当前位置:文档之家› 匹配滤波器原理

匹配滤波器原理

匹配滤波器原理
匹配滤波器原理

数字通信课程设计

匹配滤波器

摘要

在通信系统中,滤波器是重要的部件之一,滤波器特征的选择直接影响数字信号的恢复。在数字信号接收中,滤波器的作用有两个方面,使滤波器输出有用信号成分尽可能强;抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减少噪声对信号判决的影响。对最佳线性滤波器的设计有一种准则是使滤波器输出信噪比在特定时刻到达最大,由此导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤波器具有广泛的应用。因此匹配滤波器是指滤波器的性能与信号的特征取得某种一致,使滤波器输出端的信号瞬时功率与噪声平均功率的比值最大。本文设计并仿真了一种数字基带通信系统接收端的匹配滤波器。

一、课程设计的目的

通过本次对匹配滤波器的设计,让我们对匹配滤波器的原理有更深一步的理 解,掌握具体的匹配滤波器的设计方法与算法。

二、课程设计的原理

设接收滤波器的传输函数为)(f H ,冲击响应为)(t h ,滤波器输入码元)(t s 的持续时间为s T ,信号和噪声之和)(t r 为

)()()(t n t s t r += s T t ≤≤0 式中,)(t s 为信元,)(t n 为白噪声。

并设信元)(t s 的频谱密度函数为)(f S ,噪声)(t n 的双边功率谱密度为

2/0n P n =,0n 为噪声单边功率谱密度。

假定滤波器是线性的,根据叠加定理,当滤波器输入信号和噪声两部分时,滤波器的输出也包含相应的输出信号和输出噪声两部分,即

)()()(00t n t s t y +=

由于:)()()()()()(2

*

f P f H f P f H f H f P R R Y

== )(f P R 为输出功率谱密度,)(f P R 为输入功率谱密度,2/)(0n f P R =

这时的输出噪声功率0N 等于

?

?∞

-∞

-=?=df f H n

df n f H N 2

02

0)(22)(

在抽样时刻0t 上,输出信号瞬时功率与噪声平均功率之比为

?

?

-∞

-=

=

df

f H n df e f S f H N t s r ft j 2

02

20

000)(2

)()()(0

π

为了求出0r 的最大值,利用施瓦兹不等式求0r 的最大值

2

02

2

2

02

202)(2

)()()(2

)()(0

n E df

f H n df

f S df f H df

f H n df

e

f S f H r ft j =

=

?

?

?

?

?∞

-∞

-∞

-∞∞

-∞

-π 且当时02*)()(ft j e f kS f H π-=,等式成立,即得到知道的信噪比为

2n E 在白噪声干扰的背景下,按上式的设计的线性滤波器,将能在给定时刻0t 上获得最大输出信噪比02n E 。是输出信噪比最大时刻。这种滤波器就是最大信噪比意义下的最佳线性滤波器,由于它的传输特性与信号频谱的复共轭一致,称为匹配滤波器。

匹配滤波器的特性还可以用冲激响应函数)(t h :

22*2()()()j ft j ft j ft h t H f e df kS f e e df

πππ∞

--∞

-∞

=

=

?

?

**()()()00

k s t t d ks t t τδττ∞

=-+=-?-∞

可见,匹配滤波器的冲激响应)(t h 就是信号)(t s 的镜像)(0t t s -,但在时

间轴上平移了0t 。0t 是输出信噪比最大时刻。

三、课程设计的容

设计仿真了数字基带通信系统在接收端接收到模拟信号后通过匹配滤波器的效果,其中匹配滤波器的输入信号我们假定为正弦信号,经过匹配滤波器的输出信号作为抽样判决器的输入信号。我们通过比较匹配滤波器的输入输出信号,验证得出其性能特性。 如下图所示的仿真结果,我们假定匹配滤波器的输入信号为正弦信号与白噪声的叠加,其频率,采样频率,延时时间,。

0.5

1 1.52

-100

10t/s S (t )

输入信号+噪声

-50

050

00.5

1f(Hz)

|S (W )|

输入信号幅度谱

0.5

1 1.52

-100

10t/s

h (t )

冲激响应

-50

050

00.5

1f(Hz)

|H 1(W )|

单位冲激响应幅度谱

1

23

4

-1000

1000t/s

S o (t )

匹配滤波器输出信号-50

050

050

100f(Hz)

|S o 1(W )|

输出信号幅度谱

由实验的结果,我们可以看出匹配滤波器的单位冲激响应幅度谱与输入信号的幅度谱一致,符合上面我们推导的公式;由滤波器的输出信号我们可以得出,在抽样时刻处,信号有最大值,在输出信号的幅度谱中,干扰噪声白噪声明显减小,信号的有用成分被保留下来,体现出了匹配滤波器抑制噪声,保证在抽样时刻有最大值的特性,从而进一步保证了输出信噪比在抽样时刻最大,为下一步抽样判决提供了有利的条件。由此可以看出匹配滤波器对数字基带通信系统的通信可靠性的提高有着很重要的作用。

