当前位置:文档之家› 撕裂强度不确定度评定

撕裂强度不确定度评定

撕裂强度不确定度评定
撕裂强度不确定度评定

撕裂强度不确定度评定

一、概述

1、测量方法:依据ASTM D 624-00《常规硫化橡胶和热塑性弹性体撕裂强度的标准试验方法》

2、环境条件:温度(23±2)℃湿度(50±5)%

3、设备仪器:万能材料试验机H25KS

4、被测样品:试样为角度型试片,PVC试片1.95(mm)

二、建立数学模型

T

F

d

S

T—撕裂强度,N/ mm

S

d—试样中间厚度,mm

F—最大试验力,N

三、测定不确定度主要来源分析

撕裂强度试验的不确定度主要分析如下:

1、试验机的拉力值引入的不确定度,包括试验机精度等级和校验试验机所用的标准测力仪引入的不确定度对结果的影响(属于B类不确定度)

2、尺寸测量引入的不确定度,包括测量使用的量具误差引入的不确定度对结果的影响(属于B类不确定度)和测量尺寸的重复性引入的不确定度对结果的影响(属于A类不确定度)

3、试验温、湿度引入的不确定度对结果的影响

4、夹具的分离速率、和同轴度引入的不确定度对结果的影响

四、不确定度分量的评定

1、试验机的拉力值的不确定度

1.1试验机精度等级引入的不确定度

试验机为1级精度,示值误差±1.0%,为均匀分布K=3,试验机相对不确定度:

u=0.01/3=0.005774

1

fr

1.2校准力仪的不确定度为0.3%取置信概率95%(K=1.96)测力仪相对标准不确定度为

u=0.003/1.96=0.001531

2

fr

1.3读数可估计到±0.0025为均匀分布K =3,读数相对不确定度为3fr u =0.0025/3=0.001443

拉力测量相对不确定度为:fr u =232221fr fr fr u u u ++=0.00615 2、尺寸测量引入的不确定度d u 2.1测量重复性引入的不确定度

标准差数列的的标准差

1

s 1

i 2

)

(-=∑-=∧

m j m

s s )(σ=0.004174

-)(估1n (2s P

S =

σ=0.001205

因为≥∧

)(s σ)(s ∧

估σ,表示测量状态不稳定,p S 的可靠性不能应用,应采用j S 中

的max S 评定。

平时测量时,通常取3次测量的中间值作为厚度的测定值,因此测量重复性引入的误差不确定度分量为:

