中国企业面临的问题和针对中国管理现象提出有意义的理论解释,这方面的研究却迟滞不前。围绕到底是追求“中国管理理论”(即在中国管理情境中检验西方理论)还是“管理的中国理论”(即针对中国现象和问题提出自己的理论)的争论,很多学者作出了积极探索。中国的管理学研究者应遵循科学探究的自主性原则,保持对常规科学局限性的警觉,从事既能贡献普遍管理知识,又能解决中国管理问题的研究。 国际管理学研究中的一个现象 全球化商业活动的增加,不仅使得全球化的跨国公司对管理知识的需求大大增加,而且那些处于新兴经济体(比如俄罗斯、印度和中国)中的公司,由于在国际市场上扮演越来越重要的角色,也非常渴望得到管理实践所需的知识。除了新兴经济体外,许多发达地区的管理研究也十分活跃。有学者观察到了国际学者的一种明显偏好:从主流管理学文献(基本上是基于北美,特别是美国的文献)中套用已有的理论、构念和方法来研究本土的现象。这导致了JamesMarch(詹姆斯·马奇)所认为的组织研究的“趋同化”。这个趋势是值得注意的,因为它有可能放慢有效的全球管理知识的发展速度,也会阻碍科学的进步。这样的趋势在中国也是存在的。

科学研究总是有目的的:执著于寻找真相(reality)和追求真理(truth)。科学的研究方法确保了科学家的发现是接近于真理的,这也是所有科学研究应该达到的严谨性(rigor)标准。然而对于管理学这门应用科学来说,真理本身是不够的。管理研究的第二个目标是获取有益于提高实践水平的知识,这就是管理学者应该达到的切题性(re levance)标准。但现在大部分的中国学者都是严谨有余,切题不足。 目前,套用西方发展起来的理论在中国进行演绎性研究主导了中国管理学研究领域。用这种方法进行的研究倾向于把成果发表在国际性杂志上,尤其是国际顶尖杂志。这类研究成果验证了已有理论或者对其情境性边界进行了延伸研究,说明了如何使用现有研究成果来解释一些新情境下出现的独特现象和问题。但这样的研究倾向对现有的理论发展只能提供有限的贡献,因为它的目的并非寻找对地方性问题的新的解释。这种方法也限制了对中国特有的重要现象以及对中国有重要影响的事件的理解。 笔者并不认为学者的目标就是发展新的理论,而是提请注意这一事实:绝大部分中国的研究都不约而同地采用西方已有理论来解释中国现象。这一趋势形成的原因可以从两个方面进行解释。 首先是因为缺乏先进的科学研究方法的训练和对科学目的的正确理解。一些研究者错误地认为,科学的目的是发表文章,而非寻找对重要现象的恰当理解和解释。中国学者可以很快学会如何正确使用研

电炉炼钢说明书

1.炼钢工艺 1.1概述 某钢铁厂决定新建年产60万t铸坯的电炉炼钢厂。 新建电炉炼钢厂设有一座80t交流电弧炉、一座80tLF钢包精炼炉、一台R6m4机4流方坯连铸机。年产合格钢水61.86万t,年产合格铸坯60万t,经由辊道热送至轧钢车间作后续处理。 1.2生产规模及产品方案 1.2.1生产规模 新建电炉炼钢厂生产规模年产钢水61.86万t,连铸坯60万t。 电炉原料条件:100%废钢 1.2.2产品方案 铸坯断面:150mm×150mm。 定尺:6~12m。 主要生产钢种为低合金钢。 1.3钢水冶炼路线 电炉车间主要工艺设备如下: 1座80t电炉; 1座80tLF钢包精炼炉; 1座R6m4机4流连铸机。 由此确定的主要冶炼路线如下: 电炉→LF钢包精炼炉→连铸。 1.4主要原料及辅料供应

1.4.1 废钢 炼钢车间年需废钢:69.278万t。 1.4.2 辅助原料 (1)铁合金 炼钢车间年需铁合金0.866万t(含LF钢包精炼炉),常用的铁合金有硅铁、锰铁、硅锰合金、铝等,块度5~40mm。 (2)石灰 炼钢车间年需石灰37116 t。 (3)白云石 炼钢车间年需白云石0.309万t。 (4)萤石 萤石年需量3093 t。 (5)耐火材料 炼钢车间年需各种耐火材料(电炉、钢水罐、LF炉、连铸)0.835万t。 (6)合成渣 炼钢车间年需合成渣12372 t。 (7)电极 炼钢车间年需电极1237 t。 (8)铝丝和Si-Ca线 炼钢车间年需铝丝和Si-Ca线分别为247.44t和927.9t。 1.5金属物料平衡 电炉车间金属平衡图见图1-1。

