当前位置:文档之家› 噪声系数分析仪课程讲解

噪声系数分析仪课程讲解

X-120 HS6298B噪声频谱分析仪操作规程

HS6298B型噪声频谱分析操作规程 1.目的 规范FDC-1500防爆大气采样器操作程序,正确使用和维护仪器,保证采样工作能按规范方法正确进行。 2 范围 适用于FDC-1500防爆大气采样器使用操作。 3.职责 操作人员:按照本规程操作仪器,对仪器进行日常维护,作使用登记。 复核人员:负责对采样操作是否规范以及采样结果是否准确进行复核。 保管人员:负责监督仪器操作是否符合规程,对仪器进行定期维护、保养。 部门负责人:负责仪器综合管理。 4.主要技术指标 4.1 传声器:1/2英寸驻极体测试电容传声器(HS14423) 4.2 测量范围:35dB~130dB(A、C); 40dB~130dB(Lin) 4.3 频率计权:20Hz~10kHz 4.4 时间计权:F( 快 )、S( 慢 ) 4.5 滤波器:1/1倍频程 4.6自动测量功能:Leq、LAE、SD、LN(L95、L90、L50、L10、L5)、Lmax、Lmin、Ldn、Ld、Ln。 4.7测量时间设定:Man、10s、1m、5m、10m、15m、20m、1h、8h、24h、24h整时测量。 4.8 时钟:年、月、日、时、分、秒设置运行。 4.9测量数据自动存储:共500组单组数据,4组整时数据和50组滤波器自动测量数据。 4.10接口:分析仪通过RS-232C将数据传输给HS4784打印或传输给计算机处理。 4.11校准:使用HS6020校准至93.8dB。 4.12 显示器:使用专门为噪声测量仪器设计的LCD显示器。 4.13 电源:使用+9V外接电源(外+内-),或者用5节5号高能碱性电池。 4.14 外形尺寸:l×b×h 307mm×80mm×30mm 4.15 重量:386g(不带电池) 4.16工作环境:温度-10℃~50℃、相对湿度 20%~90% 5.结构特征

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

噪声系数的含义和测量方法

噪声系数的含义和测量方法 噪声系数的含义 噪声系数是用来描述一个系统中出现的过多的噪声量的品质因数。把噪声系数降低到最小的程度可以减小噪声对系统造成的影响。在日常生活中,我们可以看到噪声会降低电视画面的质量,也会使无线通信的话音质量 变差;在诸如雷达等的军用设备中,噪声会限制系统的有效作用范围;在数字通信系统中,噪声则会增加系统的误码率。电子设备的系统设计人员总是在尽最大努力使整个系统的信噪比(SNR)达到最优化的程度,为了达到这个目的,可以用把信号提高的办法,也可以用把噪声降低的办法。在像雷达这样的发射接受系统中,提高信噪比的一种方法是用更大的大功率放大器来提高发射信号的功率,或使用大口径天线。降低在发射机和接收机之间信号传输路径上对信号的衰耗也可以提高信噪比,但是信号在传输路径上的衰耗大都是由工作环境所决定的,系统设计人员控制不了这方面的因素。还可以通过降低由接收机产生的噪声—通常这都是由接收机前端的低噪声放大器(LNA)的质量决定的—来提高信噪比。与使用提高发射机功率的方法相比,降低接收机的噪声(以及让接受机的噪声系数的指标更好)的方法会更容易和便宜一些。 噪声系数的定义是很简单和直观的。一个电子系统的噪声因子(F)的定义是系统输入信号的信噪比除以系统输出信号的信噪比: F=(Si/Ni)/(So/No) Si=输入信号的功率 So=输出信号的功率 Ni=输入噪声功率 No=输出噪声功率 把噪声因子用分贝(dB)来表示就是噪声系数(NF),NF=10*log(F)。 这个对噪声系数的定义对任何电子网络都是正确的,包括那些可以把在一个频率上的输