1d u =max s =0.065574 其自由度: V =m ×(n-1)=3×4=12

2.2测厚仪引入的不确定度,分辨率为0.01mm 为均匀分布K =3测厚仪的相对不确定度为2d u =0.01/3=0.005774 尺寸测量的标准不确定度为

d

u =2

221d d u u +=2

2

005774

.0065574

.0+=0.06583

则dr u =0.06583/2.03=0.0324

3、夹具的分离速率和同轴度不确定度分量可忽略不计

4、温、湿度效应的不确定度度分量可忽略不计

5、撕裂强度

S T =51.25N/mm

五、合成不确定度

2

2

r

d fr cr u u u +=2

20324.000615.0+==0.0330

六、扩展不确定度及报告

取K =2,Ur =0.0330*2=0.066,U =0.066*51.25=3.38 撕裂强度为(51.25±3.38)N/mm

报告审核: 报告编制: 2011.1.21

长度不确定度评定示例

用外径千分尺检验某主轴直径φ700 -0.019mm 的 测量不确定度评定报告 1.概述 1.1 测量依据:产品图纸(或生产工艺)编号□□□□# 1.2 环境条件:温度 (20±10)oC ; 相对湿度<70% RH 1.3 测量设备:一级50~75mm 外径千分尺,示值误差为±4μm。 1.4 被测对象:主轴的直径φ700-0.019mm ;材料为球墨铸铁α1= 10.4×10-6/℃ 1.5 测量方法:用外径千分尺直接测量 2.数学模型: 由于主轴直径值可在外径千分尺上直接读得,故: L=L S -L S (δα·Δt +αs ·δt) L — 被测主轴的直径。 L S — 外径千分尺对主轴直径的测量值。 δα—被测主轴线膨胀系数与外径千分尺线膨胀系数之差。 Δt — 被测主轴温度对参考温度20℃的偏差,本例为±10℃。 αs — 外径千分尺线膨胀系数,本例为11.5×10-6/℃。 δt — 被测主轴温度与外径千分尺温度之差,本例为±1℃。 3.灵敏系数 显然该数学模型是透明箱模型,必须逐一计算灵敏系数: 1)1(≈-?-=??=t s t S Ls f C δαδαL ; t S s L s f C δαα-=??==-70×1㎜℃=-7×104μm ℃; δα S t t L f C -=???=?=-70×1×10-6㎜/℃=-0.07μm/℃ δα δα??=/f C =-Ls Δt=-70×10㎜℃=-7×105μm ℃ t f C t δδ??=/ =-Ls αs=-70×11.5×10 -6 ㎜/℃=-0.805μm /℃ 4.计算各分量标准不确定度 4.1外径千分尺示值误差引入的分量u(L S ) 根据外径千分尺检定规程,示值误差e=±4μm , 在半宽为4μm 区间内,以等概率分布(均匀分布),则:u (L S ) =4/3=2.31μm u(L S )=|C LS |·u (L S )=1×2.31=2.31μm , 其相对不确定度 () () =?S S L u L u 0.1=1/10 , 自由度υ(Ls)=50 4.2被测主轴线膨胀系数不准确引入的分量u(αS ) 由于被测主轴线膨胀系数α1= 10.4×10-6/℃是给定的,是一个常数, 故 u(αS )= 0 , 自由度υ(αS )= ∞ 4.3测量环境偏离标准温度20℃引入的分量u(Δt) 测量环境偏离标准温度20℃的偏差为±10℃,在半宽为10℃范围内,以等概

金属材料抗拉强测量不确定度

金属材料抗拉强度测量不确定度分析 1.试验依据 GB228-2002(金属材料拉伸试验方法) 试验采用RGM-100型万能材料试验机,以20~30MPa/s 速率加荷直至将试样拉伸至断裂。试样拉断时的最大力所对应的应力即为金属材料的抗拉强度。 2.钢材抗拉强度测量的影响因素 根据钢材抗拉强度的计算公式为: 24d F πσ= (1) 式中:σ -抗拉强度,单位MPa (N/mm 2); F -拉力,单位 N ; d -钢材直径,单位mm 。 对于钢材抗拉强度检测,只要温度在室温(25~35℃)附近变化不大,温度对试验结果的影响就可以忽略不计;另外,只要加荷速率控制在规范允许范围内(规范允许范围:10-30MPa/s ;实际加荷速率:20-30MPa/s ),加荷速率的影响也可以忽略不计。能够对试验测试结果产生影响的因素主要有:重复测试(同一批试件在相同试验条件下重复测量结果的差异性)、试件截面积变化(归结为直径d 偏差)、荷载测量的精度以及测量结果的数据修约。上述影响因素中,试件材质非均匀性直接表现在测量结果的数据变化上,属于A 类不确定度评定;其余影响因素都是由于影响量的误差而导致试验测试量的偏差,均属B 类不确定度评定。金属材料抗拉强度测量不确定度影响因素汇总于表1中。 表1 影响金属材料抗拉强度测量准确性的主要因素 3.标准不确定度评定 3.1 样品不均匀性引起的标准不确定度R u

从根据这10个测试数据进行钢材抗拉强度测量不确定度的评定,属于A 类不确定度评定,相应的测量不确定度称为重复测量不确定度R u ,可采用贝塞尔法按(2)式进行评定: R u =∑=--n i i n n 1 2)()1(1σσ (2) 式中:n 为重复测量次数,σ i 为第i 次测量的材料强度测量值,σ为同一材料的试件强度各次测量结果的平均值。按式(2)计算,重复测量导致的试件抗拉强度测量标准不确定度为:R u 3.2 试件尺寸导致的测量标准不确定度d u 由于试件直径偏差导致的试件抗拉强度测量不确定度属B 类不确定度。 对于偏差为±a 的影响量x 的不确定度)(x u ,可按式(4)进行评定: )(x u =k a (3) 直径尺寸出现在区间d ±αmm 内各点的概率相等,即直径误差分布为均匀分布,所以其包含因子k =3。根据式(4),试件直径d 的测量不确定度)(d u 为: k a d u =)( (mm ) (4) 试件抗拉强度 σ 对试件直径 d 的灵敏系数d c = d ??σ可以通过对式(1)求偏导数得到: d c =d ??σ=38d F π-=d σ2 (5) 取 σ =σ,d 取标称尺寸,代入上式中得d c MPa/mm ) 由试件直径偏差引起的试件抗拉强度测量标准不确定度d u 为: d u =d c ?)(d u (6) 3.3 试验机拉力误差引起的试件抗拉强度测量标准不确定度F u

