当前位置:文档之家› 电力电子最后总结模板

电力电子最后总结模板

电力电子最后总结模板
电力电子最后总结模板

1、电力电子技术的应用领域主要有哪些?

①一般工业:各种交直流电动机的可控整流电源或直流斩波电源,软启动装置等,电化学工业中的直流电源,冶金工业中的加热电源、淬火电源直流电弧炉电源等;

②交通运输:电气机车中直流机车的整流装置、交流机车的变频装置,直流斩波器,车辆中的各种辅助电源等;

③电力系统:电力电子变流装置;

④电子装置用电源:高频开关电源、不间断电源等;

⑤家用电器:电力电子照明电源、变频空调器;

⑥其他:各种电子仪器的电源、各种新能源中的储能缓冲装置。

2、信息电子技术和电力电子技术的共同点和区别?

电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。

电力电子器件的制造技术和用于信息变换的电子器件制造技术的理论基础(都是基于半导体理论)是一样的,其大多数工艺了是相同的。特别是现代电力电子器件的制造大都使用集成电路制造工艺,采用微电子制造技术,许多设备都和微电子器件制造设备通用,这说明两者同根同源。电力电子电路和电子电路的许多分析方法也是一致的。

只是二者应用目的不同。前者用于信息处理,后者用于电力变换和控制。广义而言,电子电路中的功率放大和功率输出部分也可算做电力电子电路。在信息电子技术中,半导体器件既可处于放大状态,也可处于开关状态;而在电力电子技术中,为避免功率损耗过大,电力电子器件总在工作在开关状态,这成为电力电子技术区别于信息电子技术的一个重要特征。

3、直驱型变速恒频风电控制系统的工作原理。

此模型是背靠背双PWM的。control power是机侧的控制器,control gild conv 是网侧控制器。power control(wind turbine control)是风机控制器。

工作原理:首先检测到风机的转速θ和桨距角β通过 power control控制使转速θ达到*θ(*θ是最大风能时风机的转速)在基速以下时,β=0;在基速以上时,通过power control控制改变β的大小使恒功率输出。Control grid conv的作用:

保持直流电压Udc保持恒定;使输出的电压与电网相匹配;给电网以无功功率补偿;Diode rectifier 和boost converter作用:把机侧的电流进行整流后升压。

直驱式永磁同步电机风电系的结构图,带有连接发电机定子和电网的全功率背靠背变流器。发电机侧的AC/DC变流器通过调节定子侧的d轴和q轴电流,控制发电机的转矩和定子的无功功率( 无功设定值为0 ) ;网侧DC/AC变器通过调节网侧的d轴和q轴电流,控制直流侧压和流向电网的无功功率,实现有功和无功的解耦控制;直流侧卸荷负载用于电网发生故障时,消掉直流侧积累的多余能量,因此这种风机的电压落表现可以看成是变流器的电压跌落表现。

控制原理:发电机侧变流器的控制器为双环结构,包括转速外环和d、q轴电流内环,可控制发电机的电磁转矩和输出无功功率。模型以发电机转子磁通为参考坐标系,电压方程如下:

直驱式风电机组功率平衡控制

1、发电机输出功率为:

2、流过直流侧电容器的电流为:

3、网侧变换器从直流侧输入的功率为:

由1、3得:

变频电源交流励磁的双馈变速恒频风力发电系统

变频电源可以是交交变频器、交直

交PWM变频器和矩阵变换器。从图中可

知,双馈电机定子绕组接入工频电网,

转子绕组则由变频器提供频率、幅值、

相位可变的电源,实现发电机的交流励

磁,此时发电系统可根据风力机的转速

变化调节励磁电流的频率,实现恒频输

出。根据电机学知识,有:

式中为DFIG 定、

转子电流频率,n为DFIG 机械转速,p

为DFIG 极对数。由上式可知,当发电机转速变化时,调节转子励磁电流频率可保持定子输出电能频率恒定。

交流励磁双馈发电机的运行原理:交流励磁双馈发电机定子接入电网,转子绕组由频率、相位、幅值可调的电源供给三相低频励磁电流,在转子中形成一个低速旋转的磁场,这个磁场转速与转子的机械转速相加等于定子磁场同步速,从而发电机定子绕组中感应出同步转速的工频电压,当风速变化时转速随之变化,此时相应改变转子电流的频率和转子旋转磁场。

4、电力电子变换器在新能源领域中的应用。

光伏并网系统的结构框图如图1所示(控制电路为FPGA硬件电路)。该系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成,这两部分通过Dclink相连接。光伏阵列所发出的电能是直流电能,需要使用逆变器将直流电变换为交流电。系统通过控制DC-DC变换器的开关管的占空比来调节系统的工作点,继而转换Dclink 的直流电。Dclink的作用是连接DC-DC变换器和DC-AC逆变器,并实现功率传递。DC-AC逆变部分即由下文所述新型五电平逆变器完成。

设 Vdc=E,以直流电压源负端为参考点,输出uo有±2E、±E、0 五种电平,分别由五种开关组合状态来合成:当开关 S1、S4同时导通时,uo=2E;当开关 S4、S5同时导通时,uo=E;当开关 S2、S4同时导通时,或开关 S1、S3同时导通时,uo=0;当开关 S3、S5同时导通时,uo=?E;当开关 S2、S3同时导通时,uo=?2E。