入信号变换为另外一个频率的信号再输出的电子网络,例如上变频器或下变频器。 为了更好地理解噪声系数的定义,我们来看看放大器的例子。放大器的输出信号的功率等于放大器输入信号的功率乘以放大器的增益,如果这个放大器是一个很理想的器件的话,其输出端口上噪声信号的功率也应该等于输入端口上噪声信号的功率乘以放大器的增益,结果是在放大器的输入端口和输出端口上信号的信噪比是相同的。然而,实际情况是任何放大器输出信号的噪声功率都比输入信号的噪声功率乘以放大器的增益所得到的结果大,也就是说放大器输出端口上的信噪比要比输入端口上的信噪比小,即噪声因子F要大于1,或者说噪声系数NF要大于0dB。 在测量并比较噪声系数的测量结果时,非常重要的是要注意我们在测量的过程中是假定测量系统能够在被测器件(DUT)的输入端口和输出端口上提供非常完美的50Ω的负载条件。可是在实际测量中,这样完美的条件永远不会存在。稍后我们会讨论如果测量系统不是很完美的50Ω系统会对噪声系数的测量精度造成怎样的影响。同时,我们也会看到各种校准和测量方法是怎么克服因为不是很完美的50Ω的源匹配而造成的测量误差的。 图1器件对信号的处理过程 另一种用来表达由一个放大器或系统引入的附加噪声的术语是有效输入温度(Te)。为了理解这个参数,我们需要先看一下无源负载所产生的噪声的量的表达方式—kTB,其中k 是玻尔兹曼常数,T是以开尔文为单位的负载的温度,B是系统带宽。因为在某个给定的带宽内,器件产生的噪声和温度是成正比的,所以,一个器件所产生的噪声的量可以表示为带

HS5660C型精密噪声频谱分析仪操作指导书

HS5660C型噪声频谱分析仪操作指导书 1目的 规范使用HS5660C型噪声频谱分析仪。 2 适用范围 适用于HS5660C型噪声频谱分析仪的使用及维护。 3 职责 3.1起草人负责编写和修改操作规程。 3.2现场检测人员必须按照仪器操作规程进行检测,记录检测结果。 3.3科室主任审查批准,发布实施。 4操作规程 4.1通电检查:开启声级计右侧面上电源开关,显示器应显示A声级,F快特性,显示模拟表针刻度,(如果在左上角出现“Batt”,表示电池不足。)此时加声压,显示数据应跟随变化表示正常。 4.2声校准:将声级校准器(94dB、1kHz)配合在传声器上,不振不晃,开启校准器电源,声级计计权设置A、C或Lin,声压级读数应93.8dB,否则调节分析仪右侧面灵敏调节电位器,校准完成取下校准器。如果用活塞发生器(124dB、250Hz),声级计计权必须设置在C或Lin,校准读数应指示在124dB。 4.3.1瞬时声级测量:开启电源开关或按“复位”键,工作方式即为瞬时A声级、F快特性、中量程测量。 4.3.2滤波器选频测量:在工作状态下按“计权”键,显示为Lin,然后按“频率”键,选择滤波器测量,其中心频率为(31.5Hz、63Hz、125Hz、250Hz、500Hz、1kHz、2kHz、4kHz、8kHz)此时显示的数据为对应频率点的声级值。 4.3.3滤波器自动测量:在工作状态下按两次“方式”键之后按“定时”键可以选择每个频率点的测量时间(10s、1m、5m、10m、15m、20m、1h),此时按“运行”键开始测量。 4.3.4整时24小时自动测量:工作状态下按“方式”键,显示“Regular”,此时按“定时”键可以选择每个小时的测量时间(10s、1m、5m、10m、15m、20m、1h),按“运行键”后开始测量。数据采集完毕后计算结果并存储所有数据。4.3.5 Leq、L AE、SD、Lmax、Lmin、LN(L95、L90、L50、L10、L5)等数据的测量:自动测量操作为工作状态下按“定时”键设置测量时间(10s、1m、5m、10m、15m、20m、1h、8h、24h),按选择键选择自动测量的内容(Leq、L AE、SD、Lmax、Lmin、LN),测量结束后也可以按“选择”键查看数据,此时按“运行”键进行新的一次定时自动测量。手动测量为工作状态下按“定时”键设置测量时间,按“运行”后开始测量,到一定时间后再按“运行”键,分析仪即暂停