抗拉强度试验结果的不确定度评定

钢管抗拉强度试验结果的不确定度评定 1、 目的:对圆钢抗拉强度试验结果进行不确定评定,以得到抗拉强度实际 不确定度。 2、 方法:从一根钢管(规格Φ114mm ×3.75,牌号Q235)上,取10段长度为35cm 进行抗拉强度试验,按测量不确定度评定程序试验结果作不确定度评定。抗拉试验前,在钢管上测量其直径,取114mm 上的最小值,后计算其抗拉强度。(金属材料 室温拉伸试验方法 GB/T 228-2002) 3、 计算公式: U c 2(R m )=U 2( A F )+U 2(△x ) 3.1 R m =f m /S 0 S 0=ab (1+b 2 /6D (D-2a )) R m 表示抗拉强度,S 0表示最大拉力,D 表示直径,a 表示壁厚,b 表示宽度25mm 。 4、 求平均值:有附表所列钢管抗拉强度实验结果,求得10次抗拉强度平均 值。R m = 425.34MPa ,修约后R m = 425MPa 。 5、 不确定度来源: 5.1、被测材料:从同钢管上抽样,避免不同钢管带来的不确定度;试样的不 均匀性可有重复试验反映。 5.2、检测人员:尺寸、抗拉强度都有同一人操作,可消除有人员带来的不确 定度;读数误差可有多次实验包含。 5.3、检测设备:液压式万能试验机(编号YCZJ-03):最大示值600kN ,示值误 差不超过±1%,最大变动值为0.24% , U 1= KN k a 510.02 34 .425%24.0=?= 不确定度为 0.510KN ( K=2 ) 5.4、拉伸速度:拉伸速度对检测结果有一定影响,本次实验有一人操作,保

持恒定的速率,通过重复实验反映检测值。 5.5 重复性影响,重复性影响是通过多次重复测量来评定的。包括人员操作 的重复性,试验机的重复性,样品的不均匀性等因素,测量次数n=10,单次测量的标准偏差为S (F )=0.6KN ,则U 2= KN F s 424.02 6.02)(== 5.6 读数误差的影响,人工读数可以估计到分度值的五分之一即0.4KN ,不确 定度按均匀分布考虑U 3= KN d k a 23.03 4.0== 5.6、环境条件:实验室温湿度对实验结果影响较小,可忽略不计。 5.7 合成不确定度U 2(F )=U 12+U 22+U 32=0.5102+0.44242+0.232=0.4928KN U r (F)= %12.034 .4254928 .0= 5.8 实测面积误差的影响。 钢管的直径标值为D=114mm b=25mm,最小刻度02.0±mm ;a=3.75mm ,最小刻度01.0±mm 按均匀分布面积的不确定度为 U r (A)=2 ( U r 2(D)+ U r 2(a)+ U r 2(b) ) 1/2 =2× %2.0002.03 25 02.0375.301.0311402.0==++)( U r 2( A F )=U r 2(F)+U r 2(A)=(0.022+0.22)×10-4=0.054% U(A F )= %054.096 .2001000 34.425??=1.142MPa 5.9 由于数值修约的影响:拉伸强度的结果应修约到0或5MP ,由修约导致 的不确定度按均匀分布考虑 U (△x )= k a = 44.13 5.0=I MPa 5.10 合成标准不确定度

中级质量专业综合知识分类模拟题测量误差和测量不确定度

中级质量专业综合知识分类模拟题测量误差和测量不确定 度 一、单项选择题 1. 测量结果与在重复性条件下,对同一被测量进行无限多次测量所得的结果的平均值之差称为。 A.随机误差 B.环境误差 C.温度误差 D.系统误差 答案:A 2. 可以用适当的修正值来估计并予以补偿。 A.随机误差 B.系统误差 C.总体均值 D.约定真值 答案:B 3. 用标准差的倍数或说明了置信水平的区间的半宽表示的测量不确定度,称为。 A.标准不确定度 B.扩展不确定度 C.系统不确定度 D.随机不确定度 答案:B