控制方法的原理分析:

针对五开关五电平逆变器,该五电平拓扑的主开关 S1、S2PWM 信号的产生需要两个三角载波。从开关 S5的 PWM 信号的产生由 S1、S2的 PWM 信号决定,主开关 S3、S4的 PWM 信号由调制波正负切换产生,均无需三角载波。因此,该五电平逆变器的PWM控制只需两个三角载波。提出载波交错SPWM(CS-SPWM) 控制方法。

调制波为正弦波,两层三角载波 C1(虚线)、C2垂直分层分布,载波相位位置的自由度取为反相。CS-SPWM 以正弦调制波与两层三角载波进行分层、分区脉宽调制。在调制波的正半周期,正弦波与载波分层线的交点为 d3,点 d1、d2为正弦波对应于时间轴的交点。分层是指在垂直于时间轴方向,一个载波为一层,如图 2 中 d2与 d3之间为 C2的一个载波层。分区是指在时间轴方向,调制波在某一载波层的一个跨度,如图中 d1与 d2之间为调制波在 C2载波层的一个分区,调制波在每个载波层都有对应的分区。主开关 S1、S2的 PWM 信号由正弦波分别与载波 C1、C2相交产生,如图中的阴影部分为一个周期内主、从开关 S1~S5的导通状态分布,uo为CS-SPWM 控制的五电平电压输出?2E~2E。

调制波正半周期,在 uo=0~2E 的 PWM 电平段,主开关 S4一直导通,正弦波在 C2、C1载波层分层、分区脉宽调制,主开关 S2、S1分别以载波频率进行通断动作,从开关 S5分别跟随 S2、S1作同频率的互补通断动作,进而得到 0、E、2E 的三电平 PWM 输出电压波形,如图 2 所示。因为在输出电压整个周期?2E~2E 的五个PWM 电平段,频繁动作的主开关依次为 S2→S1→S2→S1,所以在正、负半周期内,载波从正区域交错到负区域后,载波 C1、C2的相对位置不变,正弦波与负半周期内的两个载波分层、分区调制的顺序符合主开关频繁动作的顺序,从而得到调制波负半周期的 0、?E、?2E 的三电平 PWM 输出电压波形。

模块“variable modulation sinusoidal”

实现正弦调制波幅值、频率给定和正、负

半周期交替信号S3、S4产生;模块

“carriers_staggered”实现载波层的给

定;模块“carriers_21mux”实现载波交

错,并与正弦波比较得到开关信号 S1、S2,

即得到从开关信号 S5。

传统五电平逆变器所用开关器件较多,而

五开关五电平逆变器简化了拓扑结构。逆变器的突出优点是在输出相同电平的条件下,电路结构和控制方法简单控制方式灵活、输出电压的谐波含量低、逆变效率高、适合于高压大功率输出等。

电力电子技术:是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。

SVPWM :SVPWM的主要思想是:以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM 波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。PWM:脉冲宽度调制(PWM),晶闸管工作在开关状态,晶闸管被触发导通时,电源电压加到电动机上;晶闸管关断时,直流电源与电动机断开;这样通过改变晶闸管的导通时间(即调占空比ton)就可以调节电机电压,从而进行调速。SPWM:正弦波脉宽调制,将正弦半波N等分,把每一等分的正弦曲线与横轴所包围的面积用一个与此面积相等的等高矩形脉冲来替代。三角波载波信号Ut与一组三相对称的正弦参考电压信号Ura、Urb、Urc比较后,产生的SPWM脉冲序列波Uda 、Udb、Udc作为逆变器功率开关器件的驱动控制信号。逆变器输出电压的基波正是调制时所要求的正弦波,调节正弦波参考信号的幅值和频率就可以调节SPWM逆变器输出电压的幅值和频率。

电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。分类:可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。风力发电的发展情况:1、几十千瓦→兆瓦级2、定桨距失速型→变桨距变速恒频型3、户用分布式→集中式大规模风电场

预计今后每年装机容量增长速度:5000MW

双馈型变速恒频风力发电: 发电机定子侧直接加在工频电网上,转子侧加变换器后再加载在电网上,风能的3/4能量是通过定子侧馈送到电网上,转子侧是馈送1/4的能量。转子侧除了馈送能量还起到调节控制捕获最大风能。

直驱型变速恒频风力发电:发电机的定子直接加在变换器然后再加到工频电网上,变换器是全功率的

动态功率平衡控制(双PWM 功率平衡控制): 1、正常情况下动态功率平衡; 2、电网电压跌落期间的动态功率平衡3、电网电压恢复期间的动态功率平衡; 4、转矩平衡控制

永磁直驱机组LVRT控制实现的几点要求:1、保护变流器;2、功率不平衡,通过措施使功率平衡。3、故障后功率变换器控制能快速恢复

恒速恒频系统:采用同步发电机或感应发电机,不论风速如何变化,系统通过一定的调节,保持风力机转速恒定,从而实现发电频率的恒定。这样,叶尖速比不可能总保持在最佳值,也就不能实现最大风能捕获,风能转换效率也就不高。除此之外,恒速恒频系统是一种刚性机电祸合系,当风速发生突变时,风力机的叶片将承受较大的扭应力和风力摩擦。为了保持机械转速恒定,巨大的风能还将通过叶片在风力机主轴、齿轮箱和电机等部件上产生很大的机械应力,增加了这些部件的疲劳损坏程度,缩短了使用寿命。

