当前位置:文档之家› 超级电容器用有机电解液的研究

超级电容器用有机电解液的研究

超级电容器用有机电解液的研究
超级电容器用有机电解液的研究

超级电容器用有机电解液的研究

摘要:介绍了一种有机电解液体系活性碳基超级电容器的制作过程,对比研究了6种不同的有机电解液,并组装成超级电容器,测试了其电化学性能。结果表明:EhNBF4/PC体系适合作为超级电容器的电解液;LiPF6/PC、LiPF6/EC+PC体系因发生分解反应,不适宜用于超级电容器。

关键词:超级电容器双电层电容器有机电解液活性碳

超级电容器(Supereapaeltor)以其大功率、长寿命、环保、高效等特点HI3 J在电子工业领域初广泛应用。高比表面积的活性碳具有吸附性能优异、电极结构灵活等特点,在超级电容器工业化进程中被广泛使用。有机电解液对超级电容器的容量、内阻、温度特性等性能有着重要影响E2J。本文作者对超级电容器的制作进行介绍的同时,对6种有机电解液用于超级电容器的性能也进行了考察。

1、实验

1.1 活性碳物理性能测试

对电极原料的活性碳进行了物理性能参数测试。比表面积与孔径分布测试采用

ASAP2010型测试仪,吸附质为77 K N2;粒度测试采用马尔文激光粒度测试仪;振实密度测试采用Quanta Chrome型测试仪,按照GB/T 5162-1985标准进行测试。

1.2 电解液物理性能测试

选用了6种电解液(浓度均为1 tool/L)进行对比测试,分别标记为E1一E6电解液,其具体成分如表1所示。

用DDS-11C型数字式电导仪测试不同温度下电解液的电导率,温度范围为一20一60℃。用Netzaeh-Tase-414/4型热分析仪测试电解液的热稳定性,温度范围为25—350℃,升温速率为5℃/min,N2气氛保护。

1.3 超级电容器的组装

按照质量比80:10:10称取活性碳、乙炔黑和粘结剂PTFE(聚四氟乙烯),干混后加入适量的水,用搅拌器搅拌3 h,调节粘度至6.5~7.0 kPa·s。把浆料用极片涂布机均匀涂覆于厚度为20 tim的铝箔集流体上,双面极片厚度控制在240tim。将极片按照

35 mm×62 mm规格分切,叠片,组装成超级电容器。外包装为锂离子电池用铝箔袋,隔离膜为接枝聚丙烯膜。

1.4 电化学性能测试

使用美国MC.4型超级电容器测试仪进行不同温度下的恒流充放电性能测试,测试电流为1 A,电压范围为0~2.8 V。使用Zahner IM6型电化学工作站测试交流阻抗谱,以确定超级电容器的直流内阻,频率范围为5 kHz~0.1 Hz。

1.5 气相色谱分析

使用Agilent.7093型气相色谱仪对恒电流测试中的分解气体进行了测试分析。测试方法为:抽取1 m1分解气体,打人毛细柱中进行分流测试,分流比为12.6:1,柱口温度为240℃。炉温为300℃。

2、结果和讨论

2.1 活性碳的物理性能

SUP-AC活性碳的粒度为4.8 pan,比表面积为1 660 m2/g,在总孔容(0.85 cm3/g)中,微孔占62%,中孔占24%。

2.2 电解液的物理性能

图1为不同温度下测试的电解液电导率曲线。电解液的电导率大小直接影响超级电容器的内阻.在不同温度下内阻的变化,对电容器的温度特性有显著影响。

从图1中可以看出:随着温度升高,电解液的电导率增大;E3电解液电导率性能最优,常温电导率为1.15 S/m,高低温性能优良;E5电解液电导率性能最差,常温电导率仅为0.57 S/m,60℃时电导率为1.09 S/m。作为超级电容器的电解液,在一定的温度范围内要保持其热稳定性。图2为6种电解液的热重(TG)分析和差热(DSC)分析。从图2中曲线可以看出:E1电解液有3个明显放热峰,峰1~峰3分别为DMC(沸点90 ℃)、EMC (沸点110 ℃)、EC(沸点248℃)的挥发峰;峰I的起始温度(60℃)较低,超级电容器长时间大电流充放电时,内部温度会较高,致使电解液挥发、内阻增大等;峰2的最高点温度为180 ℃,远远高于EMC的沸点I10 。这是因为存在EMC转变为DEC和DMC的可逆反应HJ。E2电解液的4个挥发峰按温度顺序依次为DMc、EMC、GBL(沸点202℃)、EC。由于DMc的存在,电解液依然在60℃开始有少量挥发。E3电解液的吸热峰峰1为溶剂PC(沸点241 ℃)的挥发峰,放热峰峰2为电解质Et4NBF4的分解峰,发生温度为312℃;E3电解液在100℃以下几乎没有热敏感现象发生,性能稳定。E4电解液热稳定性较差,从50 ℃开始一直伴随有热失重现象。E5和E6电解液在100 ℃左右都有一个微小的阶跃峰,这可能是由于其中的电解质LiPF6在水分含量较高时发生分解所致;250 ℃左右的吸热峰分别为溶剂PC、PC/EC的挥发峰。

2.3 电化学性能测试

采用不同电解液装配超级电容器,成品尺寸为3.8 mm×62.0mm×35.0 mm,总质量为12.6 g。在可控温度箱中,对组装的超级电容器进行不同温度下的恒电流充放电测试,结果如图3a所示;测量超级电容器的交流阻抗图谱以获得等效直流内阻,结果如图3b所示。从图3a可以看出:在一20~25 的低温区,随着温度的升高,电解液的容量增加;在25~60的高温区,随着温度的升高,电解液的容量降低;E3电解液体系的容量最高,25℃时为57 F,低温性能也较好。从图3b可以看出:随着温度的升高,电解液的等效直流内阻减小;E3电解液体系的内阻相对最小,25℃时为0.20。超级电容器双电层原理中的离子吸附贮电过程对热敏感,吸附反应是一个吸热过程。当温度升高时,离子活性增加,不利于稳定吸附反应的发生,同等面积上吸附的电荷量减少,容量降低;当温度降低时,有利于吸附过程发生,同等面积上吸附的电荷量增加,容量增加。另一方面,当温度升高时,电解液的离子电导率升高,内阻减小,由于内阻消耗的电压减小,可供贮能的电压范围变宽,容量增加;当温度降低时,电解液的离子电导率降低,内阻增大,可供贮能的电压范围变窄,容量减少。温度的变化对超级电容器的容量和内阻有着双重影响。从本实验的测试数据来看,温度对吸附过程的影响占据主导地位,是影响超级电容器容量的主要因素;温度变化引起的内阻变化部分,对容量增减的影响相对较小。