四、 附录

实验程序:

clear all ; close all ;

fc=20; %余弦信号的频率 fs=5*fc; %采样频率 ts=1/fs; k=1;

to=2; %采样时刻 t=[0:ts:2-ts]; t1=[0:ts:4-2*ts];

freq1=linspace(-fs/2,fs/2,length(t));

freq2=linspace(-fs/2,fs/2,length(t1));

Noise=randn(1,length(t)); %白噪声

signal=3*cos(2*pi*fc*t+pi*k*t.^2)+Noise; %信号

h1=3*cos(2*pi*fc*(to-t)+pi*k*(to-t).^2)+Noise; %匹配滤波器

So1=conv2(signal,h1); %信号卷积

subplot(321)

plot(t,signal);

axis([0,2,-10,10]);

xlabel('t/s');

ylabel('S(t)');

title('输入信号+噪声');

subplot(322)

plot(freq1,fftshift(abs(fft(signal))/length(t))),xlabel('f(Hz)'),ylab el('|S(W)|'),title('输入信号幅度谱');

subplot(323)

plot(t,h1);

axis([0,2,-10,10]);

xlabel('t/s');

ylabel('h(t)');

title('冲激响应');

subplot(324)

plot(freq1,fftshift(abs(fft(h1)/length(t)))),xlabel('f(Hz)'),ylabel(' |H1(W)|'),title('单位冲激响应幅度谱');

subplot(325)

plot(t1,So1);

xlabel('t/s');

ylabel('So(t)');

title('匹配滤波器输出信号');

subplot(326)

plot(freq2,fftshift(abs(fft(So1)/length(t1)))),xlabel('f(Hz)'),ylabel ('|So1(W)|'),title('输出信号幅度谱');

整流滤波电路详解

为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。电感滤波的波形图如图2所示。根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。 图2电感滤波电路 在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。 图3电感滤波电路波形图 已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为 要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算 由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。 电容滤波原理详解 1.空载时的情况 当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。接入电源后,当u2在正半周时,通过D1、D3向电容器C充电;当在u2的负半周时,通过D2、D4向电容器C充电,充电时间常数为

滤波器基本原理

R,C,L串联可以搭建二阶带通滤波器等等。 个小电容并联。也可以采用RC滤波的方式来实现电源的稳定,最好不要在电路板电源的根部采用RC滤波,而是在需要电源 形成很大的压降,导致输出电压变小,而在芯片根处采用RC滤波,一般芯片的工作电流在几十mA,这时R的选择余地会比较大,而且滤波效果较好。LC滤波我不经常使用,不是很了解,不知道大家的理解如何。 最近使用了美信的可编程滤波器和引脚可配置滤波器,它们采用都是开关电容滤波器。 右边时,电容器C1向电压源u2放电。当开关以高于信号的频率fc工作时,使C1在u1和u2的两个电压节点之间交替换接,那么C1在u1、u2之间传递的电荷可形成平均电流I=fC1(u1-u2),相当于图1a的u1和u2之间接入了一个等效电阻,其值为1/fC1。 推导是这样的:在信号源向电容充电时Q=C1*U,然后这个电流供给运放使用,因此平均电流为I=C1*U/T,如果T足够短,可以近似认为这个过程是连续的,因而可以在两节点间定义一个等效电路Req=U/I=T/C1=1/f*C1。这个电路的等效时间常数就是τ=RC2=C2/f*C1. 我开始使用的是MAX274,这款开关电容滤波器是通过改变引脚的电阻值来改变中心频率f0,增益G,带宽Q。它不需要外接时钟信号来提供开关频率用,估计是采用了内部RC振荡电路。设计MAX274是美信官网上有个辅助软件,把所需的参数输进去,会自动计算出各个电阻的阻值,实践发现即使自己搭电路的阻值取得跟软件计算出的阻值有一点差别,中心频率等差别也不会很大。 后来觉得274改变参数太麻烦,采用了另外一款开关电容滤波器MAX262,这是个引脚可编程滤波器,使用起来非常方便,需要外接时钟信号提供f。这样的好处是开关频率非常稳,使得中心频率也能够做到跟设定值1%的误差。使用MAX262也有个辅助软件,但我觉得这个软件计算的MAX262的参数值是错的,还是以数据手册为准!使用MAX262也很方便,就是往寄存器里写入几个值(应该是ROM型,掉电不丢失),通过给定的时钟频率,然后除以想要的中心频率,得出的N值写出寄存器就可以了,N通过查表可以得到,这样可以设定F0.同时可以设定Q,Q对应的也有N值,写到对应的寄存器里。Q值一方面是带宽,

