当前位置:文档之家› 控制系统的瞬态响应及其稳定性分析

控制系统的瞬态响应及其稳定性分析

控制系统的瞬态响应及其稳定性分析
控制系统的瞬态响应及其稳定性分析

实验二 控制系统的瞬态响应及其稳定性分析

一.实验目的

1.了解掌握典型二阶系统的过阻尼、临界阻尼、欠阻尼状态; 2.了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态; 3.研究系统参数变化对系统动态性能和稳定性的影响。

二.实验内容

1.搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量σ% 、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;

2.搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量σ% 、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响。

三.实验步骤

1. 典型二阶系统的响应曲线

图1-2-1是典型二阶系统原理方块图,其中T 0=1S ,T 1=0.2S 。

图1-2-1 典型二阶系统原理方块图

开环传函:)

12.0()1()(1

1+=+=

S S K S T S K S G 其中K=K 1/T 0=K 1=开环增益

闭环传函:2

n

n 22n

S 2S )S (W ωζωω++=其中011n T T /K =ω 110T K /T 2

1

=

ζ 表1-2-1列出有关二阶系统在三种情况(欠阻尼,临界阻尼,过阻尼)下具体参数的表达上式,以便计算理论值。至于推导过程请参照有关原理书。

C(S)

表1-2-1

一种情况 各参数

10<<ζ 1=ζ 1>ζ

K

K=K 1/T 0=K

n ω

10115/K T T K n ==ω

ζ

1

1

11025/21K K T K T ==

ζ C(p t ) 2

1/

P e 1)t (C ζ

ζπ--+=

C(∞)

1

p M (%)

2

1/P e M ζζπ--=

p t (s)

2

n P 1t ζ

ωπ-=

s t (s)

n

s 4

t ζω=

典型二阶系统模拟电路如图1-2-2所示

图1-2-2典型二阶系统模拟电路

图中:R1=100K 、R2=100K 、R3=100K 、R4=500K 、R6=200K

R7=10K 、R8=10K 、C1=2.0uF 、C2=1.0uF R5为可选电阻:

R5=16K 时,二阶系统为欠阻尼状态 R5=160K 时,二阶系统为临界阻尼状态 R5=200K 时,二阶系统为过阻尼状态

输入阶跃信号,通过示波器观测不同参数下输出阶跃响应曲线,并记录曲线的超调量σ% 、峰值时间tp 以及调节时间ts 。

100K

100K R2

100K

2.典型三阶系统的响应曲线

典型三阶系统的方块图:见图1-2-3

图1-2-3 典型三阶系统原理方块图

开环传递函数为:

)

1S T )(1S T (S K

)S (H )S (G 21++=

, 其中021T /K K K =(开环增益)

典型三阶系统模拟电路如图1-2-4所示

图1-2-4典型三阶系统模拟电路

图中:R1=100K 、R2=100K 、R3=100K 、R4=500K 、R5=100K 、R6=100K 、R7为可调电阻、R8=500K 、R9=10K 、R10=10K 、C1=2.0uF 、C2=1.0uF

开环传函为)

15.0)(11.0(/500)()(7

++Ω=

S S S R K S H S G (其中K=500/R )

系统的特征方程为02020120)()(12

3

=+++?=+K S S S S H S G Ω>?<K R K 67.4112 系统不稳定

1

11

+S T K

122+S T K

R(S) C(S)

S

T 01 +

-

100K

R2 100K

100K

输入阶跃信号,仔细调节电位器,可以得到三阶系统处于不稳定、临界稳定和稳定的三种状态时的波形,通过示波器观测不同参数下阶跃响应曲线,并记录曲线的超调量σ%、峰值时间tp以及调节时间ts。