2.4 气相色谱分析

在恒电流充放电的测试过程中,发现E5和E6电解液体系有鼓气现象,内部分解的气体量随时间而逐渐增加。为了解气体分解的原因,选取E5电解液体系样品,进行气相色谱测试,结果如图4所示。从图4可以看到:在45.72 S的位置有一个向下的负峰,这是H2的典型特征峰,占总气体的0.122%;气体中含量最多的两种气体是CO2与CO,分别占58%与39%。这是因为:PC溶剂分子与EC溶剂分子在Li 的参与下,会在活性碳颗粒微晶边缘处发生不可逆的氧化还原反应,不但造成气体的产生,而且由于可吸附面积的不断减少,容量产生衰减。

3、结论

a.对电解液的电导率与TG-DSC分析表明:E3电解液具有较高的电导率与热稳定性,这个结果在电化学性能的测试中得到了验证。

b.对6种电解液的电化学性能测试表明:在其他组分不变的情下,温度对吸附过程的影响占据主导地位,对超级电容器的容量变化有很大影响。

C.比较来看,E3电解液比较适合用作超级电容器有机电解液,E1、E2、E4电解液体系在活性碳表面吸附容量较小。E5、E6电解液体系存在明显的溶剂分解反应。

超级电容器的电解液常用配方

日清纺的电解液——“离子性液体”是一种常温下也能保持液态的有机盐,其中阳离子为DEME (diethyl-methyl 2-ethoxyethyl ammonium)、阴离子为BF4(tetrafluoroborate,四氟硼酸根)。由于不需要溶媒,因此就能形成浓度高达3molL的高浓度溶液,耐压很高(约6V),因此易于提高电容器的电容量。普通的有机盐由于在常温下是固体,因此必须溶于有机溶媒,离子浓度提高幅度有限

另一方面,日本无线的充放电控制电路是一种串连多个单元时,可使各单元间的电压不稳定性(非平衡电压)趋于均匀的技术。具体来说就是,通过将电荷由电压高于整个模块平均值的单元移到低电压单元,使各单元电压始终保持一定值。非平衡电压由于会产生单元过充电和极性反转等现象,有可能降低单元特性。如果能始终保持一定的电压,就能通过大电流进行充放电,故而有助于提高功率。

日清纺于2003秋发布了使用离子性液体的电双层电容器单元和模块样品。单元方面,电压为2.7V,容量分别为250、500、1000、2000。容量为1000F的样品,能量密度为5.9Whkg(7.2WhL),功率密度达2800Wkg(3400WL)(充电率为70%时)

电解电容器基本知识试题.doc

深圳市青佺电子有限公司 电容器基本知识试卷 單位﹕ 姓名﹕ 分數﹕ 一﹑选择题(请把正确答案之序号填在前面之括号内)(答案每题不一定为一个/每题2.5分) ( )1.本公司生产之电容器为﹕ A.铝质电容器 B.铝质电解电容器 C.电容 D.电解电容器 ( )2.电容器能贮存( ) A.电荷 B.能量 C.质量 D.负荷 ( )3.表征电容器贮存电量之能力﹐称为此电容器之 A.容量 B.能量 C.质量 D.电荷 ( )其一般表示单位为﹕ A. 法拉第(F ) B. 法拉(F ) C.安培 D.伏特 ( )4.电路中表征电解电容器之组件符号﹕ A. B. C. D. ( )5.本公司生产之电容器﹐其正箔由( )组成 A.铝箔且表面有一曾致密的氧化膜 B.铁箔 C.两者皆可 ( )6.电容器真正之负极为﹕( ) A.导针 B.铝箔 C.电解液 D.电解纸 ( )7.本公司生产之电容器之构造: A.电解液 电解纸 正负导针 正负铝箔 B.电解液 电解纸 铝壳 胶盖 胶管 C. E/L 电解液 铝壳 胶盖 胶管 D. E/L 胶盖 胶管 铝壳 ( )8.正箔表面有一层氧化膜﹐它的作用是﹕ A.绝缘 B.非绝缘 C.导体 ( ) 9.电解纸之作用﹕ A.吸收电解液避免正负箔直接接触 B.隔绝正负箔 C.导电 ( ) 10.法拉第定律为﹕ A.d s C ∑= B. s d C ∑= C. s d c C ??= ( ) 11.电容器之电容量与两极间的相对面积成﹕ A.反比 B.正比 C.比例 ( )13.电解电容器中两极间的距离指﹕ A.电解纸之厚度 B.氧化皮膜之厚度 C.电解纸与氧化皮膜厚度之和 ( )14.电解电容器之三大特性分别为﹕ A.静电容量 损失角 泄漏电流 B.阻抗 静电容量 泄漏电流 C.静电容量 损失角 阻抗 ( )15. 计算损失角之公式为(低频下)﹕ A.DF=fCR π2 B.DF=fCV π2 C.DF= CR π2 ( )16.漏电流之单位﹕ A.V B. μA C.?