图1-1 电炉车间金属平衡图(单位:×104t) 1.6工艺流程 1.6.1 炼钢工艺流程见图1-2

碱性电弧炉炼钢工艺流程

碱性电弧炉炼钢工艺流程 碱性电弧炉氧化法炼钢工艺过程主要包括原材料准备、补炉、配料及装料、熔化期、氧化期、还原期及出钢等7个阶段。 一、原材料准备 废钢是电弧炉炼钢的主要材料,废钢质量的好坏直接影响钢冶的质量、成本和生产率,因此,对废钢质量有如下几点要求。 1)废钢表面应清洁少锈,因废钢中沾有的泥沙等杂物会降低炉料的导电性能,延长熔化时间,还会影响氧化期去鳞效果及侵蚀炉衬。废钢锈蚀严重或沾有油污时还会降低钢和合金元素的收得率,并增加钢中的含氢量。 2)废钢中不得混有铅、锡、砷、锌和铜等有色金属。铅的密度大,熔点低,不溶于钢液,易沉积在炉底缝隙中造成漏钢事故;锡、砷和铜易引起钢的热脆。 3)废钢中不得混有密封容器,以及易燃、易爆物和有毒物,以保证安全生产。 4)废钢化学成分应明确,且需按成分分类存放,硫、磷含量不宜过高。 5)废钢外形尺寸不能过大(截面积不宜超过300mm×300mm,最大长度不宜超过350mm)。 二、补炉 一般情况下,每炼完一炉钢后,在装料前要进行补炉,其目的是修补炉底和被侵蚀的渣线及被破坏的部位,以维持正常的炉体形状,从而保证冶炼的正常进行和安全生产,补炉的要点如下:

1)出钢后立即检查炉衬,需填补炉底时,应先将炉底残渣全部扒出,然后进行填补。补炉的原则是高温、快补、薄补,维护炉膛原状。 2)补炉料要提前半个小时混合均匀,补炉后放下电极烘烤30min,若补镁砂量较大,应酌情延长烘烤时间。 三、配料及装料 配料是电炉炼钢工艺中不可缺少的组成部分,配料是否合理关系到炼钢工能否按照工艺要求正常地进行冶炼操作。合理的配料能缩短冶炼时间。配料时应注意以下几点:一是必须正确地进行配料计算和准确地称量炉料装入量;二是炉料的大小要按比例搭配,以达到好装、快速熔化的目的;三是各类炉料应根据钢液的质量要求和冶炼方法搭配使用;四是配料成分必须符合工艺要求。 装料前应先在炉底铺上一层石灰,其重量约为炉料重量的2%,以便提前造好熔化渣,有利于早期去磷,减少钢液吸气和加速升温。 装料时应将小料的一半放入底部,小料的上部、炉子中心区放入全部大料、低碳废钢和难熔炉料,大料之间放入小料,中型料装在大料的上面及四周,大料的最上面放入小料。凡在配料中使用的电极块应砸成50~lOOmm,装在炉料下层,且要紧实,装好的炉料为半球形,二次加料不使用大块料及湿料。 四、熔化期 在电弧炉炼钢工艺中,从通电开始到炉料全部熔清为止称为熔化期。熔化期的任务是将固体炉料迅速熔化成钢液,并进行脱磷,减少钢液吸收气体和金属的挥发。熔化期的操作工艺如下: 1)启弧阶段。通电启弧时炉膛内充满炉料,电弧与炉顶距离很近,如果输入功率过大、电压过高,炉顶容易被烧坏,因此一般选用中级电压和输入变压器额定功率的2/3左右。

国内外模具技术的现状及发展趋势

摘要:本文叙述了模具技术在国民经济中的重要性,介绍了各行业模具的现状及发展方向;文中强调指出了两个关键问题——模具材料和模具标准——是持续发展 模具技术的重大策略。中国模具技术,则是依据着国际模具市场的发展趋势, 转变着模具品牌产品的发展规模,不断的提高着模具设计水平,迎合着模具企 业的经济发展需求,也会进一步的推动着模具技术发展。 关键词:发展趋势、现状、模具技术、塑料模具、模具CAD/CAM Abstract:This paper was narrated the importance of the mould technology in the national economy.It was introduced the present situation and development direction of all trade and professions on the mould and die.It was indicated emphatically two questions of the crux一一mould materials and mould standard——developing continuous ly the great tactics on the progress of the mould technology. China mold technology, according to the international mold is the development trend of the market, the brand product change mould the development scale, and constantly improve the level of the die design, catering to the needs of the mould enterprise economic development, will further promote the development of the mould technology. 一、引言 模具是工业生产的基础工艺装备,国民经济的五大支拄产业机械、电子、汽车、石化、建筑都要求模具工业发展与之相适应。目前,模具行业的生产性服务业发展迅速,模具标准件、软件、材料供应等服务模式更为人性化,为企业一揽子解决问题的服务模式开始出现,这无疑对模具行业的发展有着很大的推动作用,另外,我国的模具品种仍然不丰富,模具行业的平衡发展亟需重视。模具是制造业的重要基础工艺装备。模具在制造业产品生产、研发和创新中所具有的重要地位,使得模具制造能力和技术水平的高低已成为衡量国家制造业水平和创新能力的重要标志。近10年来,我国模具工业均以每年15%以上的增长速度快速发展。“十一五”期间,我国模具行业保持产销两旺、持续高速发展,模具产量、质量进一步得到提高。中国的模具市场十分广阔,特别是在汽车制造业和IT制造业发展的带动下,对模具的需求量和档次也越来越高,同时精良的模具制造装备为模具技术水平的提升提供了保障。2007年模具销售额870亿人民币,比上一年增长21%,模具出口亿美元,比上一年增长35.7%,模具进口仍保持在20亿美元。数据显示着我国模具整体实力进一步加强。

相关主题
文本预览
相关文档 最新文档