四.实验结果

绘出二阶系统和三阶系统不同参数下的阶跃响应曲线,并填写相应的超调量σ%、峰值时间tp以及调节时间ts

控制系统时间响应分析”实验报告

控制系统时间响应分析”实验报告

实验一、“控制系统时间响应分析”实验报告 一、实验类型 验证性实验 二、实验目的 1、 求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响应,熟悉系统时间响应的定义和图形曲线 2、 求系统的上升时间、峰值时间、最大超调量和调整时间等性能指标,熟悉系统瞬态性能指标的定义。 三、实验仪器与设备(或工具软件) 计算机,MATLAB 软件 四、实验内容、实验方法与步骤 已知系统传递函数 50 )1(05.050)(2+++=s s s G τ 1、求系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入 响应。 应用impulse 函数,可以得到τ=0,τ=0.0125、τ=0.025时系统单位脉冲响 应;应用step 函数,同样可以得到τ=0,τ=0.0125、τ=0.025时系统单位阶跃响应。 2、求系统的瞬态性能指标 五、实验结果 1、系统在时间常数τ不同取值时的单位脉冲、单位阶跃响应和任意输入响 t=[0:0.01:0.8];%仿真时间区段 nG=[50]; tao=0; dG=[0.05 1+50*tao 50]; G1=tf(nG,dG); tao=0.0125; dG=[0.05 1+50*tao 50]; G2=tf(nG,dG); tao=0.025; dG=[0.05 1+50*tao 50]; G3=tf(nG,dG);%三种τ值下,系统的传递函数模型 [y1,T]=impulse(G1,t);[y1a,T]=step(G1,t); [y2,T]=impulse(G2,t);[y2a,T]=step(G2,t);

控制系统时间响应分析”实验报告

实验一、“控制系统时间响应分析”实验报告 、实验类型 验证性实验 、实验目的 1、求系统在时间常数 T 不同取值时的单位脉冲、单位阶跃响应和任意输入响应, 熟悉系统 时间响应的定义和图形曲线 2、求系统的上升时间、峰值时间、最大超调量和调整时间等性能指标,熟悉系统瞬态性 能指标的定义。 三、 实验仪器与设备(或工具软件) 计算机,MATLAB 软件 四、 实验内容、实验方法与步骤 已知系统传递函数 1、 求系统在时间常数 T 不同取值时的单位脉冲、单位阶跃响应和任意输入响应。 应用impulse 函数,可以得到 T =0 ,T =0.0125、T =0.025时系统单位脉冲响应;应用 step 函数,同样可以得到 T =0 ,T =0.0125、T =0.025时系统单位阶跃响应。 2、 求系统的瞬态性能指标 五、实验结果 1、系统在时间常数 T 不同取值时的单位脉冲、单位阶跃响应和任意输入响 t=[0:0.01:0.8];%仿真时间区段 n G=[50]; tao=0; dG=[0.05 1+50*tao 50]; G1=tf(nG,dG); tao=0.0125; dG=[0.05 1+50*tao 50]; G2=tf(nG,dG); tao=0.025; dG=[0.05 1+50*tao 50]; G3=tf(nG,dG);% 三种 T 值下,系统的传递函数模 型 [y1,T]=impulse(G1,t);[y1a,T]=step(G1,t); [y2,T]=impulse(G2,t);[y2a,T]=step(G2,t); [y3,T]=impulse(G3,t);[y3a,T]=step(G3,t);% 系统响应 subplot(131),plot(T,y1,'--',T,y2,'-.',T,y3,'-') lege nd('tao=0','tao=0.0125','tao=0.025') xlabel('t(sec)'),ylabel('x(t)');grid on; subplot(132),plot(T,y1a,'--',T,y2a,'-.',T,y3a,'-') lege nd('tao=0','tao=0.0125','tao=0.025') grid on ;xlabel('t(sec)'),ylabel('x(t)');% 产生图形 t=[0:0.01:1];u=si n(2*pi*t);% 仿真时间区段和输入 G(s) 50 ______ 0.05s (1 )s 50