双PWM变流器工作原理:双PWM变流器由电机侧变流器和电网侧变流器构成,电机侧变流器实现对PMSG(永磁同步发电机)的控制,即有功无功的解耦控制和转速调节;电网侧变流器实现输出并网、输出有功无功的解耦控制和直流侧电压控制。图1为背靠背双P WM 四象限变流器的结构图.采用双DSP分别对电机侧变流器和电网侧变流器进行控制,并在2个DSP之间进行通讯以协调2个变流器之间的工作。直驱:永磁风力发电系统采用无刷永磁同步发电机的直驱风力发电系统省去了电刷、滑环和齿轮箱,因此减少了系统的维护费用并提高了系统的可靠性。基于双PWM变换器的永磁同步发电系统能够实现变速恒频发电运行并能实现并网有功功率和无功功率的独立控制,因此发电效率高,结构较为简单,运行稳定性好。变速风机驱动永磁同步发电机并网:此方案无需增速齿轮箱,从而减少了运行时的噪声及机械应力,大大缩减了传动损耗,降低了维护工作量,提高了运行的可靠性。系统通过风机直接驱动永磁同步发电机,所以无需励磁装置,减少了励磁损耗和滑环上的摩擦损耗。因永磁同步发电机输出为三相交流电,故须先整流得到直流电,再进一步去进行直直变换;整流得到的直流电不能直接输入升压斩波电路,而必须通过LC 滤波电路滤去高频分量,以减少对后续电路的干扰;最后通过DC/ AC三相逆变电路,并入电网。

风力发电意义:1、能源短缺,尤其优质能源短缺,已经成为制约我国经济发展的瓶颈。开发洁净无污染的后续能源已成为当务之急。2、在目前众多可再生能源与新能源技术开发中,最具规模化开发条件、潜力最大的就是风力发电。3、我国风能资源丰富,风力发电对缓解我国电能紧张,改善我国能源结构,有着极其广阔的发展前景。

坐标变换的基本原则:(1)保证变换前后电流所产生的旋转磁场等效;(2)保证变换前后等效的系统的电动机的功率不变。

闭环控制:电流内环的主要作用是按电压外环输出的电流指令进行电流控制,即实现单位功率因数正弦电流控制,电流内环不仅控制电流,而且也改善控制对象,对电流内环的电流指

令进行限幅,就可以达到过流保护的目的,电压外环的主要作用是控制VSR 直流侧电压跟随其给定值。电压外环的目的是控制风电并网逆变器的直流母线电压的稳定,稳定的直流电压不仅有利于发电机转子的控制,而且可以减少对网侧交流电流的干扰,提高电能质量,还有利于功率器件的耐压保护。

电流内环的设计

三相逆变器在dq 两相同步坐标系中的数学模型

采用前馈解耦控制,电流调节器采用PI 调节时,上式化简得:

上式表明:三相逆变器电流内环的解耦控制是基于前馈的控制算法实现的,即在各轴电流PI 调节结果中注入含有其他轴电流信息、对控制对象产生的耦合量大小相等、方向相反的分量。依据PWM 逆变器电流内环解耦控制原理图,在此基础上加上外环电压控制,就构成了三相电压型逆变器的双闭环控制系统原理图

电压外环稳定直流侧电压、电流内环实现并网电流跟踪电压波形的双闭环控制, 可以有效地改善有源逆变的动态响应及抗扰能力, 实现对逆变器的可靠稳定控制。

并网逆变器的前级机侧变流器没有控制直流母线电压,需要在网侧控制使直流母线电压恒定,故网侧变流器需要进行双闭环控制,分别是电压外环和电流内环,电压外环控制用以保持直流母线电压恒定,电流内环用以同步并网。网侧变流器控制框图

禁止无功补偿器:

TSMC与CMC相比:①具有优良的输入输出性能、输入功率因数固定、能量传输可逆、直流环节无需储能元件,结构紧凑;②电网侧开关可实现零电流换流,负载侧开关采用传统 DC/AC 逆变器换流方法,系统换流简单,降低了控制复杂性,提高了系统的可靠性;③在一定约束条件下,可以减少功率开关元件的数量;④逆变器可以利用成熟的空间矢量调制方法,进一步简化了控制。

TSMC的双SVM调制优点:(1)在理想输入情况下各PWM周期内直流平均电压为一恒值,从而免去了逆变级调制系数的修正,简化了逆变级的调制,在需要对逆变级进行闭环控制的场合,这种简化具有重要的意义;(2)输入功率因数角可调;(3)虽然与CMC的双空间矢量调制原理相同,但TSMC开关电路无需采用CMC的四步换流技术,整流级开关的零电流换流仍然可以实现。

双级矩阵变换器的拓扑结构:

18只单向开关的双级矩阵变换器电路:

5、仿真图

电力电子课程学习心得

前沿 在大二学习模电之后,这学期我们开始接触电力电子器件和多种变换器。其中包括直流变直流,无源逆变电路,整流和有源逆变电路,交流变交流电路,软开关变换器。电力电子技术(Power Electronics Technology)是研究电能变换原理及功率变换装置的综合性学科,包括电压、电流、频率和波形变换,涉及电子学、自动控制原理和计算机技术等学科。电力电子技术与信息电子技术的主要不同就是效率问题,对于信息处理电路来说,效率大于15%就可以接受,而对于电力电子技术而言,大功率装置效率低于85%还是无法忍受。目前能源问题已是我国面临的主要问题之一,提高电源变换效率是电力电子工程师主要任务. 电力电子器件及应用 电力电子器件特点:1.具有较大的耗散功率2.工作在开关状态3.需要专门驱动电路来控制4.需要缓冲和保护电路。我们在本章学习了功率二极管,场效应二极管,电力二极管,IGBT . 可控整流器与有源逆变器: 主要内容: 整流器的结构形式、工作原理,分析整流器的工作波形,整流器各参数的数学关系和设计方法;整流器工作在逆变状态时的工作原理、工作波形。变压器漏抗对整流器的影响、整流器带电动机负载时的机械特性、触发电路等内容。 学习重点包括: (1) 学习不同型式整流电路的工作原理,波形分析与数值计算、各种负载对 整流电路工作情况的影响。 (2) 变压器漏抗对整流电路的影响,重点建立换相压降、换相重叠角等概念, 并掌握相关的计算,熟悉漏抗对整流电路工作情况的影响。 (3) 掌握产生有源逆变的条件、逆变失败及最小逆变角的限制等。 (4) 熟悉锯齿波移相触发电路的原理,建立同步的概念,掌握同步电压信号的 选取方法。 交-交变换器: 主要内容: 晶闸管单相和三相交流调压器;全控型器件的交流斩波电路;交-交变频器;交-交(AC-AC)变换器的应用。 交流调压电路通常由晶闸管组成,用于调节输出电压的有效值。与常规的调压变压器相比,晶闸管交流调压器有体积小、重量轻的特点。其输出是交流电压,但它不是正弦波形,其谐波分量较大,功率因数也较低。 控制方法: (1) 通断控制。即把晶闸管作为开关,通过改变通断时间比值达到调压的目的。这种控制方式电路简单,功率因数高,适用于有较大时间常数的负载;缺点是输出电压或功率调节不平滑。 (2) 相位控制。它是使晶闸管在电源电压每一周期中、在选定的时刻将负载与电源接通,改变选定的时刻可达到调压的目的。 基本结构和工作原理

电力电子技术总结

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以 1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对 晶闸管电路的控制方式主要是相位控制方式,简称相控方式。4、70年代后期,以门极可关断晶闸管( GTO )、电力双极型晶体管( BJT )和电力场效应晶 体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路( PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:?主要是指晶闸管(Thyristor )及其大部分派生器件。 ?器件的关断完全是由其在主电路中承受的电压和电流决定的。◆全控型器件:?目前最常用的是 IGBT 和Power MOSFET 。 通态损耗断态损耗开关损耗 开通损耗关断损耗

?通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件:?电力二极管(Power Diode)?不能用控制信号来控制其通断。(2)按照驱动信号的性质 ◆电流驱动型:?通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 ?仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控 制。 (3)按照驱动信号的波形(电力二极管除外) ◆脉冲触发型 ?通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控 制。 ◆电平控制型 ?必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件 开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 肖特基二极管优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此, 其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点在于:当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此 多用于200V以下的低压场合;反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 5、晶闸管除门极触发外其他几种可能导通的情况 ◆阳极电压升高至相当高的数值造成雪崩效应◆阳极电压上升率du/dt过高 ◆结温较高◆光触发

电力电子技术知识点

(供学生平时课程学习、复习用,●为重点) 第一章绪论 1.电力电子技术:信息电子技术----信息处理,包括:模拟电子技术、数字电子技术 电力电子技术----电力的变换与控制 2. ●电力电子技术是实现电能转换和控制,能进行电压电流的变换、频率的变换及相 数的变换。 第二章电力电子器件 1.电力电子器件分类:不可控器件:电力二极管 可控器件:全控器件----门极可关断晶闸管GTO电力晶体管GTR 场效应管电力PMOSFET绝缘栅双极晶体管IGBT及其他器件 ☆半控器件----晶闸管●阳极A阴极K 门极G 2.晶闸管 1)●导通:当晶闸管承受正向电压时,仅在门极有触电电流的情况晶闸管才能开通。 ●关断:外加电压和外电路作用是流过晶闸管的电流降到接近于零 ●导通条件:晶闸管承受正向阳极电压,并在门极施加触发电流 ●维持导通条件:阳极电流大于维持电流 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才会开通。 当晶闸管导通,门极失去作用。 ●主要参数:额定电压、额定电流的计算,元件选择 第三章 ●整流电路 1.电路分类:单相----单相半波可控整流电路单相整流电路、桥式(全控、半控)、单相全波可控整流电路单相桥式(全控、半控)整流电路 三相----半波、●桥式(●全控、半控) 2.负载:电阻、电感、●电感+电阻、电容、●反电势 3.电路结构不同、负载不同●输出波形不同●电压计算公式不同