4. 测量不确定度是对测量结果的定量表征。 A.可信性 B.有效性 C.分散性 D.准确性 答案:C 测量不确定度是对测量结果分散性的定量表征。 5. 以标准差表示的测量不确定度,称为。 A.标准不确定度 B.扩展不确定度 C.合成不确定度 D.A类不确定度 答案:A 以标准差表示的测量不确定度,称为标准不确定度。 6. 用不同于对观测列进行统计分析的方法来评定标准不确定度,称为。 A.A类不确定度 B.扩展不确定度 C.合成不确定度 D.B类不确定度 答案:D 用不同于对观测列进行统计分析的方法来评定标准不确定度,称为B类不确定度。 7. 一般来说,最终报告时,扩展不确定度U(y)可取位有效数字。

A.1~2 B.2~3 C.2~4 D.3~5 答案:A 输出估计值y及其标准不确定度u(y)或扩展不确定度U(y)的数值都不应给出过多的有效位数。一般来说,最终报告时,扩展不确定度U(y)至多为两位有效数字,即可取1~2位有效数字。 8. 用一台数字多用表对生产用1MΩ电阻进行测量,评定后uA=0.082kΩ,uB= 0.046kΩ,取包含因子k=2,那么该数字多用表的扩展不确定度U为。 A.0.188kΩ B.0.192kΩ C.0.19kΩ D.0.18824kΩ 答案:C =0.00884,UC=0.094,k=2,则:U=Uc×2=0.188kΩ,对结果修约,保留2位有效数字,U=0.19kΩ。 9. 测量结果表述必须同时包含赋予被测量的值及与该值相关的。 A.误差 B.测量准确度 C.测量不确定度 D.测量精密度

基于斐索干涉仪的直接探测多普勒测风激光雷达

第28卷第5期 2004年9月大气科学Chinese Journal of Atmospheric Sciences Vol 128 No 15Sept.2004 2003205208收到,2003210214收到修改稿 3中国科学院百人计划和上海市光科技计划共同资助 基于斐索干涉仪的直接探测多普勒测风激光雷达 3刘继桥 陈卫标 胡企铨 (中国科学院上海光学精密机械研究所先进激光技术与应用系统实验室,上海201800) 摘 要 提出结合多光束斐索(Fizeau )干涉仪和CCD 探测器的条纹图像技术,测量地球边界层下的三维风场的直接探测多普勒激光雷达技术。在分析Fizeau 干涉仪的物理特性和光谱特性以及影响测量多普勒频移的因数和改进方法的基础上,提出一套切合实际的直接探测多普勒激光雷达系统参数。并利用该参数进行性能评估分析,模拟不同干涉仪参数对风速精度的影响,得出一个优化的干涉仪物理参数。模拟结果显示,系统可以获得小于1m s -1的水平风速精度。这些分析,为建立实际的激光雷达系统提供设计依据。 关键词:多光束斐索干涉仪;直接探测;多普勒激光雷达;风速 文章编号 100629895(2004)0520762209 中图分类号 P415 文献标识码 A 1 引言 大气风场是各种天气过程、大气化学成分循环和海气相互作用的主要动力,因此大气风场探测在气象、环境等领域中有着极其重要的地位。多普勒激光雷达已经被认为是精确测量三维风场的有效手段[1]。从全球风场的测量来看,直接探测多普勒激光雷达技术相对相干技术来说存在一定的优势[2]。边缘检测[3]和条纹图像[4]是目前直接探测多普勒激光雷达中最主要的两种多普勒频移测量技术。边缘检测常采用高分辨率的法—伯(FP )干涉仪[3]或者分子[5]、原子吸收线的翼作为鉴频器,其测量灵敏度依赖于分子和气溶胶的后向散射比和风速大小;条纹图像技术则是利用干涉条纹的移动直接测量多普勒频移。Mc G ill 等[6]详细分析、比较了两种测量技术,认为两种技术在风速测量精度十分接近。Mc Kay 等[7]从星载系统的角度比较两种技术,认为条纹图像技术更适合于研制星载激光雷达系统。 最初的条纹图像技术采用FP 干涉仪和图像光电探测器(IPD )得以实现,但这种多阳极光电倍增管的量子效率比较低,而且像元数很有限[8]。Irang 等[9]演示了利用CCD 探测器的条纹图像的直接探测激光雷达,系统利用复杂的二元光学技术将环形条纹转换成点阵[10],增加系统复杂性。因此,相关学者把目光转移到寻找更加适合的干涉仪来代替FP ,如M 2Z 干涉仪[11]和Fizeau 干涉仪[12]。Mc Kay [12]首次分析了利用Fizeau 干涉仪进行多普勒频移检测,其分析是较初步的,也没有针对具体系统进行分析。由于Fizeau 干涉形成的是直线条纹,这样可以利用量子效率较高的线阵固体探测