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

噪声频谱分析仪操作规程

噪声频谱分析仪操作规程 一、测量前准备 1. 装电池:5节5号干电池,如果连续测定8小时以上,使用高能碱性电池。 如使用外接电源,请注意正负极性。 2. 装传感器:将传感器对准前置级头子螺纹口顺时针旋紧。 3. 通电检查:开启电源开关,显示器应显示A声级,F快特性,显示模拟表针刻度,如果在左上角出现“Batt”,表示电池不足,应及时更换电池,此时显示的数据随声压而变化表示正常。 4. 声校准:将声级校准器(94dB、1kHz)配合在传声器上,开启校准器电源,声级计计权设置A或Lin,声压读数应是93.8dB,否则调节声级计右侧面灵敏度调节电位器,校准完成后取下校准器。 二、瞬时声级测量 1. 打开开关,选择快慢档,所显示的数值即为瞬时声压(A声级) 2. 按保持键则读数为最大声压(A声级) 三、测量时间设置 1. 按[定时]进入设定方式,再按[定时],测量时间依次为10s→1m→5m →10m→15m→20m→1h→8h→24h→Man→10s变化,若设定在1m时停止按键,表示自动测量时间为1分钟,其余类似。 2. 测量运行:设定好测量时间,按[运行]进入自动测量状态。显示“RUN”标记,到预定时间结束,“RUN”标记消失,显示“PAUSE”暂停标记。 3. 读取数据:按[选择],数据依次调出显示Leq→SD→Lmax→L95→L90→L50→L10→L5→Leq 四、频谱测量方法 1. 手动方式 [复位]→[计权]→显示“Lin”→[频率]→显示“.”表示1/1中心频率→[定时]设定测量时间→[运行]→显示“PUASE”读数为声压级 2. 自动测量 [复位]→[计权]→显示“Lin”→[定时]设定测量时间→连续按[频率]→直到1/1中心频率点全部选通,显示“.”→[运行]→自动测量自动记

HS5671B噪声频谱分析仪说明书

一概述 HS5671B型噪声频谱分析仪既是一种测量指数时间计权声级的通用声级计,又是能测量时间平均声级的积分平均声级计和测量声暴露的积分声级计,它还能测量累计百分声级(统计声级),其性能符合GB/T17181-1997和IEC61672-2002标准对1级声级计的要求,同时也符合IEC1260和GB/T3241对1/1,1/3倍频程滤波器和的要求,对射频场敏感度属X类。 本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、动态范围宽等优点。本仪器采用128×64点阵式液晶显示器带背景光显示,全中文界面,显示内容丰富,操作界面采用菜单方式,有汉字提示功能,用户操作简便,电池供电,测量结果可长期保存在仪器内,通过内置RS-232接口在现场或事后用微型打印机打印出来或送到计算机中去处理。 二主要技术性能 1 传声器:Φ12.7mm(1/2″)予极化测试电容传声器,灵敏度约30mV/Pa 频率范围:10Hz~20kHz, 2 测量范围:25dB~130dB(A) 30dB~130dB(C) 35dB~130dB(L) 3 频率范围:10Hz~20 kHz 4 频率计权:A、C、Lin计权 5 参考方向为电容传声器的轴向 6 参考声压级:94dB 7 时间计权:快(F)、慢(S) 8 检波器特性:数字检波,真有效值 9 仪器类型:1级 10 级量程分高、中、低三档: 高量程H 60dB~130 dB 中量程M 40dB~110 dB 低量程L 25dB~90 dB 每档线性范围≥60dB。以中量程为参考量程。 11 测量时间设定:Man (人工)、10s、1min、5min、10min、15min、20min、30min、1h、8h、24h、24h整时。 12 自动测量功能:Lp、Leq、LAE、LN(L5、L10、L50、L90、L95)、SD、Lmax、Lmin、E、Ld、Ln、Ldn、1/1、1/3滤波器自动测量、混响Tr、噪声数据采集等。*

Lab1 Spectrum Analyzer频谱分析仪的使用

LAB # 1 – ANALYZING SIGNALS IN THE FREQUENCY DOMAIN INTRODUCTION You have probably connected various equipment to an oscilloscope in order to test various characteristics; if so, you know that the oscilloscope display shows the user a graph of amplitude (voltage) vs. time. Amplitude is on the vertical axis and time is on the horizontal axis. In telecommunications, when dealing with radio frequency (RF) waves, it is often beneficial to view signals in the frequency domain, rather than in the time domain. In the frequency domain, the vertical axis is still amplitude (usually power), but the horizontal axis is frequency instead of time. TIME DOMAIN: Amplitude vs. Time FREQUENCY DOMAIN: Amplitude vs. Frequency In this experiment, we will look at the characteristics of an RF signal using an oscilloscope (time domain) and using a spectrum analyzer (frequency domain). This will prepare you for future labs that deal with frequency-domain signals. MATERIALS & SETUP ? 1 MHz Signal Generator ? Oscilloscope ?HP Spectrum Analyzer ?BNC T-Connector ? Coaxial Cables ?RF adapters Fig. 1-1