单相电路 1.●变压器的作用:变压、隔离、抑制高次谐波(三相、原副边星/三角形接法) 2.●不同负载下,整流输出电压波形特点 1)电阻电压、电流波形相同 2)电感电压电流不相同、电流不连续,存在续流问题 3)反电势停止导电角 3.●二极管的续流作用 1)防止整流输出电压下降 2)防止失控 4.●保持电流连续●串续流电抗器,●计算公式 5.电压、电流波形绘制,电压、电流参数计算公式 三相电路 1.共阴极接法、共阳极接法 2.触发角ā的确定 3.宽脉冲、双窄脉冲 4.●电压、电流波形绘制●电压、电流参数计算公式 5.变压器漏抗对整流电流的影响●换相重叠角产生原因计算方法 6.整流电路的谐波和功率因数 ●逆变电路 1.●逆变条件●电路极性●逆变波形 2.●逆变失败原因器件触发电路交流电源换向裕量 3.●防止逆变失败的措施 4.●最小逆变角的确定 触发电路 1.●触发电路组成 2.工作原理 3.触发电路定相 第四章逆变电路

基于Matlab的电力电子技术课程设计报告

《电力电子技术》 课程设计报告 题目:基于Matlab的电力电子技术 仿真分析 专业:电气工程及其自动化 班级:电气2班 学号:Z01114007 姓名:吴奇 指导教师:过希文 安徽大学电气工程与自动化学院 2015年 1 月7 日

中文题目 基于Matlab 的电力电子技术仿真分析 一、设计目的 (1)加深理解《电力电子技术》课程的基本理论; (2)掌握电力电子电路的一般设计方法,具备初步的独立设计能力; (3)学习Matlab 仿真软件及各模块参数的确定。 二、设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: (1)根据设计题目要求的指标,通过查阅有关资料分析其工作原理,设计电路原理图; (2)利用MATLAB 仿真软件绘制主电路结构模型图,设置相应的参数。 (3)用示波器模块观察和记录电源电压、控制信号、负载电压、电流的波形图。 三、设计内容 (1)设计一个降压变换器(Buck Chopper ),其输入电压为200V ,负载为阻感性带反电动势负载,电阻为2欧,电感为5mH ,反电动势为80V 。开关管采用IGBT ,驱动信号频率为1000Hz ,仿真时间设置为0.02s ,观察不同占空比下(25%、50%、75%)的驱动信号、负载电流、负载电压波形,并计算相应的电压、电流平均值。 然后,将负载反电动势改变为160V ,观察电流断续时的工作波形。(最大步长为5e-6,相对容忍率为1e-3,仿真解法器采用ode23tb ) (2)设计一个采用双极性调制的三相桥式逆变电路,主电路直流电源200V ,经由6只MOSFET 组成的桥式逆变电路与三相阻感性负载相连接,负载电阻为1欧,电感为5mH ,三角波频率为1000Hz ,调制度为0.7,试观察输入信号(载波、调制波)、与直流侧假想中点N ‘的三相电压Uun ’、Uvn ’、Uwn ’,输出线电压UV 以及负载侧相电压Uun 的波形。 四、设计方案 实验1:降压变换器 dc-dc 变流电路可以将直流电变成另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。其中,直接直流变流电路又称为斩波电路,功能是将直流电变为另一直流电。本次实验主要是在Matlab 中设计一个降压斩波电路并仿真在所给条件下的波形和数值与理论计算相对比。降压斩波电路原理图如下所示,该电路使用一个全控型器件V ,这里用IGBT ,也可采用其他器件,例如晶闸管,若采用晶闸管,还需设置使晶闸管关断的辅助电路。为在V 关断时给负载中电感电流提供通道,设置了续流二极管VD 。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,后两种情况下负载中均会出现反电动势,图中用m E 表示。若无反电动势,只需令0m E ,以下的分析和表达式中均适用。