滤波器基本原理、分类、应用

滤波器原理 滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。 广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。 本文所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。带通滤波器 二、滤波器分类 ⒈根据滤波器的选频作用分类 ⑴低通滤波器 从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。 ⑵高通滤波器 与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。 ⑶带通滤波器 它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。 ⑷带阻滤波器 与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。 推荐精选

低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。 低通滤波器与高通滤波器的串联 低通滤波器与高通滤波器的并联 ⒉根据“最佳逼近特性”标准分类 ⑴巴特 沃斯滤波 器 从幅频特 性提出要 求,而不 考虑相频 特性。巴 特沃斯滤 波器具有最大平坦幅度特性,其幅频响应表达式为: ⑵切比雪夫滤波 器 推荐精选

带通滤波器工作原理与带通滤波器原理图详解

带通滤波器工作原理与带通滤波器原理图详解 带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。 带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 工作原理 一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中

滤波器工作原理定稿版

滤波器工作原理 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

滤波器工作原理 滤波器定义:凡是有具有能力进行信号处理的装置都可以称为滤波器。用来分开及组合不同频 率,选取需要的信号频率,抑制不需要的信号频率的微波器件。主要功能是作为 各种电信号的提取、分隔、抑止干扰。 插入损耗:插入损耗简称插损,指模块置入系统后,对工作频段信号引入的衰减 带外抑制:带外抑制指,滤波器在工作频段以外的频点处对信号的衰减。 驻波比:表示阻抗的匹配情况 测试滤波器的系数S12: S12表 Port2的输出功率与Port1的输入功率的比值。假设输出功率为输入功率的50% ,即功率较少一半,则S12的对数表示为:dB(S12)=10Log(0.5)=-3 即此时该频点的衰减为-3dB 所以要求铜带内F1~F2内的插损尽量小用于减少输出功率的损耗,而对于带外的信号,插损应尽量大用于抑制带外的信号。 测试滤波器的系数S11:

S11表反射回Port1的功率与Port1的输出功率的比值。假设输出功率为输入功率的1%,则S11的对数表示为:dB(S11)=10Log(0.01)=-20,即此时该频点的回波为-20dB换算为驻波比为1.22。 所以要求带内的驻波比应尽量小用于增强匹配,较少功率的反射。 带通滤波器的工作原理 原始信号滤波器响应 ? 滤波后的信号 射频信号f1-f2,通过滤波器,经过滤波器响应,通带内的插损较小,信号略微较小,带外信号经滤波器响应,被完全抑制掉。 滤波器谐振单元等效电路分析 ? 单个谐振腔的电场模型及其等效电路原理图,电阻R来引入插入损耗图为不带圆盘的谐振杆的圆腔谐振器,谐振杆顶部与盖板形成的电容,可以理解成等效电路中的端接电容。等效电路中的谐振频率计算公式为: 当谐振时 Ls = 1 / (2 pi fr) Henry

自适应滤波器介绍及原理

关于自适应滤波的问题: 自适应滤波器有4种基本应用类型: 1) 系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2) 逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。 3) 预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤波器的输入端。取决于感兴趣的应用,自适应滤波器的输出或估计误差均可作为系统的输出。在第一种情况下,系统作为一个预测器;而在后一种情况下,系统作为预测误差滤波器。 4) 干扰消除:在一类应用中,自适应滤波器以某种意义上的最优化方式消除包含在基本信号中的未知干扰。基本信号用作自适应滤波器的期望响应,参考信号用作滤波器的输入。参考信号来自定位的某一传感器或一组传感器,并以承载新息的信号是微弱的或基本不可预测的方式,供给基本信号上。 这也就是说,得到期望输出往往不是引入自适应滤波器的目的,引入它的目的是得到未知系统模型、得到未知信道的传递函数的倒数、得到未来信号或误差和得到消除干扰的原信号。 1 关于SANC (自适应消噪)技术的问题 自适应噪声消除是利用winer 自适应滤波器,以输入信号的时延信号作为参考信号来进行滤波的,其自适应消噪的原理说明如下: 信号()x n 可分解为确定性信号分量()D x n 和随机信号分量()R x n ,即: ()()()D R x n x n x n =+ (1.1) 对于旋转机械而言,确定性信号分量()D x n 通常可表示为周期或准周期信号分量()P x n ,即: ()()()P R x n x n x n =+ 1.2 对信号()x n 两个分量()P x n 和()R x n ,有两个基本假设: (1) ()P x n 和()R x n 互不相关; (2) ()P x n 和()R x n 的自相关函数具有下述特性:()0P P x x R m ≈, N m M ≥;()0R R x x R m ≈,B m M ≥;