铝电解电容器技术应用及发展研究

铝电解电容器技术应用及发展研究 发表时间:2018-09-28T11:19:33.707Z 来源:《防护工程》2018年第10期作者:朱朋勇 [导读] 近年来铝电解电容器产业逐渐向中国内地集中,国内市场有向中高端市场发展的态势,可能会使得我国对高端产品的进口力度有所减弱,贸易逆差会逐渐缩小。 新疆众和股份有限公司电极箔公司新疆 830013 摘要:随着国内铝电解电容器厂商技术的不断进步,其产品与国外产品的性能差距也正在逐步缩小。近年来铝电解电容器产业逐渐向中国内地集中,国内市场有向中高端市场发展的态势,可能会使得我国对高端产品的进口力度有所减弱,贸易逆差会逐渐缩小。 关键词:铝电解电容器;技术应用;发展趋势 引言 根据调研机构对我国整个电容器行业的销售与GDP增长情况进行比对发现,我国电容器行业的销售呈现一定的波动性,但其整体的波动趋势仍与GDP的增长呈正相关。铝电解电容器作为电容器产品的一种,宏观经济形势在很大程度上影响厂行业的发展,这种影响力主要体现在原材料价格和市场需求两大方面。当前的国际形势继续发生深刻复杂变化,世界经济中的不确定因素仍然较多,中国经济增长也面临各种不利因素,这种经济的不确定性给我国铝电解电容器产品的需求构成不利,影响行业未来的发展 一、铝电解电容器的关键技术 1、片式化技术 片式化技术是铝电解电容器领域发展中的关键技术之一,在该技术领域的研究与开发方面较为活跃。在各种不同的片式化电子元件中,开发技术难度最大的就是铝电解电容器的片式化技术,但是片式化的铝电解电容器具有容量大、电容量温度稳定、适合表面组装等优点,并且价格低廉,因此正在逐步取代传统的铝电解电容器,在电子领域内被大范围使用。近年来,随着人们对计算机和数码相机等电子产品的需求不断增加,片式铝电解电容器成为了近几年电容器领域内最值得开发的产品,其片式技术的发展空间较大。但是,当前我国的铝电解电容器片式化技术相对落后,片式化铝电解电容器的生产厂家较少,生产能力相对不足。 2、电解质固体化技术 当前,电解质固体化技术是铝电解电容器技术发展的重要方向。由于固体电解质具有稳定性高、高频低阻抗特性极好、寿命较长、温度特性好、工作温度范围广、耐反向电压力能力强等优点,因此,铝电解电容器技术中的电解质固体化技术被认为是实现大幅度提高铝电解电容器性能和铝电解电容器SMD化的关键技术之一。目前,在铝电解电容器中普遍使用的是液体电解质,其对阀金属表面生成的A1203氧化膜介质层具有自行修复的作用,这就容易导致液体电解质的铝电解电容器进入失效模式。一般来说,铝电解电容器常见的失效模式为短路失效,该模式的发生具有一定随机性,可能导致整个机组电性能的稳定性下降。总之,随着科学技术的不断发展,电解质固体化技术问题的研究也在不断深化。 3、高比容电极的制造技术 高比容电极的制造技术是提高铝电解电容器比率电容量、进一步缩小电容器体积的关键技术。近几年,国内外高比容电极制造的主要研究方向有高比容、高效能化成工艺的开发,高比容电蚀工艺的开发以及低容量衰减率工艺的开发等。目前来说,由于中低压铝电解电容器采用的阳极箔的实际扩面倍率和理论的扩面倍率相差较大,因此提高其工艺技术的空间较大,特别是在高比容电蚀工艺的开发领域、加强光箔的质量控制以及对电蚀前预处理的工艺进行改进等方面非常值得业内人士关注。另外,当前部分国家采用电化学腐蚀的方法让铝箔的扩面工程不断向纳米级靠近,但是在工业领域内,其扩面倍率的提升速度相对较慢,且工艺的研究需要进一步深入以取得突破。 二、铝电解电容器技术的发展趋势 1、缩小体积,扁平化 近十年来,低、中、高压化成铝箔的比容分别提高了50%以上,为缩小体积、降低成本创造了条件,而化成箔强度的提高为电容器扁平化、整机薄型化创造了条件。高比容、高强度是电容器主要原材料——化成铝箔今后发展的技术趋势。 2、低阻抗、耐大纹波电流、长寿命化 随着高电导率材料、离子液体等开发,电解质的电导率不断地提高;新型电解电容器纸的密度、阻抗不断降低;电容器耐高温密封新材料(如丁基橡胶IIR新型橡胶塞)的出现,电容器在低阻抗、耐大纹波、长寿命方面的性能大大改善。低、中、高压在高温(105℃)状态下,已经有了万小时级的产品出现,欧、美电容器制造业能保留并生存的原因主要就是大大改善了电容器在这方面的性能,不断满足了各个工业领域的高技术需求。 3、上限工作温度、寿命迅速提高 根据汽车电子发展的需求,上限工作温度125℃的电容器的寿命已从传统工艺1000~2000h迅速提升到3000~5000h;上限工作温度150℃,寿命1000-2000h的铝电解电容器也已产品化,随着汽车工业的发展,这一市场的潜力十分巨大。 4、固体电解质电解电容器的商品化进程加快 以有机半导体电解质TCNQ为代表的OS-CON和以高分子导电聚合物电解质为代表的SP-CON,PC-CON,POSCAP电容器均已商品化。OS-CON以SANYO公司和NCC公司为主要生产商。POSCAP以Panasonic,Nichicon公司为主要制造商,POSCAP电容器的性能要明显优于OS-CON电容器,是今后发展的主流方向,但目前的该电容器十分昂贵,而近三年来市场的平均售价降低了70%。日立AIC电容器尽管也已成功开发,但成本太高,制约了商品化。 5、V-chip的技术已日渐成熟 片式电容器的专利保护期即将结束,电容器耐压已提高到450V,尺寸也已扩展到20mm,品种已扩展到了低ESR、长寿命、高温125℃等不同要求,设备制造成本和电容器材料成本大幅下降,预期其产量会猛增,是制造商普遍看好的品种。 6、加大产品开发力度 铝电解电容器的未来发展过程中,我国的铝电解电容器制造厂商需要根据自身的发展情况,加大对于新产品的研究和开发力度,争取

铝电解电容器的使用注意事项

铝电解电容器的使用注意事项 为确保产品的最高稳定度和性能, 在使用铝电解电容时, 须注意以下注意事项. 当您的应用设计环境或工作环境超出产品规范的限制时, 请与我们联系.如果使用条件超出产品规范的限制,可能会引起短路,开路, 漏电流,甚至爆炸,燃烧. ■使用注意事项 1. 注意直流电解电容的正负极. 如果正负极接反, 将产生异常电流, 导致电路短路, 甚至损坏器件本身. 如果不确定正负极性, 就要使用直流双极电解电容. 直流电容不能使用在交流电路中. 2. 在额定电压范围内使用 如果电容两端电压超过其额定电压, 急剧增加的漏电流将导致电容特性的恶化或器件的损毁. 3. 在需要快速充放电的电路中不要使用电解电容 如果在需要快速充放电的场合使用电解电容, 则电容发热将导致电容特性恶化甚至损坏. 在额定纹波电流下使用 如果纹波电流超过其额定纹波电流, 电容寿命将缩短, 在极端情况下, 其内部发热会将其烧毁在这种电路中, 要使用高纹波类型的电解电容. 5. 电容特性随着操作温度的改变. 电解电容的特性将会随着温度的改变而改变. 这种改变是暂时的, 而且在初始温度下, 仍然保持其初始特性(如果在长时间的高温下, 其特性还没有恶化的话). 如果使用温度超出其规定的温度范围, 增加的漏电流将损坏电容器件.设计中,要注意诸多因素对电容温度的影响,比如说周边温度的影响, 设备的内部温度的影响, 电路单元中其他发热器件的热辐射影响, 还有电容本身由于纹波电流而引起的发热产生的影响. 一般情况下,标注的静电电容是在20C,120Hz下的值.这个值会随着温度的升高而增加,随着温度的降低而降低.