电力电子总结完美版

一、填空题 1、对SCR 、TRIAC 、GTO 、GTR 、Power MOSFET 、这六种电力电子器件,其中要用交流 电压相位控制的有SCR TRIAC 。可以用PWM 控制的有GTO GTR Power MOSFET IGBT;要用电流驱动的有SCR TRIAC GTO GTR (准确地讲SCR 、TRIAC 为电流触发型 器件),要用电压驱动的有Power MOSFET IGBT ;其中工作频率最高的一个是Power MOSFET ,功率容量最大的两个器件是SCR GTR;属于单极性的是Power MOSFET;可能发生 二次击穿的器件是GTR,可能会发生擎住效应的器件是IGBT ;属于多元集成结构的是Power MOSFET IGBT GTO GTR 。 2、SCR 导通原理可以用双晶体管模型来解释,其触发导通条件是阳极加正电压并且门极有触发电流,其关断条件是阳极电流小于维持电流。 3、GTO 要用门极负脉冲电流关断,其关断增益定义为最大可关断阳极电流与门极负脉冲电流最大值的比即off β=ATO GM I I ,其值约为5左右,其关断时会出现特殊的拖尾 电流。 4、Power MOSFET 通态电阻为正温度系数;其定义式为= |DS DS U GS I ≥0,比较特殊的是器件体内有寄生的反向二极管,此外,应防止其栅源极间发生擎住效应。 5、电力二极管额定电流是指最大工频正弦半波波形条件下测得值,对于应用于高频电力电子电路的电力二极管要用快恢复型二极管,但要求其反向恢复特性要软。 6、在电力电子电路中,半导体器件总是工作在开关状态,分析这类电路可以用理想开关等效电路;电力电子技术的基础是电力电子器件制造技术,追求的目标是高效地处理电力。 7、硬开关电路的电力电子器件在换流过程中会产生较大的开关损耗,主要原因是其电压波形与电流波形发生重叠,为了解决该缺陷,最好使电力电子器件工作在零电压开通,零电流关断状态;也可采用由无源元件构成的缓冲技术,但它们一般是有损耗 的。 8、电力电子电路对功率因数的定义与线性电路理论的定义在本质上的差别是有基波因数。 9、交流调压电路采用由两个SCR 反并联接法组成交流开关作为控制,若交流电路的大感性 负载阻抗角为80度,则SCR 开通角的移相范围80度到180度。 10、SCR 三相全控变流电路带直流电动机负载时,其处于整流状态时触发角应满足小于90度 条件;其处于有源逆变状态时触发角应满足大于90度 条件;SCR 的换流方式都为电网 换流。 11、有源逆变与无源逆变的差异是交流侧接在电网上还是接在负载上;加有续流二极管的任何整流电路都不能实现有源逆变的原因是负载被二极管短路不能产生负电压。逆变角的定义是α>90度时的控制角βπα=- 12、电压源逆变器的输出电压是交流方 波;其逆变桥各臂都要反并联 二极管。 13、SPWM 的全部中文意思是正弦脉冲宽度调制,这种技术可以控制输出交流的大小;产 生SPWM 波的模拟法用自然采样法。而计算机则采用规则采样法。 14、单端正激式DC/DC 变换电路要求在变压器上附加一个复位 绕组,构成磁复位 电路; 反激式DC/DC 变换电路与Buck-Boost 直流斩波器类似。 15、肖特基二极管具有工作频率高 ,耐压低 的应用特点。肖特基二极管具有反向恢复时间短,正向压降小,耐压低,效率高等特点。 16、GTR 关断是工作点应在 截止 区,导通时工作点应在 饱和 区;它有可能因存在 二 次击穿而永久失效的缺陷。

电力电子技术重点王兆安第五版打印版

第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 (2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET 和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP 和V2-NPN两个晶体管。 晶闸管的导通工作原理 (1)当AK间加正向电压A E,晶闸管不能导通,主要是中间存在反向PN结。 (2)当GK间加正向电压G E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。 (3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。 (4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。 2.3.1.4.3 晶闸管是半控型器件的原因 (1)晶闸管导通后撤掉外部门极电流G I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。 (2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。 2.3.1.4.4 晶闸管的关断工作原理 满足下面条件,晶闸管才能关断: (1)去掉AK间正向电压; (2)AK间加反向电压; (3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。 2.3.2.1.1 晶闸管正常工作时的静态特性 (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 2.4.1.1 GTO的结构 (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。 2.4.1.2 GTO的静态特性 (1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当GTO承受正向电压时,仅在门极有触发电流的情

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

电力电子技术总结

电力电子技术总结标准化管理部编码-[99968T-6889628-J68568-1689N]

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。 4、70年代后期,以门极可关断晶闸管(GTO )、电力双极型晶体管(BJT )和电力场效应晶体管(Power-MOSFET )为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC )。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器 2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:主要是指晶闸管(Thyristor )及其大部分派生器件。 器件的关断完全是由其在主电路中承受的电压和电流决定的。 ◆全控型器件:目前最常用的是 IGBT 和Power MOSFET 。 通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件: 电力二极管(Power Diode ) 不能用控制信号来控制其通断。 (2)按照驱动信号的性质 ◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。 (3)按照驱动信号的波形(电力二极管除外 ) ◆脉冲触发型 通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。 ◆电平控制型 必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在导通状态或者关断并维持在阻断状态。 4、几种常用的电力二极管:普通二极管、快恢复二极管、肖特基二极管 通态损耗 断态损耗 开关损耗 开通损耗 关断损耗