LC滤波电路原理及设计详解

LC滤波电路 LC滤波器也称为无源滤波器,是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义,就是该装置不需要额外提供电源。LC滤波器一般是由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 LC滤波器的适用场合 无源LC电路不易集成,通常电源中整流后的滤波电路均采用无源电路,且在大电流负载时应采用LC电路。 有源滤波器适用场合 有源滤波器电路不适于高压大电流的负载,只适用于信号处理, 滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。 经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路 电容滤波电路电感滤波电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动

电源滤波电路(图) 电源滤波电路解析

电源滤波电路、整流电源滤波电路分析 电源滤波电路 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

高通滤波器原理及分类

高通滤波器:英文名称为high-pass filter,又称低截止滤波器、低阻滤波器,允许高于某一截频的频率通过,而大大衰减较低频率的一种滤波器。它去掉了信号中不必要的低频成分或者说去掉了低频干扰。其特性在时域及频域中可分别用冲激响应及频率响应描述。 高通滤波器是一种让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器件的组合装置。其特性在时域及频域中可分别用冲激响应及频率响应描述。后者是用以频率为自变量的函数表示,一般情况下它是一个以复变量jω为自变量的的复变函数,以H(jω)表示。它的模H(ω)和幅角φ(ω)为角频率ω的函数,分别称为系统的“幅频响应”和“相频响应”,它分别代表激励源中不同频率的信号成分通过该系统时所遇到的幅度变化和相位变化。可以证明,系统的“频率响应”就是该系统“冲激响应”的傅里叶变换。当线性无源系统可以用一个N阶线性微分方程表示时,频率响应H(jω)为一个有理分式,它的分子和分母分别与微分方程的右边和左边相对应。 高通滤波器原理及分类 高通滤波器按照所采用的器件不同进行分类的话,会有源高通滤波器、无源高通滤波器两类。 无源高通滤波器:无源高通滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。 实际滤波器的基本参数:理想滤波器是不存在的,其特性只需截止频率描述,而实际滤波器的特性曲线无明显的转折点,故需用更多参数来描述。 高通滤波器技术指标有:

11种经典软件滤波的原理和实现58239

11种经典软件滤波的原理和实现 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4

B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除因为脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除因为脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除因为脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低

滤波器的原理和作用

一:滤波器的分类 滤波器是由集中参数的电阻、电感、和电容,或分布参数的电阻、电感和电容构成的一种网络。这中网络允许一些频率通过,而对其他频率成分加以抑制。 广低通(LPF)(低频滤波器 从截至频率分]高通(HPF)从工作频率分< 中频滤波器 J带通(BHF)I高频滤波器 从使用器件上分有源滤波器和无源滤波器 无源又分:RC滤波器和LC滤波器。RC滤波器又分为低通RC, 高通RC和带通RC和带阻RC。LC同理 有源又分为:有源高通、低通、带通、带阻滤波器。 二:滤波器的参数 1插入损耗。用dB来表示,分贝值越大,说明抑制噪干扰的能力就越强。插入损耗和频率有直接的关系。l L=20lg(U1/U2)U1为信号源输出电压,U2为接入滤波器后,在其输出端测得的信号源电压 2、截至频率。滤波器的插入损耗大于3dB的频率点称为滤波器的截至频率,当频率超过截止频率时,滤波器就进入了阻带,在阻带内干扰信号会受到较大的衰减。 3、额定电压。滤波器正常工作时能长时间承受的电压。绝对要区分交流和直流。 4、额定电流。滤波器在正常工作时能够长时间承受的电流。 5、工作温度范围。-55---125C X电容

6、漏电流。安规电容 Y电容选择容值和耐压值要非常慎重, 漏电流不能超过0.35mA或0.7mA,总容值不能超过4700pF 7、承受电压。能承受的瞬间最高电压。 三:滤波器的结构 n型,L型,T型 电源滤波器在实际应用中,为使它有效的抑制噪声应合理配接。 组合滤波器的网络结构和参数,才成得到较好的EMI抑制效果。当 滤波器的输出阻抗与负载阻抗不相等式,EMI信号将其输入端和输出端都产生反射。这时电源滤波器对EMI噪声的衰减,就与滤波器固有的插入损耗和反射损耗有关,可以用这点更有效抑制EMI噪声。 在实际设计和选择使用EMI滤波器是,要注意滤波器的正确连接,以造成尽可能大的反射,是滤波器在很宽的频率范围内造成较大的阻抗失配,从而得到更好的EMI抑制性能。当然滤波器对噪声的抑制和取决于扼流圈的阻抗Z F的大小。 由于差模电感滤波器很容易产生磁饱和,且电感滤波器的体积也比较大,因此目前很少使用,基本上都用共模滤波器来代替。实际应用中共模电感滤波器的两个线圈之间也存在很大的漏感,因此,它对 差模干扰信号也具有一定的滤波作用。同时还有电路中的分布电容和分布电感以及各个线圈电感值的差值都可以抑制差模信号。 四:滤波器的结构初步设计 根据EMC 的定义和原理,EMC 滤波电路不但要抑制本电子设备产生