铝电解电容排名及品牌性价比

铝电解电容品牌排行榜 铝电解电容品牌排行榜 顶级品牌 1 Nippon?Chemi-con(NCC、嘉美功、黑金刚) 2 Nichicon?(尼吉康、蓝宝石) 3 Rubycon(路碧康、红宝石) 一线品牌 1 SAMYOUMG(三莹) 2 PANASONIC(松下) 3 SANYO(三洋) 4 SAMHUA (三和) 5 HITACHI(日立) 二线品牌 1 LELON(立隆) 2 CAPXON(丰宾) 3 TEAPO(智宝) 4 SAMXON(万裕三信) 5 TAICON(台容) 三线品牌 1 南通江海 2 常州华威 3 资江(艾华) 4 厦门信达 5 东阳光实业 介绍一下进口品牌铝电解电容性价比高的 韩国三莹铝电解电容 一什么是韩国三莹电解电容?了解档次、产地、作用、用途 A.档次:韩国最大电容器生产商,属于中高档次电子元件; 1.SAMYOUNG(优势:青岛工厂,供货及时,价格有优势)三莹,韩国最大电容器生产厂家,成立 时间1968年,1972年被NCC合并,1976年在韩国上市,NCC占33.3%股份,NCC为三莹第一大股东。青岛工厂为三莹独资企业,青岛三莹电子总投资1.27亿美元,占土地面积85856m2,建筑面积48385m2,注册资本4820万美元,拥有员工1600多人,年产50亿只电容器,共3000多个品种。 铝箔厂家KDK,由NCC与三莹合资投产,各占50%股份,NCC,三莹高端电容所用铝箔由该厂提供。 三莹电解电容的防爆纹是“Y”字型。三莹电解电容三分之一给NCC做OEM,40%供三星,LG等大客户,其中LG占70%,三星占60%用量。 2.Rubycon(优势:插件现货)即红宝石,是日本三大电容器厂家之一,其主要产品为以铝电解电容、 塑胶薄膜电容器为主的各种电容产品。品质优异。防暴纹为英文字母“K”字型,侧面注有“Rubycon” 字样。 3. NCC:原产地:日本,有人称嘉美功/黑金刚),(优势:牛脚现货),在中国有生产基地; 4. Sanyo(优势:贴片现货):Sanyo(三洋)在电解电容行业里面的地位,类似三星在数字家电行业

铝电解电容器使用指南(中文PDF)

使用指南: 1 铝电解电容器基本的电性能 1.1 电容量 电容器的电容量由测量交流容量时所呈现的阻抗决定。交流电容量随频率、电压以及测量方法的变化而变化。JISC5102规定:铝电解电容的电容量的测定是在120HZ 频率,最大交流电压为0.5Vrms 、DC bias 电压为1.5~2.0V 的条件下进行。铝电解电容器的容量随频率的增加而减小。以下是典型的电容量随频率变化图: 和频率一样,测量时的温度对电容器的容量有一定的影响。随着测量温度的下降,电容量会变小。以下是典型的电容量随频率变化图: 另一方面,直流电容量,可通过施加直流电压而测量其电荷得到,在常温下容量比交流稍微的大一点,并且具有更优越的稳定特性。 1.2 Tan δ(损耗角正切) 在等效电路中,串联等效电阻ESR 同容抗1/ωC 之比称之为Tan δ,其测量条件与电容量相同。 容 量 变 化 率 (%) 频率(Hz) 温度(℃) 容 量 变 化 率 (%)

Tanδ=R ESR/ (1/ωC)= ωC R ESR 其中:R ESR =ESR(120 Hz) ω=2πf f=120Hz Tan δ随着测量频率的增加而变大,随测量温度的下降而增大。以下是典型的电容量随频率变化图: 1.3 阻抗(Z): 在特定的频率下,阻碍交流电通过的电阻就是所谓的阻抗(Z)。它与容量以及电感密切相关,并且与等效串联电阻ESR也有关系。具体表达式如下: 其中:Xc=1/ ωC=1/ 2πfC XL=ωL=2πfL 以下是典型的电容量随频率变化图:

由图可知电容的容抗(Xc)在低频率范围内随着频率的增加逐步减小,频率继续增加达到中频范围电抗(XL)降致ESR。当频率达到高频范围感抗(XL)变为主导,所以电抗随着频率的增加而增加。由于电解液电导率随温度改变而改变,所以阻抗随着温度的变化而变化如下图所示: 1.4漏电流: 电容器的介质对直流电具有很大的阻碍作用。然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流,刚施加电压时,漏电流较大,随着时间的延长,漏电流会逐渐减小并最终保持稳定。 漏电流随时间变化特征图 测试温度和电压对漏电流具有很大的影响。漏电流会随着温度和电压的升高而增大(如下图所示)。

超级电容器原理介绍及实验分析

五、结果与分析 1、实验过程总结与知识点查阅 ○1超级电容器的结构:[1] 超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。 ○2超级电容器的分类及原理 分为双电层电容器和赝电容器 双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。整个超级电容器相当于两个电容器串联。循环性能好,比电容较低。 赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。循环性能差,比电容高。 ○3超级电容器的电极材料[2]: (1)炭材料:活性炭、碳纳米管、石墨烯等。主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。 ( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。 (3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。 ○4循环伏安法测试及其原理 循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。从伏安图的波形、氧化还原电流的数值及

低ESR铝电解电容器及其应用

低ESR铝电解电容器及其应用 北京航空航天大学教授方佩敏 铝电解电容器是常用的元件,主要用于滤波、去耦及低频信号耦合等场合。一般的 铝电解电容器其电解质是二氧化锰或其它电解液组成的,它的等效串联电阻(ESR) 较高,温度特性较差,允许纹波电流较小。近年来开发出一种新型有机半导体铝固 体电解电容器,它采用高性能的电解质材料(有机半导体),其导电性高,ESR值低,并 且有良好的频率特性、温度特性及允许通过更多的纹波电流等特点。 本文介绍日本三洋(SANYO)公司研究开发的有机半导体铝固体电解电容器,商标为 OS-CON,以下简称此类电容器为OS-CON。 OS-CON的电解质 OS-CON的构造与一般的铝电解电容器基本相同,电容芯采用铝箔卷绕结构(如图1所 示),所不同的是采用有机半导体材料代替电解液,采用特殊的工艺:经加热、熔解 、冷却固化后形成的多结晶组成的高导体。它的成份是TCNQ复合盐半导体。它主 要的特点是:它是固体电解质,不会因电解液干涸而造成容量减少、tan 增加的问 题,另外,因为电解液是用离子传导,TCNQ复合盐是用电子传导,电子传导要比离子 传导快得多,所以导电性比电解液的电容约高100倍(即电阻值低)。高导电性有利 于温度的稳定。

OS-CON的电气特性

OS-CON虽然是电解电容器但却有与薄膜电容器相同的高频特性,这是由于 高导电性 电解质的ESR低,从而大幅度提高高频特性。其谐振点在100kHz~10MHz之 间,820μ F的OS-CON在100kHz时,其ESR约为10mΩ,在10MHz时其ESR约为20mΩ。 OS-CON的温度特性(随温度变化而引起ESR变化)极好,并且随温度变化而引起的电 容量变化也较小。OS-CON的ESR温度特性如图2所示,OS-CON的电容量的温度特性如 图3所示。由图可以明显看出:一般铝电解电容器在低温时ESR值更大,电容量变得 更小,不适于低温使用,而OS-CON较适合用于要求低温特性好的场合,如室外使用的 电子设备或车载电子设备等。 滤波电容的主要指标之一是允许纹波电流的大小,ESR大的电容引起发热大则允许 纹波电流小,三种不同电容器[铝低阻抗电解电容器、钽低阻抗电解电容器、OS-C ON(SA系列)]的比较如图4所示。可以看出OS-CON允许纹波电流最大,即同样的纹波 电流时,可以用容量更小的OS-CON来代替。 OS-CON有极好的消除纹波电压(或干扰)的能力。例如,三洋公司做的实验:在5V直 流电压上叠加一个正弦波交流1Vp-p(频率100kHz~20MHz)的纹波电压,用四种不同 的电容器来滤波消除纹波电压,另用一种22μH及47μF铝电解电容并联 0.022μF陶 瓷电容组成LC滤波器,其滤波后剩余的纹波电压如图5所示。