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子技术第二章总结

2016 电力电子技术 作业:第二章总结 班级:XXXXXX学号:XXXXXXX姓名:XXXXXX

第二章电力电子器件总结 1.概述 不可控器件——电力二极管(Power Diode) GPD FRD SBD 半控型器件——晶闸管(Thyristor) FST TRIAC LTT 典型全控型器件GTO GTR MOSFET IGBT 其他新型电力电子器件MCT SIT SITH IGCT 功率集成电路与集成电力电子模块HVIC SPIC IPM 1.1相关概念 主电路(Main Power Circuit):在电气设备或电力系统中,直接承担电能的变换或控制任务的电路? 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件? 1.2特点 电功率大,一般都远大于处理信息的电子器件? 一般都工作在开关状态? 由信息电子电路来控制,而且需要驱动电路(主要对控制信号进行放大)? 功率损耗大,工作时一般都需要安装散热器? 通态损耗,断态损耗,开关损耗(开通损耗关断损耗) 开关频率较高时,可能成为器件功率损耗的主要因素? 电力电子器件在实际应用中的系统组成 一般是由控制电路?驱动电路和以电力电子器件为核心的主电路组成一个系统? 关键词电力电子系统电气隔离检测电路保护电路三个端子 1.3电力电子器件的分类 按能够被控制电路信号控制的程度不同可分为半控型器件(开通可控,关断不可控) 全控型器件(开通,关断都可控) 不可控器件(开通,关断都不可控) 按照驱动信号的性质不同可分为电流驱动型电压驱动型 按照驱动信号的波形(电力二极管除外)不同可分为脉冲触发型电平控制型 按照载流子参与导电的情况不同可分为单极型器件(由一种载流子参与导电) 双极型器件(由电子和空穴两种载流子参与导电)复合型器件(由单极型器件和双极型器件集成混合而成,也称混合型器件) 关键词控制的程度驱动信号的性质?波形载流子参与导电的情况工作原理基本特性主要参数2不可控器件——电力二极管(Power Diode) 2.1结构与工作原理 电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的? PN节(PN junction):采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结? N型半导体(N为Negative的字头,由于电子带负电荷而得此名):即自由电子浓度远大于空穴浓度的杂质半导体? P型半导体(P为Positive的字头,由于空穴带正电而得此名):即空穴浓度远大于自由电子浓度的杂质半导体? 正向电流IF :当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流? 反向截止状态:当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过的状态? 反向击穿:PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN 结反向偏置为截止的工作状态?雪崩击穿齐纳击穿(可以恢复) 热击穿(不可恢复) P-i-N结构

电力电子技术复习要点

电力电子技术复习要点 第一章 电力电子器件及其应用 一、一般性概念 1、什么是场控(电压控制)器件、什么是电流控制器件?什么是半控型器件?什么是全控型器件?什么是复合器件? 2、波形系数的概念,如何利用波形计算相关的平均值、有效值 3、什么是器件的安全工作区,有何用途? 4、什么是器件的开通、关断时间,器件开关速度对电路工作有何影响? 二、二极管 1、常用二极管有哪些类型?各有什么特点? 2、二极管额定电流、额定电压的概念,如何利用波形系数选择二极管额定电流? 三、晶闸管 1、晶闸管的开通、关断条件、维持导通的条件 2、维持电流、擎住电流的概念 3、晶闸管额定电流、额定电压的概念,如何利用波形系数选择晶闸管额定电流? 四、GTR 1、GTR 如何控制工作? 2、GTR 正常工作对控制电流有何要求?为什么? 3、GTR 的安全工作区有何特别?什么是二次击穿现象,有何危害? 4、GTR 额定电流、额定电压的概念,如何利用波形系数选择GTR 额定电流? 五、MOSTFET 、IGBT 1、MOSTFET 、IGBT 如何控制工作? 2、MOSTFET 、IGBT 正常工作对控制电压有何要求?为什么? 3、MOSTFET 、IGBT 额定电流、额定电压的概念,如何利用波形系数选择MOSTFET 、IGBT 管额定电流? 六、如何设计RCD 缓冲电路的参数?各个约束条件的含义?如果增加m ax dt dU 、 瞬态冲击电流I max 限制,其约束条件如何表达?

第二章直流―直流变换电路 一、基本分析基础 1、电路稳态工作时,一个周期电容充放电平衡原理 2、电路稳态工作时,一个周期电感伏秒平衡原理 3、电路稳态工作时,小纹波近似原理 二、Buck、Boost、Buck-Boost、Flyback、Forward电路 1、电感电流连续时,电路稳态工作波形分析 2、利用工作波形分析计算输入输出关系 3、开关元件(VT、VD)的峰值电流、额定电流、承受的电压如何计算? 4、输出纹波如何计算? 第三章直流-交流变换电路 一、单相方波逆变电路 1、单相方波逆变电路控制规律、工作波形分析 2、利用波形分析计算单相方波逆变电路输入电流、电压、功率和输出的电流、 电压、功率 3、单相方波逆变电路移相调压、矩形波调制调压的原理 二、单相SPWM逆变 1、SPWM调制的原理 2、自然采样法、规则采样法、同步调制、异步调制、分段同步调制、幅度调制 比、载波比(频率调制比)的概念 3、桥式电路双极性SPWM逆变的控制方法、输入输出电压关系、如何实现输出 基波的调频调压 4、桥式电路单极性倍频SPWM逆变的控制方法、输入输出电压关系、如何实现 输出基波的调频调压 三、三相逆变 1、三相方波逆变的控制原理、纯电阻负载工作波形分析 2、三相方波逆变纯电阻负载输入、输出的电流、电压、功率计算 3、三相SPWM逆变的控制原理,纯电阻负载工作波形分析

化工原理重要公式(总结精选)

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μ τ= 静力学方程 g z p g z p 22 11 +=+ρρ 机械能守恒式 f e h u g z p h u g z p +++=+++2 222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 232d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η 最大允许安装高度 100][-∑--= f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体)(饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+

恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑= V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μ ρρ18)(2 g d u p p t -=, 2Re

电力电子技术课程设计报告

电力电子技术课程设计 报告书 专业班级:16电气2班 姓名:王浩淞 学号:2016330301054 指导教师:雷美珍

目录 1、webench电路设计 1.1设计任务要求 输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析 图1.3.1主电路原理图 图1.3.2元器件参数 图1.3.3额定负载时工作值