电源滤波器的工作原理及其作用

电源滤波器的工作原理及其作用 引言:电源滤波器,又名“电源EMI滤波器”,或是“EMI电源滤波器”,是一种无源双向网络,是一种对电源中特定频率的频点或该频点以外的频率进行有效滤除的电气设备。当我们选用电源滤波器时,应主要考虑三个方面的指标;首先是电压、电流,其次是插入损耗,最后是结构尺寸。由于滤波器内部一般是经过灌封处理的,因此环境特性不是主要问题。但是所有的灌封材料和滤波电容器的温度特性对电源滤波器的环境特性有一定的影响。 电源滤波器是一种无源双向网络,它的一端是电源,另一端是负载。 电源滤波器的原理就是一种——阻抗失配网络:电源滤波器输入、输出侧与电源和负载侧的阻抗失配越大,对电磁干扰的衰减就越有效。 很多人认为电源线滤波器的作用是使设备能够满足电磁兼容标准中对传导发射和传导敏感度的要求,电源线滤波器对抑制设备产生较强的辐射干扰方面也很重要。 电源线滤波器的作用是防止设备本身产生的电磁干扰进入电源线,同时防止电源线上的干扰进入设备。电源线滤波器是一种低通滤波器,它允许直流或50Hz的工作电流通过,而不允许频率较高的电磁干扰电流通过。电源线滤波器是双向的,它既能防止电网上的干扰进入设备对设备产生不良影响,使设备满足传导敏感度的要求;又能防止设备内的电磁干扰通过。电源线传到电网上,使设备满足传导发射的要求(图F-3)。能够产生较强干扰的设备和对外界干扰敏感的设备都要使用电源线滤波器。能够产生强干扰的设备有:含有脉冲电路(微处理器)的设备、使用开关电源的设备、使用可控硅的设备、变频调速设备、含有马达的设备等。敏感电路如:使用微处理器的设备、小信号模拟电路等。 关键字:电源滤波器工作原理https://www.doczj.com/doc/705249598.html,

电源滤波器的基本原理和常用标准

电源滤波器的基本原理和常用标准,及部分电源滤波器的主要技术参数摘要:本文简要介绍了电源滤波器的基本原理和各种标准,详细介绍了瑞士夏弗纳公司生产种类电源滤波器的主要技术参数。 关键词:电源滤波器;传导干扰;辐射干扰;插入损耗 1. 概述 随着电气设备应用的日益广泛,电子设备产生的电磁噪声也越来越严重,干扰了电子设备的正常工作,特别是对一些低功耗的便携式设备更是如此。 电磁干扰有两种传媒途径,一种是由于工作电流的动态变化使得局部电网上电压不稳,从而影响使用本地电网的设备工作,这种干扰称为传导干扰。另外就是设备中工作电流(电压)的动态变化产生电磁辐射,同样影响其它设备的工作,这种干扰称为辐射干扰。 电磁噪声(干扰)源除了人工生产的电子外,还有一些自然现象(如闪电)和其它人为行为(如核爆炸等。) 电磁干扰的影响也很大,轻则使设备的性能得不到很好的体现,重则使设备根本无法工作,另外电磁辐射还可能导致机密情报泄漏。 抑制电磁干扰的两种有效途径是彩电源滤波器和加屏蔽装置,屏蔽装置主要是针对副射干扰,既防止本身电磁波的外泄而造成新的干扰源,又避免受到外来辐射的干扰。电源滤波器最基本的作用就是抑制传导干扰,有的品种也能提高对副射干扰的抑制能力。从广义上讲,我们使用的交流稳压电源,UPS 电源也可以算是一种电源滤波器,因为这些设备在某种程度上把电子设备与电网隔离开了,这里我们介绍的电源滤波器都是附在电子设备中作为一个器件使用的不甚复杂的物品,我们常在直流电源电路中加一RC 电路来抑制纹波,电源滤波器的作用就是抑制交流电源上的干扰。目前,随着电子设备精密程度的提高,对电源的要求也越来高,同时,电子设备的广泛应用也需要使各电子设备生产商对电磁环境作出共同的承诺,这样就导致电源滤波器作为一种绿色产品,越来越受到社会的重视,目前,一些世界标准化组织和各国政府都在制定这方面的标准。 2. 电源滤波器的组成 电源滤波器由LC 网络组成,其作用原理是使得滤波器的阻抗与干扰源的阻抗不匹配,从而使干扰信号沿干扰源进来的方向反射回去,从而降低干扰源的影响。 图1 电源滤波器的原理电路 图1 是一个电源滤波器的原理电路,图中L 1和L 2 对共模干扰信号(非对称干扰电流) 呈现高阻抗,而对差模信号(对称干扰电流)和电源电流呈现低阻抗,这样就能保证电源电流 的衰减很小,而同时又抑制了电流噪声。通常L 1、L 2 的值很小且相等,对称地绕在同一个螺 旋管上,这样在正常工作电流范围内,磁性材料产生的磁性互相补偿,以免磁通饷饱各,但是