铝电解电容器行业概况研究-壁垒、发展环境、风险特征、竞争情况

铝电解电容器行业概况研究-壁垒、发展环境、风险特征、竞争情况 (四)行业壁垒 1、产品质量与品牌壁垒 电容器作为三大基础电子元件之一,其产品质量的稳定性和可靠性很大程度上决定着整个电子产品的稳定性和寿命。鉴于电容器对于电子产品的重要性,下游客户一般会建立完整的质量评价和实验体系,在选择电容器厂商时尤为严格,只有通过其认证的生产厂商才能成为其合格供应商,该过程不仅程序复杂而且时间长,转换成本高,因此上述厂商会与认证通过的电容器供应商建立长期、稳定的合作关系,除非出现严重的质量问题,通常不会轻易更换供应商。 行业中先进入的企业通过技术和产品持续创新,通过了国内外众多客户的认证,形成了品牌效应,在行业内拥有较高的知名度。因此品牌对于进入该行业的企业形成较高的壁垒。 2、技术与研发壁垒 电子产品具有技术发展快、更新换代快的特点,市场和客户不断对电容器提出新的要求。这需要铝电解电容器制造商能在短时间内根据客户要求确定工艺参数、进行快速试制,并最终提供成熟产品,这不仅要求企业具有较强的研发团队,还需要先进的研发和试制设备。行业新进入者缺乏具备丰富经验的研发人员,不利于开发质量可靠、不断创新的电容器产品。

国内铝电解电容器发展历史相对较短,研发、生产和管理等方面的高端专业人才紧缺。通过自我开发和积累,在短时间内掌握铝电解电容器制造核心技术是非常困难的,因此对新进入者形成了较高的技术壁垒。 3、规模和生产壁垒 随着全球铝电解电容器产业的发展,产业集中度逐渐提高,规模经济成为该行业重要的竞争力。同时,电容器行业的大批量、多规格、多品种的生产特点也增加了生产的难度。自动化、大规模、柔性生产逐渐成为趋势。生产规模低于客户的基础采购量或者规格不全、综合配套能力较差的企业难以产生规模经济效益,生产成本往往较高,在行业竞争中处于劣势而逐渐被淘汰。另一方面,下游客户对产品的需求量较大、质量要求较高,往往对电容器产品的质量认证需要较长时间的考察和检测,一旦确定供应商则长时间保持不变,因此小规模企业难以满足优质客户的需求。 4、销售及售后服务网络壁垒 电容器行业全球一体化的趋势逐渐明显,对生产厂商销售和售后服务网络覆盖面的要求非常高。健全的销售和售后服务网络一方面有利于大型优质客户的开拓和维护;另一方面可以根据不同客户的具体情况对客户的需求进行快速反应,形成快速灵活的市场应变能力和机制,从而赢得了较高的客户满意度和忠诚度。销售及售后服务网络壁垒也是新企业进入该行业的主要障碍。

超级电容器用有机电解液的研究

超级电容器用有机电解液的研究 摘要:介绍了一种有机电解液体系活性碳基超级电容器的制作过程,对比研究了6种不同的有机电解液,并组装成超级电容器,测试了其电化学性能。结果表明:EhNBF4/PC体系适合作为超级电容器的电解液;LiPF6/PC、LiPF6/EC+PC体系因发生分解反应,不适宜用于超级电容器。 关键词:超级电容器双电层电容器有机电解液活性碳 超级电容器(Supereapaeltor)以其大功率、长寿命、环保、高效等特点HI3 J在电子工业领域初广泛应用。高比表面积的活性碳具有吸附性能优异、电极结构灵活等特点,在超级电容器工业化进程中被广泛使用。有机电解液对超级电容器的容量、内阻、温度特性等性能有着重要影响E2J。本文作者对超级电容器的制作进行介绍的同时,对6种有机电解液用于超级电容器的性能也进行了考察。 1、实验 1.1 活性碳物理性能测试 对电极原料的活性碳进行了物理性能参数测试。比表面积与孔径分布测试采用 ASAP2010型测试仪,吸附质为77 K N2;粒度测试采用马尔文激光粒度测试仪;振实密度测试采用Quanta Chrome型测试仪,按照GB/T 5162-1985标准进行测试。 1.2 电解液物理性能测试 选用了6种电解液(浓度均为1 tool/L)进行对比测试,分别标记为E1一E6电解液,其具体成分如表1所示。

用DDS-11C型数字式电导仪测试不同温度下电解液的电导率,温度范围为一20一60℃。用Netzaeh-Tase-414/4型热分析仪测试电解液的热稳定性,温度范围为25—350℃,升温速率为5℃/min,N2气氛保护。 1.3 超级电容器的组装 按照质量比80:10:10称取活性碳、乙炔黑和粘结剂PTFE(聚四氟乙烯),干混后加入适量的水,用搅拌器搅拌3 h,调节粘度至6.5~7.0 kPa·s。把浆料用极片涂布机均匀涂覆于厚度为20 tim的铝箔集流体上,双面极片厚度控制在240tim。将极片按照 35 mm×62 mm规格分切,叠片,组装成超级电容器。外包装为锂离子电池用铝箔袋,隔离膜为接枝聚丙烯膜。 1.4 电化学性能测试 使用美国MC.4型超级电容器测试仪进行不同温度下的恒流充放电性能测试,测试电流为1 A,电压范围为0~2.8 V。使用Zahner IM6型电化学工作站测试交流阻抗谱,以确定超级电容器的直流内阻,频率范围为5 kHz~0.1 Hz。 1.5 气相色谱分析 使用Agilent.7093型气相色谱仪对恒电流测试中的分解气体进行了测试分析。测试方法为:抽取1 m1分解气体,打人毛细柱中进行分流测试,分流比为12.6:1,柱口温度为240℃。炉温为300℃。 2、结果和讨论