图1.3.4输出电流和系统效率间的关系 如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。 1.3主芯片介绍 TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。 1.4电气仿真结果分析

图1.4.1启动仿真图1.4.2稳态仿真 图1.4.3暂态仿真图1.4.4 负载暂态仿真 二、基于电力系统工具箱的电力电子电路仿真 2.1 设计要求和方案分析 本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。Boost升压斩波主电路部分拖动带反电动势的电阻,模拟显示中的一般负载,若实际负载中没有反电动势,只需令其为零即可。负载为主电路部分提供脉冲信号,控制全控器件IGBT的导通和关断,实现整个系统的运行。在Simulink中完成各个功能模块的绘制后,即可进行仿真和调试,用Simulink 提供的示波器观察波形,进行相应的电压和电流等的计算,最后进行总结,完成整个Boost 变换器的研究与设计。 2.2 simulink仿真模型分析 电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。电路设计好后主电路中的电感电容值已确定,此时只要调节触发波形的占空比即可调节Boost Chopper输出电压。占空比越大,Boost Chopper的输出电压值

电力电子技术总结完整版

电力电子技术总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。 2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。 3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。 4、70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。 5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。 6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC)。 第二章 1、电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制 ,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器

2、电力电子器件的功率损耗 3、电力电子器件的分类 (1)按照能够被控制电路信号所控制的程度 ◆半控型器件:主要是指晶闸管(Thyristor )及其大部分派生器件。 器件的关断完全是由其在主电路中承受的电压和电流决定的。 ◆全控型器件:目前最常用的是 IGBT 和Power MOSFET 。 通过控制信号既可以控制其导通,又可以控制其关断。 ◆不可控器件: 电力二极管(Power Diode ) 不能用控制信号来控制其通断。 (2)按照驱动信号的性质 ◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。 ◆电压驱动型 通态损耗 断态损耗 开关损耗 开通损耗 关断损耗

电力电子技术的重要作用

1 电力电子技术的重要作用 电力电子是国民经济和国家安全领域的重要支撑技术。它是工业化和信息化融合的重要手段,它将各种能源高效率地变换成为高质量的电能,将电子信息技术和传统产业相融合的有效技术途径。同时,还是实现节能环保和提高人民生活质量的重要技术手段,在执行当前国家节能减排、发展新能源、实现低碳经济的基本国策中起着重要的作用。 电力电子器件在电力电子技术领域的应用和市场中起着决定性的作用,是节能减排、可再生能源产业的“绿色的芯”。电力电子半导体器件是伴随着以硅为基础的微电子技术一起发展的。在上世纪五十到六十年代,微电子的基本技术得到了完善,而功率晶体管和晶闸管则主导了电能变换的应用。从七十年代到八十年代,功率MOS技术得到了迅速发展并在很大程度上取代了功率晶体管。基于MOS技术的IGBT器件开始出现,并研发出CoolMOS。九十年代初以后,主要的研发力量集中在对IGBT器件性能的提高和完善。到了本世纪初,经过了若干代的连续发展,以德国英飞凌、瑞士ABB、美国国际整流器公司(IR)、日本东芝和富士等大公司为代表的电力电子器件产业已经拥有了趋于完美的IGBT技术,产品的电压覆盖300V到6.5kV范围。 电力电子器件与相关技术包括: (1)功率二极管; (2)晶闸管; (3)电力晶体管; (4)功率场效应晶体管(MOSFET); (5)绝缘栅双极型晶体管(IGBT); (6)复合型电力电子器件; (7)电力电子智能模块(IPM)和功率集成芯片(Power IC); (8)碳化硅和氮化镓功率器件; (9)功率无源元件; (10)功率模块的封装技术、热管技术; (11)串并联、驱动、保护技术。 2 电力电子技术发展现状和趋势 2.1电力电子器件发展现状和趋势 电力电子器件产业发展的主要方向: (1)高频化、集成化、标准模块化、智能化、大功率化; (2)新型电力电子器件结构:CoolMOS,新型IGBT ; (3)新型半导体材料的电力电子器件:碳化硅、氮化镓电力电子器件。 2.2 电力电子装置、应用的现状和趋势 (1)在新能源和电力系统中的应用 电力系统是电力电子技术应用中最重要和最有潜力的市场领域,电力电子技术在电能的发生、输送、分配和使用的全过程都得到了广泛而重要的应用。从用电角度来说,要利用电力电子技术进行节能技术改造,提高用电效率;从发、输配电角度来说,必须利用电力电子技术提高发电效率和提高输配电质量。 (2)在轨道交通和电动汽车中的应用 电力电子技术在轨道交通牵引系统中的应用主要分为三个方面:主传动系统、辅助传动系统、控制与辅助系统中的稳压电源。在电力电子技术的带动下,电传动系统由直流传动走向现代交流传动。电力电子器件容量和性能的提高、封装形式

电力电子器件大全及使用方法

第1章电力电子器件 主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。 重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。 难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。 基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。 1 电力电子器件概述 (1)电力电子器件的概念和特征 主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路; 电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件; 广义上电力电子器件可分为电真空器件和半导体器件两类。 两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件所采用的主要材料仍然是硅。 同处理信息的电子器件相比,电力电子器件的一般特征: a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;

相关主题
文本预览
相关文档 最新文档