变频器滤波器工作原理及作用

变频器滤波器工作原理及 作用 Prepared on 21 November 2021

变频器滤波器 变频器滤波器,顾名思义,就是专门针对变频器产生谐波的特点及规律,而专门开发的一款专用型滤波器,是的一种。 概述 变频器滤波器主要是由电感、电容、电阻等组成的无源器件。它是一种低通滤波器的一种,可以让工频信 变频器输入滤波器 号无阻挡的通过,抑制高频电磁干扰(一般来讲,可抑制干扰噪声频率为50/60~1kHz)。 变频器滤波器为双向可逆器件,即能防止电网上的电磁噪声通过电源进入设备,也能防止设备本身的电磁噪声对电网的污染。 变频器滤波器是用来抑制传导干扰的有效工具。 特征 1、变频器滤波器是基于变频器在工作时,对电网及其它数字电子设备产生干扰的频谱分量电磁兼容性特点而专门设计的。 2、安装于电机和变频器及电源与变频器之间。 3、小尺寸,无需风扇,采用的是经过最恶劣环境测试过的高性能的材料和部件。 1、插入损耗 插入损耗是衡量变频器滤波器电性能的重要参数。 插入损耗是不用滤波器时从噪声源传递到负载时的噪声电压与插入滤波器时从噪声源传递到负载时的噪声电压之比。 插入损耗在输入/输出的阻抗均为50Ω的系统下测试,结果通常表示为在所关心频段内的衰减曲线(单位为分贝)。 2、泄漏电流 变频器滤波器的泄漏电流是指在250VAC/50Hz的电压/频率条件下,火线和零线与外壳间流过的电流。 泄漏电流的大小主要取决于变频器滤波器中的共模电容。 从插入损耗的角度来考虑,共模电容越大,电性能越好,此时,漏电流也越大。但从安全方面考虑,泄漏电流又不能过大,否则不符合安全标准要求。尤其是一些医疗保健设备,要求泄漏电流尽可能小。因此,要根据具体设备要求来确定共模电容的容量。 3、耐压

π型滤波电路

数字电源模拟电源 阻抗公式: Z=R+i(ωL-1/ωC) ω=2пf R---电阻ωL----感抗 1/ωC-----容抗 1.典型∏型RC滤波电路 图7-27所示是典型的∏型RC滤波电路。电路中的C1、C2是两只滤波电容,R1是滤波电阻,C1、R1和C2构成一节∏型RC滤波电路。由于这种滤波电路的形式如同字母∏且采用了电阻、电容,所以称为∏型RC滤波电路。ADP3211AMNG(集成电路IC)从电路中可以看出,∏型RC滤波电路接在整流电路的输出端。 这一电路的滤波原理是:从整流电路输出的电压首先经过C1的滤波,将大部分的交流成分滤除,见图中的交流电流示意图。 经过C1滤波后的电压,再加到由R1和C2构成的滤波电路中,电容C2进一步对交流成分进行滤波,有少量的交流电流通过C2到达地线,见图中的电流所示。 这一滤波电路中共有两个直流电压输出端,分别输出U01、U02两个直流电压。其中,U01只经过电容C1滤波;U02则经过了C1、R1和C2电路的滤波,所以滤波效果更好,直流输出电压U02中的交流成分更小。 上述两个直流输出电压的大小是不同的,U01电压最高,一般这一电压直接加到功率放大器电路,或加到需要直流工作电压最高、工作电流最大的电路中,这是因为这一路直流输出电压没有经过滤波电阻,能够输出最大的直流电压和直流电流;直流输出电压U02稍低,这是因为电阻R1对直流电压存在电压降,同时由于滤波电阻R1的存在,这一滤波电路输出的直流电流大小也受到了一定的限制。 2.多节∏型RC滤波电路 关于实用的滤波电路中通常都是多节的,即有几节∏型RC滤波电路组成,各节∏型RC滤波电路之间可以是串联连接,也可以是并联连接。多节∏型RC滤波电路也是由滤波电容和滤波电阻构成。 图7-29所示是多节∏型RC滤波电路。电路中,C1、C2、C3是三只滤波电容,其中C1是第一节的滤波电容,C3是最后一节的滤波电容。R1和R2是滤波电阻。