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

第三章 系的时间响应分析

第三章 系统的时间响应 3-1 什么是时间响应? 答:时间响应是指系统的 响应(输出)在时域上的表现形式或系统的动力学方程在一定初始条件下的解。 3.2 时间响应由哪两部分组成?各部分的定义是什么? 答:按分类的原则不同,时间响应有初始状态为零时,由系统的输入引起的响应;零输入响应,即系统的 输入为零时,由初始状态引起的响应。 按响应的性质分为强迫响应和自由响应。 对于稳定的系统,其时间响应又可分为瞬态响应和稳态响应。 3.3时间响应的瞬态响应反映哪方面的性能?而稳态响应反映哪方面的性能? 答:瞬态响应反映了系统的稳定性和响应的快速性两方面的性能;稳态响应反映了系统响应的准确性。 3.4 设系统的单位脉冲响应函数如下,试求这些系统的传递函数. 1.25(1)()0.0125;t w t e -= (2)()510sin(44 w t t t =++); );t -3(3)w(t)=0.1(1-e (4)()0.01w t t = 解:(1) 11()()()()()00 w t x t L X s L G s X s i --????===???? ()1X s i = (),()()G s G s L w t =???????? -1w(t)=L 所以,0.01251.251)()()0.0125 1.25 t G s L w t L e s -??===???? ??+??( (2)()()G s L w t =???? 5510sin(4)sin 4cos422L t t t s s = ++=++???????? 5452()2222161616 s s s s s s = ++=++++

(完整版)土坡稳定性分析

第七章土坡稳定性分析 第一节概述 土坡就是由土体构成、具有倾斜坡面的土体,它 的简单外形如图7-1所示。一般而言,土坡有两种类 型。由自然地质作用所形成的土坡称为天然土坡,如 山坡、江河岸坡等;由人工开挖或回填而形成的土坡 称为人工土(边)坡,如基坑、土坝、路堤等的边坡。 土坡在各种内力和外力的共同作用下,有可能产生剪 图7-1 土坡各部位名称 切破坏和土体的移动。如果靠坡面处剪切破坏的面积 很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因: 1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态; 2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加; 3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。 在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。因此,土坡稳定问题在工程设计和施工中应引起足够的重视。 天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。这种工作称为稳定性分析。土坡稳定性分析是土力学中重要的稳定分析问题。土坡失稳的类型比较复杂,大多是土体的塑性破坏。而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。因此,目前工程实践中基本上都是采用极限平衡法。极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。稳定安全系数最低或者破坏概率最高的滑动面就是可能性最大的滑动面。 本章主要讨论极限平衡方法在斜坡稳定性分析中的应用,并简要介绍有限元法的概念。 182

土坡稳定性计算

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 序号 放坡高度L(m) 放坡宽度W(m) 平台宽度B(m) 1 3.5 2.25 0.75 2 4 3 1.5 荷载参数: 土层参数:

1 填土 3.5 19.8 7.4 20.4 8 20 2 粘性土 3.5 20 16. 3 45.8 21 23 3 粘性土 3.6 20.3 17. 4 64.1 23 23 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。 圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]co sθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