噪声系数测量手册1:噪声系数定义及测试方法

噪声系数测量手册 Part 1. 噪声系数定义及测试方法 安捷伦科技:顾宏亮一.噪声系数定义 最常见的噪声系数定义是:输入信噪比/ 输出信噪比。它是衡量设备本身噪声品质的重要参数,它反映的是信号经过系统后信噪比恶化的程度。噪声系数是一个大于1的数,也就是说信号经过系统后信噪比是恶化了。噪声系数是射频电路的关键指标之一,它决定了接收机的灵敏度,影响着模拟通信系统的信噪比和数字通信系统的误码率。无线通信和卫星通信的快速发展对器件、子系统和系统的噪声性能要求越来越高。 输入信噪比SNR input=P i/N i 输出信噪比SNR output=P o/N o 噪声系数F =SNR input/SNR output通常用dB来表示NF= 10Log(F) 假设放大器是理想的线性网络,内部不产生任何噪声。那么对于该放大器来说,输出的功率Po以及输出的噪声No 分别等于Pi * Gain以及Ni*Gain。这样噪声系数=(Pi/Ni)/(Po/No)=1。但是现实中,任何放大器的噪声功率输出不仅仅有输入端噪声的放大输出,还有内部自身的噪声(Na)输出,下图为线性双端口网络的图示。 双端口网络噪声系数分析框图 Vs: 信号源电动势Rs: 信号源内阻

Ri: 双端口网络输入阻抗R L: 负载阻抗 Ni: 输入噪声功率Pi: 输入信号功率 No: 输出噪声功率Po: 输出信号功率 Vn: 该信号源内阻Rs的等效噪声电压Ro: 双端口网络输出阻抗 输出噪声功率: N o = N i * Gain + N a ; P o=P i * Gain 噪声系数= (P i * N o)/(N i* P o) = (N i * Gain + N a) /(N i * Gain)= 1 + Na/(N i * Gain) > 1 根据IEEE的噪声系数定义:The noise factor, at a specified input frequency, is defined as the ratio of (1) the total noise power per unit bandwidth available at the output port when noise temperature of the input termination is standard (290 K) to (2) that portion of (1) engendered at the input frequency by the input termination.” a.输入噪声被定义成负载在温度为290K下产生的噪声。 b.输入噪声功率为资用功率,也就是该负载(termination)能产生的最大功率。 c.假定了被测件和负载阻抗互为共轭关系. 如果被测件是放大器,并且噪声源阻抗为50ohm,那么假定了 该放大器的输入阻抗为50ohm。 综合上述的结论,我们可以这样理解噪声系数的定义:当输入噪声功率为290K温度下的负载所产生的最大功率情况下,输入信噪比和输出信噪比的比值。 资用功率指的是信号源能输出的最大功率,也可以称为额定功率。 信号源输出框图 只有当源的内阻和负载相等(复数互为共轭),源输出最大功率. P available= [V S/(R S+ R L)]2 * R L当R S= R L时候P available= V S2/(4*R S) 由此可见,资用功率是源的本身参数,它只和内阻以及电动势有关,和负载没有关系。

噪声系数测试

噪声系数测试 1 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义: 在这个定义中,噪声由两个因素产生。一个是到达射频系统输入的干扰,与需要的有用信号不同。第二个是由于射频系统载波的随机扰动(LNA ,混频器和接收机等)。第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为: P NA = kTΔF, 这里的k = 波尔兹曼常量(1.38 * 10-23焦耳/ΔK), T = 温度,单位为开尔文 ΔF = 噪声带宽(Hz) 在室温(290ΔK)时,噪声功率谱密度P NAD = -174dBm/Hz 。 因而我们有以下的公式: NF = P NOUT - (-174dBm/Hz + 10 * log 10(BW) + 增益) //20*log10(BW) 在公式中,P NOUT 是已测的总共输出噪声功率,-174dBm/Hz 是290°K 时环境噪声的功率谱密度。BW 是感兴趣的频率带宽。增益是系统的增益。NF 是DUT 的噪声系数。公式中的每个变量均为对数。为简化公式,我们可以直接测量输出噪声功率谱密度(dBm/Hz),这时公式变为: NF = P NOUTD + 174dBm/Hz - 增益 为了使用增益法测量噪声系数,DUT 的增益需要预先确定的。DUT 的输入需要端接特性阻抗(射频应用为50Ω,视频/电缆应用为75Ω)。输出噪声功率谱密度可使用频谱分析仪测量。 增益法测量的装置见图2。

HS5671B型噪声频谱分析仪

HS5671B型噪声频谱分析仪 使用说明书

嘉兴恒升电子有限公司 注意事项:仪器所用的传声器是一种精密传感器,请勿碰撞,以免膜片破损,不用时应放置妥当。如人为损坏不属保修范围。安装电池或外接电源应注意极性,切勿反接,仪器长期不使用时应取下电池,以