电源滤波电路工作原理详解

电源滤波电路工作原理详解 交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。 一.电容滤波电路 电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。电容器的容量越 大,负载电阻值越大,充电和放电所需要的时间越长。这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务。 图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2向负载电阻R fz提供电流的同时,向电容器C充电,一直充到最大值。e2达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D受反向电压,不能导通,于是Uc便通过负载电阻R fz放电。由于C 和R fz较大,放电速度很慢,在e2下降期间里,电容器C上的电压降得不多。当e2下一个周期来到并升高到大于Uc时,又再次对电容器充电。如此重复,电容器C两端(即负载电阻R fz:两端)便保持了一个较平稳的电压,在波形图上呈 现出比较平滑的波形。 图5-10(a)(b)中分 别示出半波整流和全 波整流时电容滤波前 后的输出波形。 显然,电容量越大,滤 波效果越好,输出波形

FIR滤波器的原理及设计

选题2 实验讲义 实验名称:基于分布式算法的FIR 滤波器设计 1.数字滤波器基础知识 数字滤波是信号与信号处理领域的一个重要分支,在语音图像处理、模式识别、谱分析、无线通信等领域都有着非常广泛的应用。通过滤波运算,将一组输入数据序列转变为另一组输出数据序列,从而达到修正时域或频域中信号属性的目的。数字滤波器就是用于完成这种信号滤波功能,用有限精度算法来实现的一种离散时间线性时不变(LTI )系统。相比于模拟滤波器,数字滤波器具有以下优点:(1)数字滤波器的频域特性容易控制,性能指标优良;(2)数字滤波器可以工作在极低的频率,可以方便地实现模拟滤波器难以实现的线性相位系统;(3)数字滤波器工作稳定,一般不会受到外部环境的影响;(4)数字滤波器的灵活性和可重用性高,只需要简单编程就可以修改滤波器的特性,设计周期短。数字滤波器的实现可以采用专用DSP 芯片,通过编写程序,利用软、硬件结合完成滤波器设计,也可以采用市面上通用的数字滤波器集成电路来实现,但这两种方法无法适应高速应用场合。随着集成电路技术的高速发展,FPGA 应用越来越普及,FPGA 器件具有芯片密度大、执行效率高,速度快,集成度高等优点,用FPGA 芯片作为滤波器的设计载体,可以实现高速信号滤波功能。 1.1 FIR 数字滤波器特点 数字滤波器通常分为IIR (无限冲激响应)和FIR(有限冲激响应)两种。FIR 滤波器具有以下特点:(1)可以做成严格的线性相位,同时又可以具有任意的幅度特性(2)单位冲激响应是有限长的,所以一定是稳定的,因此在实际中得到广泛的应用。 1.2 FIR 滤波器结构 设FIR 滤波器的单位冲激响应为)(n h ,10-≤≤N n , 系统函数 ∑-=-= 1 )()(N n n z n h Z H 差分方程形式为:∑-=-=1 )()()(N k k n x k h n y (1) 基本结构(直接型):

带通滤波器详解_带通滤波器工作原理_带通滤波器原理图

带通滤波器详解_带通滤波器工作原理_带通滤波器原理图 带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。 带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 工作原理一个理想的带通滤波器应该有一个完全平坦的通带,在通带内没有放大或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。 实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度的dB数来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦,开始出现波纹。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。 除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。 在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 典型应用 许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中