土坡稳定性分析方法综述_寇海磊

Value Engineering 0引言 土坡稳定性一般用土坡稳定性安全系数来表示。计算土坡稳定性安全系数的方法通常有二种:一是对构成土体的土条进行受力分析。但是此土条受力分析法存在静不定问题。为解决此问题,往往将土条所受的某些应力当零处理。因此,由此法计算的土坡稳定性系数必然存在误差比较大的问题;二对土坡圆弧滑动体进行整体稳定性分析,但假定的土坡圆弧滑动面与实际的滑动面不相符。其计算结果精度差.目前在工程实际应用中,都是应用土体在某一确定强度条件下,假定土体是理想塑性材料,把土条作为一个刚体,按极限平衡的原则进行受力分析,不考虑土体本身的应力一应变关系,建立坡体稳定分析方法,求得土坡稳定的安全系数来进行评价。土坡稳定性计算的方法主要有:瑞典条分法,简化毕肖普法,Morgenstern&Price法,陈祖煜法,Sarma法,Janbu法。 1瑞典条分法 瑞典圆弧滑动面条分法,是将假定滑动面以上的土体分成n个垂直土条,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。该法由于忽略土条之间的相互作用力的影响,因此是条分法中最简单的一种方法。 2简化毕肖普法 毕肖普法提出的土坡稳定系数的含义是整个滑动面上土的抗剪强度与实际产生剪应力的比,并考虑了各土条侧面间存在着作用力根据静力平衡条件和极限平衡状态时各土条力对滑动圆心的力矩之和为零等,可得毕肖普法求土坡稳定系数的普遍公式。毕肖普法提出的土坡稳定系数的含义是整个滑动面上土的抗剪强度τf与实际产生剪应力τ的比,并考虑了各土条侧面间存在着作用力,假设土条二侧力相等方向相反。把有效应力原理引进斜坡分析,还将安全系数定义为沿整个滑裂面的抗剪强度与实际产生的剪应力的比值.这比原先由全部抗滑力矩与滑动力矩之比定义的安全系教原理,适应性广。 3Morgenstern&Price法 工程中很多土坡的外形复杂并不是简单土坡,土坡的土质不均匀,坡顶和坡面作用有荷载,因而滑动面不一定为圆弧形,这给选择滑动面上的抗剪强度和计算滑动或抗滑力矩带来困难,解决的方法是将滑坡体分成一系列铅直薄土条。对任意曲线形状的滑裂面进行分析,导出满足力的平衡及力矩平衡条件的微分方程式,然后假定两相邻土条法向条间力和切向条间力之间存在对水平方向坐标的函数关系,从而根据整个滑动面土体的边界条件求出问题的解答。 4陈祖煜法 陈祖煜法也是普遍条分法的一种。它是在Morgenstern法的基础上对Morgenstern法做了改进,使之更加结合工程实际,考虑了地震力、坡面载荷等因素,从土条的静力平衡得到的微分方程出发,结合相应的边界条件,推导出带有普遍意义的极限平衡方程式。 5Sarma法 Sarma是对土条侧向力的大小分布做出假定。萨尔玛法(Sarma)假想在每一土条重心作用着一个水平地震惯性力,由于它的作用,使滑裂面恰好达到极限状态,也就是使滑裂面上的稳定安全系数F=1,此时水平地震加速度K称为临界地震加速度,以K表示.K作为判断土坡稳定程度的一个标准,同时,萨尔玛推导出切向条间力X的分布,从而使超静定问题变成静定的。 6Janbu法 Janbu法是对土条的侧向力的作用位置作出假定的。Janbu通过假设滑体推力线位置并考虑微分条块的力矩平衡,巧妙地推导出条块水平推力与竖向剪力的关系,再根据条块的力平衡条件导出安全系数迭代求解格式。Janbu普遍条分法因其严格简明而很快在国际岩土工程界广泛应用。但是,大量工程应用表明,Janbu普遍条分法存在着严重的不收敛问题,特别是条块划分过密如100块以上,简单均质边坡的安全系数计算收敛性都难以得到保证。 7应用中常出现的问题 在土坡稳定性分析方法的应用中应注意的问题主要有滑裂面的形状问题,强度指标选择问题和考虑条间力的影响问题。一般来说,土坡滑动时其滑裂面都是非圆弧的,但对于匀质的黏性土坡,真正的临界剪切面与圆柱面相差不大,而且在临界剪切面附近,稳定安全系数的变化也不太灵敏,所以采用圆弧滑动分析仍可得到满意的结果。土体强度指标测定与选用值的精确与否,对土坡的稳定验算关系甚大。在测定土的强度时,应该使试验室的模拟条件尽量符合实际受力情况,使试验指标具有一定的代表性,否则验算结果就可能与实际情况有较大的出入。各类条分法(除瑞典法外)都不同程度的考虑了相邻土条条间力的影响。一般来说,这些影响考虑的愈多,求得的安全系数也愈高。但这绝不是无限制的,特别对于滑裂面是平面、圆柱面或一些简单的光滑曲面,滑动土体下滑时,土体内相邻土条并不会产生很大的相对变形,因此其抗剪阻力不可能达到或接近极限,此时求出的土条分界面上的抗剪安全系数应远大于1。 8结论 在土建工程中经常会遇到土坡稳定性问题,如果处理不当,土坡失稳产生滑动,不仅影响工程进展,甚至危及人的生命安全和造成工程事故。因此,研究土坡的稳定性有重要的实际意义。土坡稳定分析是一个比较复杂的问题,本文主要从理论上对简单土坡进行了稳定分析,并且,这种建立在极限平衡理论基础上的条分法,由于方法本身没有考虑到土体内部的应力一应变关系,所求出的安全系数只是所假定的滑裂面上的安全系数,所求出的土条之间内力或土条底部反力并不是滑动土体真实存在的力。 参考文献: [1]郑颖人,王恭先等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007. [2]龚晓南.土力学.北京:中国建筑工业出版社,2002. [3]卢廷浩,刘祖德等.高等土力学.北京:机械工业出版社,2006. [4]彭德红,浅谈边坡稳定性分析方法[J].上海地质,2005,(3):44-47. 土坡稳定性分析方法综述 Overview of Analysis Methods of Slopes Stability 寇海磊Kou Hailei (青岛理工大学,青岛266033) (Qingdao Technological University,Qingdao266033,China) 摘要:计算土坡稳定性安全系数的方法通常有二种:一是对构成土体的土条进行受力分析;二是对土坡圆弧滑动体进行整体稳定性分析。但这两种方法均存在不足之处。本文综述了各种土坡稳定性分析方法并做出比较,并给出了工程应用中应注意的问题。 Abstract:There are two methods calculating safety coefficient of slopes stability:one is to analyze soil mechanics on soil slices;the other is to analyze stability of the whole body on slope circular sliding.But both of these methods exist deficiencies.This article summarizes the analysis methods of slopes stability and makes comparisons.And also the problems that should be paid attention to in the application of engineering are presented. 关键词:滑裂面;基本条分法;瑞典条分法 Key words:sliding plane;basic slice method;Sweden slice method 中图分类号:TU4文献标识码:A文章编号:1006-4311(2010)13-0083-01 —— —— —— —— —— —— —— —— —— —— —— — 作者简介:寇海磊(1984-),男,山东寿光人,硕士研究生,研究方向为地基处 理与桩基。 ·83·