电解电容的知识

电解电容的知识 资料由电解电容知名品牌美国CDE公司提供 1,电解电容器的构造 腐蚀 Etching 阳极和阴极金属箔是由高纯度的,很薄的只有0.02—0.1mm铝箔做成的,为了增加盘面积和电容量,与电解液接触的表面积的增加是通过蚀刻金属箔去溶解铝,使整个铝箔的表面形成一个高密度的网状的有几十亿个精细微管道的结构. 化成 Forming 阳极箔上有电容器的电介质.电介质是一层很薄的铝氧化物,AL2O3,那是一个在阳极箔上的化学生长过程,这个过程叫“化成”. 这个电压是最后电容器额定电压的135%-200%. 阴极箔不用化成,它保持着很高的表面积和高密度的蚀刻模式. 氧化膜的耐电压不足和电解液自身的闪火放电都会造成短路. 卷绕 Winding 电容元件的卷绕是一层隔离纸,一层阳极箔,另一层隔离纸和阴极箔.这些隔离纸防止箔之间接触形成短路,这些隔离物后来保留住电解液. 在卷绕铝箔芯子或卷绕过程中为后来连接电容器端子附上箔.最好的方法是通过冷焊,把箔焊上带子,冷焊可以减少短路失效,有更好的高纹波电流性能和放电性能. 内引出端面切口、与引出端铆接的箔条和电极箔剖面的切口都会有毛刺,从而造成相对电极间短路. 电容器发热芯包膨胀和安全阀打开时的压力冲击,芯包发生变形,导致电极间短路. 封口 Sealing 电容元件被密封在一个罐子里. 为了释放氢,密封圈不是密闭的,它经常是压力封闭的即将罐子的边沿滚进一个橡胶垫圈,一个橡胶末端插销或滚进压成石碳酸薄板的橡胶. 太则紧密封会导致压力增加,太松则密封会因为电解液的可允许的流失而导致缩短寿命. 2, 电容量 电容量公差 Capacitance Tolerance 电容量的公差是指可允许的电容量的最大值和最小值,用相对于额定电容量的百分数的增加和减少来表示,即ΔC/C. 电容量的温度特性 Capacitance Temperature characteristics 电容量随温度的变化而变化.这个变化的本身很小程度上是依赖于额定电压和电容的尺寸的.

铝电解电容器爆炸分析

1简介 动力电池系统的安全性问题不仅局限在电池本身,电源管理系统(Battery Management System, BMS)安全性也需要认真考虑。相对于电池来说,虽然BMS出现安全事故的可能性小,但是一旦出现问题将很有可能引发电池着火、爆炸,给整个系统将带来灾难性影响。跟其它电子电路一样,BMS主要由电感、电容、电阻等按照特定功能搭建而成。在这些基本电子元器件中,铝电解电容器相对于其它电力电子设备失效的可能性最大,给电子器件带来较大的安全隐患。研究分析铝电解电容器存在的可能失效爆炸机制,对于提高BMS、乃至整个动力电池系统的安全性具有重要的意义。 常用铝电解电容器的结构由电容器芯、保护装置和引线组成。其中功能部分为电容器芯,其组成结构包括:阳极金属铝箔、电解质阴极和阴极集流体铝箔。阳极铝箔经过电化学腐蚀形成一层0.01-1μm厚的Al2O3薄膜作为电容器的电介质,该膜具有类似PN结的单向导流特性,因此电解电容器具有极性,如反接,将导致内部发热使电容器失效。根据其物理状态,电解质阴极分为液体电解质、凝胶(或糊状)电解质和固体电解质。 铝电解电容器由经过腐蚀和形成氧化膜的阳极铝箔、经过腐蚀的阴极铝箔、中间隔着电解纸卷绕后,再浸渍工作电解液,然后密封在铝壳中而制成。 2 研究内容 欲分析个别电子器件爆炸事件的可能机制,需要对铝电解电容器进行多方面的测试和研究,包括:爆炸模拟实验、计算机模拟红外成像、气体成分与来源分析、电容器电解质组分分析等。 2.1 电容器电解质组分分析 对于液体铝电解电容器,液体电解质是有电解纸吸附电解液形成的,电解纸是一种纤维素,起到吸附电解液和隔离阴阳铝箔电极的作用;常见的电解液中溶剂采用乙二醇、丙三醇或?-丁内酯等,溶质为五硼酸盐、癸二酸铵等,还含有各种功能添加剂如柠檬酸、次亚磷酸、硝基苯酚等。将结合化学分析方法和光谱法如红外光谱、质谱法解析电解质中的主要成分,从而推导在电容器正常使用、爆炸前期和爆炸过程中可能存在的化学反应。由于添加剂含量十分少,可以忽略不计。主要考察溶剂、溶质,以及残余水的影响。常用的溶剂为乙二醇,溶质常用五硼酸盐。 表1 FTIR谱图比较 Table 1 Comparison of FTIR spectra

薄膜电容和铝电解电容在直流支撑应用的换算关系-中文

替代电解电容的薄膜电容技术 DC-Link电容器应用 在过去多年的发展中,使用金属化膜以及膜上金属分割技术的DC滤波电容得到了长足的发展,现在薄膜生产商开发出更薄的膜,同时改进了金属化的分割技术极大的帮助了这种电容的发展,聚丙烯薄膜电容能够比电解电容更加经济地覆盖600VDC 到2200VDC的电压范围。薄膜电容具有的许多优势,使它替代电解电容成为工业和电力电子功率变换市场的趋势。 这些优点包括了: 承受高的有效电流的能力 能承受两倍于额定电压的过压 能承受反向电压 承受高峰值电流的能力 长寿命,可长时间存储 但是,只种替代并非“微法对微法”的替代,而是功能上的替代. 当然,尽管膜电容技术有了长足的进展,但不是所有的应用领域都能替代电解电容。 电解电容技术 典型的电解电容的最大标称电压为500 到600V。所以在要求更高电压的情况下,使用者必须将多只电容串联使用。同时,由于各电容的绝缘电阻不同,使用者必须在每个电容上连接电阻以平衡电压。 此外,如果超过额定电压1.5倍的反向电压被加在电容上时,会引起电容内部化学反应的发生。如果这种电压持续足够长的时间,电容会发生爆炸,或者随着电容内部压力的释放电解液会流出。为了避免这种危险,使用者必须给每个电容并联一个二极管。在特定应用中电容的抗浪涌能力也是考察电容的重要指标。实际上,对电解电容而言,允许承受的最大浪涌电压是VnDC的1.15或1.2倍(更好的电解电容)。这种情况迫使使用者不得不考虑浪涌电压而非标称电压。 直流支撑滤波:高电流设计和电容值设计 a) 使用电池供电的情况 应用为电车或电叉车 在这种情况下,电容被用来退耦。膜电容特别适合这种应用。因为直流支撑电容的主要标准是有效值电流的承受能力。这意味着直流支撑电容能够以有效值电流来设计 以电车为例,要求的数据 工作电压: 120VDC 允许的纹波电压: 4V RMS 有效值电流: 80 A RMS @ 20 kHz 最小容值为

(整理)铝电解电容器市场分析

铝电解电容器市场分析 第一章铝电解电容器定义、分类及应用 一、铝电解电容器行业定义 铝电解电容器是指由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极而制成的电容器。 电容器是应用最为广泛的电子元件,几乎用电的地方都会用到电容器。电容器是三大基础电子元器件(电阻、电容及电感器)之一,在电子元器件产业中占有重要的地位,是电子线路中必不可少的基础电子元器件,在整机使用的电子元件中,电容器用途最广泛、用量最大,约占全部电子元件用量的40%;铝电解电容器作为电容器中的重要分支,又占三大类电容器(电解电容器、陶瓷电容器和有机薄膜电容器)产量的30%以上。 二、铝电解电容器行业主要产品分类 按照不同电解质划分,铝电解电容器可划分为液态铝电解电容器和固体铝电解电容器。 按照不同应用领域划分,铝电解电容器可又划分为消费类铝电解电容器、工业类铝电解电容器和军用级铝电解电容器等。 其中消费类铝电解电容器主要用于电视、音响、显示器、计算机及空调等消费类市场;工业类铝电解电容器主要用于工业和通讯电源、专业变频器、数控和伺服系统、风力发电及汽车等工业领域。