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

金属材料抗拉强度和断后伸长率的测量不确定度评定研究

金属材料抗拉强度和断后伸长率的测量不确定度评定研究 发表时间:2018-10-15T16:57:22.290Z 来源:《防护工程》2018年第11期作者:易丽娜[导读] 对ISO 6892-1:2016 《金属材料拉伸试验第1部分:室温试验方法》中抗拉强度和断后伸长率A的影响因素进行了分析,对测量不确定度的主要分量进行量化,评定了抗拉强度和断后伸长率A的测量不确定度。易丽娜 通标标准技术服务(上海)有限公司 201315摘要:抗拉强度是金属在静拉伸条件下的最大承载能力,断后伸长率是断裂后标距的伸长与原始标距的之比的百分率,是金属材料的最主要力学性能指标。根据JJF 1059.1-2012《测量不确定度评定与表示》,对ISO 6892-1:2016 《金属材料拉伸试验第1部分:室温试验方法》中抗拉强度和断后伸长率A的影响因素进行了分析,对测量不确定度的主要分量进行量化,评定了抗拉强度和断后伸长率A的测量不确定度。关键词:金属材料;不确定度;室温拉伸试验;抗拉强度;断后伸长率 1 引言 所有零部件以及产品在使用过程上往往会受到外力的作用,因此要求金属材料必须在一定程度上具有承受机械载荷而不超过允许变形或破坏的能力,我们把这种能力称为金属材料的力学性能。室温拉伸试验方法是目前使用最普遍的力学性能的试验方法。为了更有效地使用和分析金属材料,我们需要了解材料的力学性能以及影响力学性能的主要因素。试样制备方法、检测设备和仪器、测试方法和结果的处理都会影响力学性能的测量结果,包括抗拉强度、屈服强度、规定塑性延伸强度、断后伸长率等。分析各影响因素对力学性能合成标准不确定度的贡献,可以帮助我们找到主要因素,继而对这些主要因素进行控制和改进。 2 概述 2.1测试设备 (1)万能试验机:新三思CMT-5205微机控制电子万能试验机,精度:0.5级; (2)游标卡尺:广陆数显游标卡尺,测量范围:(0~150)mm,分辨力:0.01mm,不确定度:U=0.01mm(k=2); (3)打点机:上海东星建材试验设备公司DD-II连续式标点机。 2.2 试验条件 环境条件:室温(23±5)℃,湿度(20~80)%RH。 应变速率:根据标准ISO 6892-1:2016采用试验速率控制的方法A2进行基于横梁位移计算得到应变速率控制。 2.3被测对象 热轧钢板t=40mm。 2.4试验方法及过程 试验方法:ISO 6892-1:2016 《金属材料拉伸试验第1部分:室温试验方法》试验过程:确认环境条件是否满足标准要求,同时确认万能试验机、游标卡尺等设备是否处于有效校准周期内,是否处于正常使用状态。使用CMT-5205微机控制电子万能试验机,根据相应规范设定试验速率,开始进行拉伸试验,缓慢施加拉力拉伸试样直到断裂为止。用分辨率0.01mm,量程(0~150)mm的数显游标卡尺测量试验样品的原始直径、断后直径、原始标距和断后标距,依据标准中的定义和公式计算抗拉强度和断后伸长率。 2.5 评定方法 根据文献[2]和文献[3],对金属材料抗拉强度和断后伸长率的测量不确定度进行了评定。 由于测量不确定度通常由若干分量组成,因此每个分量均可用其概率分布的标准偏差估计值表征,即分量的标准不确定度。通常根据在规定测量条件下测得的分量的一系列测得值采用统计分析给出标准不确定度的方法为A类评定;本报告中将采用贝塞尔公式法进行A类评定。在重复性条件或复现性条件下对同一被测量独立重复观测n次,获得 n个测得值,被测量X的最佳估计值是n个独立测得值的算术平均值,按下列公式计算(文献[2], 4.3.2.2):