边坡稳定性分析

浅谈土坡稳定性分析方法 摘要:土坝、路堤、河岸、挖坡以及山坡有可能因稳定性问题而产生滑坡。大片土体从上面滑下堆积于坡脚前。滑动也可能影响到深层,上部土体大幅度下滑而坡脚向上隆起,向外挤出,整个滑动体呈转动状。滑坡将危及到滑坡体及其附近人的生命和财产的安全。目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。本文通过对土坡失稳原因分析,对目前常用的边坡稳定分析方法进行总结,以供学习和参考。 关键字:土坡;稳定性;方法 0 前言 边坡一般是指具有倾斜坡面的土体或岩体,由于坡表面倾斜,在坡体本身重力及其他外力作用下,整个坡体有从高处向低处滑动的趋势,同时,由于坡体土(岩)自身具有一定的强度和人为的工程措施,它会产生阻止坡体下滑的抵抗力。一般来说,如果边坡土(岩)体内部某一个面上的滑动力超过了土(岩)体抵抗滑动的能力,边坡将产生滑动,即失去稳定;如果滑动力小于抵抗力,则认为边坡是稳定的。土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本文主要介绍目前常用的土坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 1 土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。

产生滑动的内部因素主要有:(1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。(2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。(3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 促使滑动的外部因素主要有:(1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结构破坏,从而降低土的抗剪强度;施工打桩或爆破,由于振动也可使邻近土坡变形或失稳等。(3)人为影响:由于人类不合理地开挖,特别是开挖坡脚;或开挖基坑、沟渠、道路边坡时将弃土堆在坡顶附近;在斜坡上建房或堆放重物时,都可引起斜坡变形破坏。 3 土坡稳定性分析 3.1无粘性土坡稳定性分析 干的无粘性土坡:处于不渗水的砂、砾、卵石组成的无粘性土坡,只要坡面上颗粒能保持稳定,那么整个土坡便是稳定的。有均质无粘性土坡,坡角为β,自坡面上取一单元土体,其重量为W,由W引起的顺坡向下的滑力为T=Wsin β,对下滑单元体的阻力为:

土坡稳定性计算计算书

土坡稳定性计算计算书 品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:14; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000; 基坑内侧水位到坑顶的距离(m):6.000; 放坡参数:

序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 1 2.00 3.00 1.00 0.00 2 3.00 4.00 1.00 0.00 荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 满布 10.00 0.00 0.00 土层参数: 序号土名称土厚度(m) 坑壁土的重度γ(kN/m3) 坑壁土的内摩擦角φ(°) 内聚力C(kPa) 饱容重(kN/m3) 1 填土 7.00 18.00 20.00 10.00 22.00 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