三、产品应用领域 电容器是三大基础电子元器件(电阻、电容及电感器)之一,在电子元器件产业中占有重要的地位,是电子线路中必不可少的基础电子元器件,电容器产业的发展水平在很大程度上影响着我国电子信息产业的发展,是国家重点发展的产业。 近年来,铝电解电容器通过自身的不断改进、完善和创新,不断朝小体积、大容量、低成本、高频低阻抗方向发展,性能优势更为明显,应用领域不断拓宽,市场需求越来越大;因性能上乘、价格低廉、用途广泛,近20年来在世界范围内得到很大发展,其产值约占整个电容器市场的三分之一,其年增长率稳定保持在8%左右,并且未来可能进一步扩大市场份额。电容器产业的发展水平在很大程度上影响着我国电子信息产业的发展,是国家重点发展的产业。 铝电解电容器在电子线路中的作用一般概括为:通交流、阻直流,具有滤波、消振、谐振、旁路、耦合和快速充放电的功能,与其它电容器相比,具有体积小、储存电量大、成本低的特性,符合电子整机产品小型化、集成化、低价化的发展趋势。随着现代科技的进步与电容器性能的不断提高,产品已广泛应用于消费类电子产品、通信产品、电脑及周边产品、仪器仪表、自动化控制、汽车工业、光电产品、医疗器械、高速铁路与航空及军事装备等。 全球铝电解电容器应用领域的用量比例为消费性电子产品占45%,工业占23%,资讯13%,通信7%,汽车5%,其他7%。监视器、CD 音响、电视机、电源供应器及主机板产品是铝电解电容器最典型的应用。

铝电解电容的性能特点及技术应用领域

铝电解电容的性能特点及技术应用领域 一般来说,电源滤波、交流旁路等用途所需的电容器能选用铝电解电容器。 1、单位体积所具有的电容量特别大。工作电压越低,这方面的特点愈加突出,因此,特别适应电容器的小型化和大容量化。例如,CD26型低压大容量铝电解电容器的比容量约为300μF/cm3,而其它在小型化方面也颇具特色的金属化纸介电容器的低压片式陶瓷电容器的比容量一般不会超过2μF/cm3。 2、铝电解电容器在工作过程中具有“自愈”特性。所谓“自愈”特性是指介质氧化膜的疵点或缺陷在电容器工作过程中随时可以得到修复,恢复其应具有的绝缘能力,避免招致电介质的雪崩式击穿。 3、铝电解电容器的介质氧化膜能够承受非常高的电场强度。在铝电解电容器的工作过程中,介质氧化膜承受的电场强度约为600kV/mm,这一数值是纸介电容器的30多倍。 4、可以获得很高的额定静电容量。低压铝电解电容器能够非常方便地获得数千乃至数万微法的静电容量。 大容量、小体积 由于电解电容器多数采用卷绕结构,很容易扩大体积,因此单位体积电容量非常大,比其它电容大几倍到几十倍。但是大电容量的获取是以体积的扩大为代价的,现代开关电源要求越来越高的效率,越来越小的体积。 因此,有必要寻求新的解决办法,来获得大电容量、小体积的电

容器。在开关电源的原边一旦采用有源滤波器电路,则铝电解电容器的使用环境变得比以前更为严酷: a、高频脉冲电流主要是20 kHz~100kHz的脉动电流,而且大幅度增 加; b、变换器的主开关管发热,导致铝电解电容器的周围温度升高; c、变换器多采用升压电路,因此要求耐高压的铝电解电容器。这样一来,利用以往技术制造的铝电解电容器,由于要吸收比以往更大的脉动电流,不得不选择大尺寸的电容器。结果,使电源的体积庞大,难以用于小型化的电子设备。为了解决这些难题,必须研究与开发一种新型的电解电容器,体积小、耐高压,并且允许流过大量高频脉冲电流。另外,这种电解电容器,在高温环境下工作,工作寿命还须比较长。 在开关电源设计过程中,不可避免地要挑选适用的电容。就100μF以上的中、大容量产品来说,因为铝电解电容的价格便宜,所以,迄今使用的最为广泛。但是,最近几年却发生了显著变化,避免使用铝电解电容的情况正在增加。 出现这种变化的一个原因是,铝电解电容的寿命往往会成为整个设备的薄弱环节。电源模块制造厂家的工程师表示:“对于铝电解电容这种寿命有限的元件,如果可以不用,就尽量不要采用。”因为铝电解电容内部的电解液会蒸发或产生化学变化,导致静电容量减少或等效串联电阻。 市场调查预计,未来5年铝电解电容器的总市场将以每年约5%

《铝电解电容器技术现状及发展趋势》

《铝电解电容器技术现状及发展趋势》 摘要】:铝电解电容器目前的发展方向是容量更大、体积更小、成本更低而且 高频低阻抗。近些年来我国的铝电解电容器技术发展主要表现在片石化技术、高 比熔点制造技术还有电解质固体化技术这三个方面,一下我们就来重点介绍一下 这三种技术的进展情况。 【关键词】:铝电解电容器;技术现状;发展趋势 引言 随着社会现代化技术的迅速发展,电子技术也在不断的进步,电子正极的组 装密度还有集成化程度也有了进一步的提升,因此同样的对于铝电解电容器也提 出了更高的要求。 1.铝电解电容器的生产流程 第一,进行刻蚀处理。一般情况下阳极和阴极都是高纯度薄铝箔,厚度 0.02mm-0.12mm。为了使容量进一步扩大,应该增加箔的有效表面积,针对电解 质所接触铝箔表面结合腐蚀的方法加以刻蚀,促使形成不同的微小条状。第二, 形成氧化膜。电容电解质会附着在阳极箔的表面,属于一层铝氧化物。形成的厚 度和电压具有直接的关联。第三,切片。一般情况下铝箔的一卷是0.4-0.5m宽的 条状,通过工艺梳理和刻蚀后,根据实际的使用需求切成适合的宽度大小。第四,芯子卷绕。完成铝箔的切片处理之后,在卷绕机上设置一层隔离纸,并铺设阳极箔,这样设置两层,将其绕卷成为柱状的芯子结构,在其外侧设置带状压敏条, 防止芯子出现松散的现象。隔离纸属于阴极箔与阳极箔间的衬垫层,对于两极箔 的接触能够有效避免,阻止了短路现象。第五,注入液态电解质。在芯子当中注 满电解液,隔离纸能够充分吸收,并在毛细刻蚀管道当中进行深入。第六,老化、分检。这个过程中的电压施加要比额定电压大,但同时要保证是低于电压数值的 直流电。老化过后实行分检步骤,分检出合格、漏电、高容产品。第七,编带包装、入库。编带处理要根据客户的需求,例如盒装规格、数量、是否需要剪脚等。 2.对铝电解电容器技术现状分析 2.1 片式化技术 随着整机厂家自动化技术的飞速发展和劳动力成本的不断提升,传统引线型 铝电解电容器不能适应快速表面贴装的要求,而片式化v-chip铝电解电容器能满 足高速自动化贴装,减少劳动力成本,因此,片式化技术成为了促进铝电解电容 器技术发展的重要因素之一。由于片式化技术有着较大的技术难度和较高的材料 成本,在我国的应用并不广泛。目前,片式化铝电解电容器技术应用最广、研究 最多的国家是日本,日本的大部分电子公司如:松下、NCC、rubycon等,都利用片式化技术作为自身产品的卖点,应用于高端领域。 2.2 电解质固态化技术 根据笔者的研究及统计,目前铝电解电容器电解质固态化技术发展的最好的 国家是日本,其三洋公司开发的TCNQ固态电解质及贵弥功株式会社与尼吉康株 式会社开发的高质量固态电解质,是目前在全球范围内使用的最主要的固态电解质。由于我国电子技术及基础原材料的研究与发达的日本相比具有一定的差距及 滞后性,电解质固态化技术在我国真正起步在最近几年。但相信,随着我国经济 的发展及优秀人才数量的增多,电解质固态化技术在我国定将会得到大力的研究 和提高。 2.3 高比容电极箔的制造技术