免漏液损坏仪器。仪器应避免放置于高温、潮湿、有污水、灰尘及含盐酸、碱成分高的空气或化学气体的地方,避免阳光直射。请勿擅自拆卸仪器,如果仪器工作不正常,可送修理单位或厂方检修。如私自拆卸不属保修范围。 装箱清单: 1)HS5671B型分析仪一台 2)使用说明书一本 3)产品合格证一张 4)产品检定证书一份 5)程序软盘一张 6)计算机接口连接线一根 7)风罩一只 8)钟表起子一把 9)携带箱一只 以下根据订货要求另外提供 10)5m、10m、15m、20m延伸电缆一根 11)UP40TS微型打印机及连线一台 12)三脚架一只 13)声级校准器一只 14) 主机外接电源(6V)一只 18 一概述 HS5671B型噪声频谱分析仪既是一种测量指数时间计权声级的通用声级计,又是能测量时间平均声级的积分平均声级计和测量声暴露的积分声级计,它还能测量累计百分声级(统计声级),其性能符合GB/T17181-1997和IEC61672-2002标准对1级声级计的要求,同时也符合IEC1260和GB/T3241对倍频程滤波器和1/3倍频程滤波器的要求,对射频场敏感度属X类。

本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、动态范围宽等优点。本仪器采用128×64点阵式液晶显示器带背景光显示,全中文界面,显示内容丰富,操作界面采用菜单方式,有汉字提示功能,用户操作简便,电池供电,测量结果可长期保存在仪器内,通过内置RS-232接口在现场或事后用微型打印机打印出来或送到计算机中去处理。 本仪器结构紧凑、造型美观、功能多、自动化程度高,可用于环境噪声的测量,也可用于劳动保护、工业卫生及各种机器、车辆、船舶、电器等工业噪声测量,还可以用于实验室进行噪声分析。 二主要技术性能 1 传声器:Φ12.7mm(1/2″)予极化测试电容传声器,灵敏度约 30mV/Pa 频率范围:20Hz~20kHz 2 测量范围:35dB~130dB(A) 40dB~130dB(C) 35dB~130dB(L) 3 频率范围:10Hz~20 kHz 4 频率计权:A、C计权 5 参考方向为电容传声器的轴向 6 参考声压级:94dB 7 时间计权:快(F)、慢(S) 8 检波器特性:数字检波,真有效值 1

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

频谱分析仪基础知识性能指标和实用技巧

频谱分析仪基础知识性能指标及实用技巧 频谱分析仪是用来显示频域幅度的仪器,在射频领域有“射频万用表”的美称。在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。 频谱分析仪的种类与应用 频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。 即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。 扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。 基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。新型的频谱分析仪采用数位,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。 频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。另外,由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和机的类型。在军事领域,频谱仪在电子对抗和频谱监测中

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录 1简介............................................................... 2.面板............................................................... 2.1 操作区....................................................... 2.2 屏幕显示..................................................... 3.各功能区的使用..................................................... 3.1 Control(控制)功能区........................................ 3.1.1 Frequency Channel:.................................... 3.1.2 Span X Scale........................................... 3.1.3 Amplitude Y Scale...................................... 3.1.4 Input/Output........................................... 3.1.5 View/Trace............................................. 3.1.6 Display................................................ 3.1.7 Mode................................................... 3.1.8 Det/Demod.............................................. 3.1.9 Auto Cuple............................................. ............................................................. ............................................................. ............................................................. ............................................................. ............................................................. 3.2 Measure(测量)功能区........................................ 3.2.1 Measure................................................ 3.2.2 Meas Setup............................................. 3.2.3 Meas Control........................................... 3.3 System(系统)功能区......................................... 3.3.1 System................................................. 3.3.2 Preset................................................. 3.3.3 File................................................... 3.3.4 Print Setup&Print...................................... 3.4 Marker(标记)功能区......................................... 3.4.1 Marker................................................. 3.4.2 Peak Search............................................ 3.4.3 Freq Count............................................. 3.4.4 Marker →.............................................. 4.测试步骤举例.......................................................

频谱分析仪的使用方法

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 1.1 频谱分析仪的原理 频谱分析仪是一台在一定频率范围内扫描接收的接收机,它的原理图如图1所示。 图1 频谱分析仪的原理框图

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数:

* HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA 在低增益模式下),一些则具有非常高的增益和宽围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率围测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。

相关主题
文本预览
相关文档 最新文档