滤波器的基本原理精选文档

滤波器的基本原理精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

滤波器的基本原理 1.滤波器是由电感和电容组成的低通滤波电路所构成,它允许有用信号的电流通过,对频率较高的干扰信号则有较大的衰减。由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰都具有衰减作用。其基本原理有三种: A)利用电容通高频隔低频的特性,将火线、零线高频干扰电流导入地线(共模),或将火线高频干扰电流导入零线(差模); B)利用电感线圈的阻抗特性,将高频干扰电流反射回干扰源; C)利用干扰抑制铁氧体可将一定频段的干扰信号吸收转化为热量的特性,针对某干扰信号的频段选择合适的干扰抑制铁氧体磁环、磁珠直接套在需要滤波的电缆上即可 2电源滤波器高频插入损耗的重要性 尽管各种电磁兼容标准中关于传导发射的限制仅到30MHz(旧军标到50MHz,新军标到10MHz),但是对传导发射的抑制绝不能忽略高频的影响。因为,电源线上高频传导电流会导致辐射,使设备的辐射发射超标。另外,瞬态脉冲敏感度试验中的试验波形往往包含了很高的频率成份,如果不滤除这些高频干扰,也会导致设备的敏感度试验失败。 电源线滤波器的高频特性差的主要原因有两个,一个是内部寄生参数造成的空间耦合,另一个是滤波器件的不理想性。因此,改善高频特性的方法也是从这两个方面着手。 内部结构:滤波器的连线要按照电路结构向一个方向布置,在空间允许的条件下,电感与电容之间保持一定的距离,必要时,可设置一些隔离板,减小空间耦合。 电感:按照前面所介绍的方法控制电感的寄生电容。必要时,使用多个电感串联的方式。 差模滤波电容:电容的引线要尽量短。要理解这个要求的含义:电容与需要滤波的导线(火线和零线)之间的连线尽量短。如果滤波器安装在线路板上,线路板上的走线也会等效成电容的引线。这时,要注意保证时机的电容引线最短。 共模电容:电容的引线要尽量短。对这个要求的理解和注意事项同差模电容相同。但是,滤波器的共模高频滤波特性主要靠共模电容保证,并且共模干扰的频率一般较高,因此共模滤波电容的高频特性更加重要。使用三端电容可以明显改善高频滤波效果。但是要注意三端电容的正确使用方法。即,要使接地线尽量短,而其它两根线的长短对效果几乎没有影响。必要时可以使用穿心电容,这时,滤波器本身的性能可以维持到1GHz以上。 特别提示:当设备的辐射发射在某个频率上不满足标准的要求时,不要忘记检查电源线在这个频率上的共模传导发射,辐射发射很可能是由这个共模发射电流引起的。 3滤波器的选择

滤波器的基本原理

滤波器的基本原理 1.滤波器是由电感和电容组成的低通滤波电路所构成,它允许有用信号的电流通过,对频率较高的干扰信号则有较大的衰减。由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰 都具有衰减作用。其基本原理有三种: A)利用电容通高频隔低频的特性,将火线、零线高频干扰电流导入地线(共模),或将火线高频干扰电流导入零线(差模); B)利用电感线圈的阻抗特性,将高频干扰电流反射回干扰源; C)利用干扰抑制铁氧体可将一定频段的干扰信号吸收转化为热量的特性,针对某干扰信号的频段选择合适的干扰抑制铁氧体磁环、磁珠直接套在需要滤波的电缆上即可 2电源滤波器高频插入损耗的重要性 尽管各种电磁兼容标准中关于传导发射的限制仅到30MHz (旧军标到50MHz,新军标到 10MHz ),但是对传导发射的抑制绝不能忽略高频的影响。因为,电源线上高频传导电流会导致辐射,使设备的辐射发射超标。另外,瞬态脉冲敏感度试验中的试验波形往往包含了很高的频率 成份,如果不滤除这些高频干扰,也会导致设备的敏感度试验失败。 电源线滤波器的高频特性差的主要原因有两个,一个是内部寄生参数造成的空间耦合,另一个是滤波器件的不理想性。因此,改善高频特性的方法也是从这两个方面着手。 内部结构:滤波器的连线要按照电路结构向一个方向布置,在空间允许的条件下,电感与电 容之间保持一定的距离,必要时,可设置一些隔离板,减小空间耦合。 电感:按照前面所介绍的方法控制电感的寄生电容。必要时,使用多个电感串联的方式。 差模滤波电容:电容的引线要尽量短。要理解这个要求的含义:电容与需要滤波的导线(火线和零线)之间的连线尽量短。如果滤波器安装在线路板上,线路板上的走线也会等效成电容的 引线。这时,要注意保证时机的电容引线最短。 共模电容:电容的引线要尽量短。对这个要求的理解和注意事项同差模电容相同。但是,滤波器的共模高频滤波特性主要靠共模电容保证,并且共模干扰的频率一般较高,因此共模滤波电 容的高频特性更加重要。使用三端电容可以明显改善高频滤波效果。但是要注意三端电容的正确 使用方法。即,要使接地线尽量短,而其它两根线的长短对效果几乎没有影响。必要时可以使用 穿心电容,这时,滤波器本身的性能可以维持到1GHz以上。 特别提示:当设备的辐射发射在某个频率上不满足标准的要求时,不要忘记检查电源线在这 个频率上的共模传导发射,辐射发射很可能是由这个共模发射电流引起的。 3滤波器的选择

电容滤波电路 电感滤波电路作用原理

整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。)新艺图库 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合.新艺图库 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

相关主题
文本预览
相关文档 最新文档