边坡稳定性分析模式及流程

一、土岩混合边坡分析 土岩混合边坡稳定性分析一般有四种: 1、上部土层及风化层内部的破坏(圆弧或折线,受土体强度控制,软件自动搜索最危险滑面); 2、沿土岩交界面滑动破坏(土与风化层面或土、风化层与基岩面,受交界面强度控制,软件指定交界面进行计算稳定性,采用圆滑滑动(均质土体时)和折线滑动(覆盖层与基岩面时)两种计算); 3、下部岩体结构面破坏(受结构面控制,平面或楔形体破坏,倾倒破坏也可能。先用赤平投影定性分析(龙海涛和理正结合使用),根据定性情况,若不稳定,则用理正进行定量稳定性计算(平面滑动和楔形体滑动))。 4、上部土体圆弧滑动,下部岩体沿结构面滑动破坏(分析了1和3后,二者都不稳定时,则对边坡整体进行计算,采用1的最危险滑动面与3的平面滑动面组合成上部圆弧,下部直线(层面、某节理裂隙或结构面组合的交线)的整体滑动面,采用传递系数法进行稳定性计算),则1.2.3.4得到四种稳定系数,根据稳定系数进行综合评价。 5、极软岩边坡可能受岩土体强度控制,也可能受结构面控制,故也应对边坡整体进行稳定性计算,采用圆弧滑动(简化毕肖普法)和折线滑动(传递系数隐式解法)分别进行计算。 6、若1.2稳定,3不稳定,则会发生下部岩体沿结构面滑动破坏,从而带动上部土体一起滑动破坏。故下部岩体稳定性很重要。 综合內摩擦角是对平面滑动的,若提粘聚力很小,甚至为零,只有內摩擦角,则破坏模式为平面滑动,如砂砾石层,岩层等。若判断破坏模式为圆弧滑动,则必须提粘聚力与內摩擦角,如破碎岩层、强风化层与上部土层可能发生圆弧滑动破坏。故,提不提粘聚力,可否换算成综合內摩擦角,取决于判断其破坏模式是圆弧还是平面滑动。 下部为极软岩的土岩混合边坡除按岩质边坡分析外,还需计算五种滑动面稳定系数,如下:(下部为硬质的边坡,可不计算整体圆弧滑动,整体折现滑动视基岩内部裂隙及破碎带

土坡稳定分析

第九章土坡稳定分析 第一节概述 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性

控制工程原理:系统时间响应分析仿真

(理工类) a 课程名称:控制工程原理专业班级: 学生学号:学生姓名: 所属院部:机电工程学院指导教师:卢军锋 2019 ——2020 学年第 1 学期 金陵科技学院教务处制

实验项目名称:系统时间响应分析仿真 实验学时: 2 同组学生姓名: 实验地点: C106 实验日期: 2019.12.01 实验成绩: 批改教师: 卢军锋 批改时间: 一、实验目的和要求 (1) 学会使用MATLAB 软件绘制控制系统单位阶跃响应曲线。 (2) 研究阻尼比以及振荡频率对阶跃响应的影响。 (3) 掌握准确读取动态性能指标的方法。 二、实验仪器和设备 计算机MATLAB 软件。 三、实验过程 1、求单位阶越响应函数step()有两种调用方法step(sys1,sys2,……,t) ,step(num,den,t)此处要对t 付值,可以直接画图或 [y,t]=step(sys1,t) 然后进行plot(t,y)画图。 2、求任意输入的响应曲线是lsim(sys,u,t)或lsim(sys1,sys2,……,u,t)或 [y,t]=lsim(sys1,sys2,sys3,…….t), 然后进行plot(t,y)画图。 3、现在求 2 100 ()(0, 0.25, 0.5, 0.75, 1, 1.25)20100s s s ξξΦ= =++的阶越响应,分析 阻尼比对系统影响 4、阻尼比为0.25,ωn=10,30,50的阶越响应,并总结出无阻尼振荡频率对系统的影响。 5、 阻尼比为0.5,ωn=5,输入信号为5+2t ,t 取(0:0.1:2)求输出曲线。 四、实验结果与分析 1. 单位阶越响应函数 设传递函数为 ()11 2-= s s φ 编写MATLAB 程序如下:

相关主题
文本预览
相关文档 最新文档