铝电解电容器的使用说明书分析

铝电解电容器的使用说明书 铝电解电容器如在非规定条件下使用的话,会导致爆炸失 火等重大故障,请先确认下述注意事项后使用。 工作温度与纹波电流 1.检查电容器的工作和安装环境,确保在产品目录或规格书的规定条件下。 2.工作温度、纹波电流应在规定的范围内,电容器如通过太大电流则引起异常发热、短路、失火等致命不良。 3.电容器本身为发热元件,会使机器内温度上升,这点请注意,确认机器正常状态下,电容器周围的温度。 4.允许通过的纹波电流应随环境温度(电容器周围的温度)上升而降低,允许通过纹波电流应考虑最高环境温度。 5.电气参数随着频率的变化而变化。选好电容器必须考虑频率的变化。特别需要注意无论在低频和高频使用时,电容器的自身发热会使等效串联电阻和自感变化,缩短了使用寿命。 施加电压和其它工作条件 1.电容器有极性,施加反向电压或交流电压后,会导致压力阀释放或短路失火等致命不良。交流电压情况下使用特殊的交流电容器。 2.在极性转换电路中请使用双极性电容,但这种情况不使用于交流电路。 3.不要施加过电压,即直流电压上叠加交流成分时,峰值不要超过

额定电压,否则会引起短路失火等致命重大不良。 4.浪涌电压有严格的条件限制,在此条件下不能保证长时间工作。 工作电压即使短时间内也不要超过额定电压,请慎重选择电容器。 5.多只电容器并联时,应考虑导线电阻,使每个电容器上的导线电阻值相等。 6.多只电容器串联时使用同一规格的电容,请并联均压电阻,设计时要考虑这时加在电容上的电压完全一样,确保施加在电容器上的电压不超过额定电压。 7.使用电容器时需要考虑设备的使用寿命。超过使用寿命时,继续使用则电容器存在压力阀释放或短路隐患,定期点检时按需替换。 8.不能用于重复急剧充放电电路。熔接机器等充放电时,电容器请特别设计。一些旋转设备的控制电路,如伺服驱动和充放电电路中选用合适的电容器,请与海立联系。 9.即使非快速充放电,但电压变化大则会导致寿命特性恶化,要实际上机认真确认或与海立联系。 10.普通电容器不适用于急剧充放电或交流电路,如需要,请与海立联系。 根据电路中施加在电容器上的充放电电流、突入电流和电压的 情况,检查电容器的温升。 安装准备

铝电解电容器产业链分析报告2011

2011年铝电解电容器产业链分析报告

目录 一、铝电解电容器产业链简介 (7) 1、铝电解电容器按介质分类 (7) 2、电极箔的腐蚀和化成技术 (8) 3、电子铝箔细分产品的性能要求 (10) 4、高纯铝两种主要制法的比较 (11) 二、铝电解电容器产业链简介及全球主要企业汇总 (11) 1、电子铝箔—电极箔—铝电解电容器产业链简介 (11) 2、全球铝电解电容器产业链主要企业及介绍 (14) 三、铝电解电容器产业链竞争格局:日本企业主导高端市场 (15) 1、日本主导高端铝电解电容器市场,全球份额75% (15) 2、日本是全球中高端电极箔的主要生产地 (16) 3、日本的高压电子铝箔和高纯铝技术全球领先 (18) 4、日本是全球电解纸和电容化学品的主要供应地 (19) 四、铝电解电容器产业链发展趋势:国内具备产业转移条件 (20) 1、下游制造转移带动铝电解电容器产业本土化 (20) 2、成本和服务优势提升国内企业竞争力 (22) 3、日本地震加速铝电解电容器产业转移 (24) 五、铝电解电容器产业链国内现状:高端市场迎来进口替代 (27) 1、铝电解电容器:国内高端市场缺口大,进口替代趋势明显 (27) 2、电极箔:我国高比容高压电极箔技术突破,实现国产替代 (28) 3、电子铝箔和高纯铝:本土市场推动国产化,关键技术待突破 (30) 4、电容器电解纸:反倾销政策护航,进口替代加速 (31) 5、电容器化学品:产业转移与本土优势助力产业发展 (33) 六、铝电解电容器产业链市场前景:新兴市场繁荣提升需求 (35) 1、国内铝电解电容器市场整体年复合增长9%左右 (35) 2、高端铝电解电容器领域是未来国内市场增长重点 (36)

超级电容器原理及电特性

超级电容器原理及电特性 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界面的表面面积。 图1超级电容器结构框图 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。这种超级电容器有几点比电池好的特色。 1.2 工作原理

超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点: 图2 超级电容器结构框图 ①.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3??4个数量级,目前单体超级电容器的最大电容量可达5000F。 ②.充放电寿命很长,可达500 000次,或90 000小时,而蓄电池的充放电寿命很难超过1 000次, ③.可以提供很高的放电电流(如2700F的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A,一般蓄电池通常不能有如此高的放电电流一些高放电电流的蓄电池在杂如此高的放电电流下的使用寿命将大大缩短。 ④.可以数十秒到书分钟内快速充电,而蓄电池再如此短的时间内充满电将是极危险的或几乎不可能。 ⑤.可以在很宽的温度范围内正常工作(-40??+70℃)而蓄电池很难在高温特别是低温环境下工作。

相关主题
文本预览
相关文档 最新文档