测量不确定度的方法

测量不确定度评定U,p,k,u代表什么? 当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。于是可得标准不确定度和扩展不确定度之间的关系: U=kσ=ku 式中k为包含因子。 扩展不确定度U表示具有较大置信水准区间的半宽度。包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。 在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。 在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。 测量不确定度评定步骤? 评定与表示测量不确定度的步骤可归纳为 1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。 2)评定标注不确定度分量,并给出其数值ui和自由度vi。 3)分析所有不确定度分量的相关性,确定各相关系数ρij。 4)求测量结果的合成标准不确定度,则将合成标准不确定度uc及自由度v . 5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度 U=kuc。 6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc 或展伸不确定度U,并说明获得它们的细节。 根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。 我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤, 一、概述 二、数学模型 三、输入量的标准不确定度评定 这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定 这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。还有要考虑温湿度的影响,以及人为读数误差(不知道你们那个万用表是不是人工读数),基本上万用表就考虑这些因素差不多了,你就是一个万用表的读书不确定度,一般按正态分布,K取根号3,一般会把标准不确定度先转换成相对标准不确定度,这样都变成无量纲的,方便后边合成。 四、计算合成不确定度 五、计算扩展不确定度 六、最后的不确定度表示 一般试验室能力验证,查的就是不确定度报告,按这个格式就可以

拉伸试验测量结果不确定度评定

拉伸试验测量结果不确定度评定 1.过程概述: 1.1方法及评定依据 JJF1059-1999测量不确定度评定与表示 JJG139-1999拉力、压力和万能试验机机定规程 GB/T228-2002金属材料室温拉伸试验方法 JJF1103-2003万能试验机计算机数据采集系统评定 1.2 环境条件 试验温度为18℃,湿度40%。 1.3 检测程序 金属材料的室温拉伸试验抗拉强度检测时,首先根据试样横截面的种类不同测量厚度、宽度,计算截面积S 0;然后用WAW-1000C 微机控制电液伺服液压万能试验机以规定速率施加拉力,直至试样断裂。在同一试验条件下,试验共进行10次。 2 拉伸试验测量结果不确定度的评定 评定Q235钢材以三个试样平均结果的抗拉强度和塑性指标的不确定度 使用10个试样,得到测量结果见下表1。 实验室标准偏差按贝塞尔公式计算 1 1 2 )(-= ∑-=n i n i j X X s 式中: ∑==n i Xi n X 1 1

表1 重复性试验测量结果 2.1抗拉强度不确定度评定 数学模型 R m =F m /S o u rel(R m )= ) ( ) ( ) ( ) (2 2 2 2 mv rel rel m rel rel R u S u F u rep u+ + + 式中: R m —抗拉强度 F m —最大力 S —原始横截面积 rep—重复性 R mv —拉伸速率对抗拉强度的影响

2.1.1 A 类不确定度分项u rel (rep )的评定 本例评定三个试样测量平均值的不确定度,故应除以3。 u rel (rep )= 3 S = 3 % 627.0=0.362% 2.1.2最大力F m 的B 类相对不确定度分项u rel (F m )的评定 (1)试验机测力系统示值误差带来的不确定度u rel (F 1) 万能试验机为1.0级,其示值误差为±1.0%,按均匀分布考虑K=3则: u rel (F 1)= %577.03 %0.1= (2)标准测力仪的相对标准不确定度u rep (F 2) 使用0.3级的标准测力仪对试验机进行鉴定,JJG144-1992中给出了R=0.3%。则其相对标准不确定度为: u rel (F 2)= %106.083 .2=R (3)计算机数据采集系统带来的相对标准不确定度u rep (F 3) 根据JJF-2003计量技术规范中给出,计算机数据采集系统所引入的B 类相对标准不确定度为0.2%。 u rel (F 3)=0.2% (4)最大力的相对标准不确定度分项u rel (F m ) u rel (F m )=)()()(32 22 12 F u F F u rel rel rel u ++ =0.620% 2.1.3原始横截面积S 0 的相对标准不确定度分项u rel (S 0)的评定: 根据GB/T228-2002 标准中,测量原始横截面积时,测量每个尺寸应准确到±0.5%。 S 0 =ab )(0S u rel =)(a u rel +)(b u rel (1)测量宽度a 引入的不确定度 )(a u rel = %289.03 % 5.0=

测量不确定度试题

一 是非题(每题2分,共20分) 1 测量不确定度的A 类评定对应于随机误差,B 类评定对应于系统误差。 ( ) 2 系统效应引起的测量不确定度称为系统不确定度。 ( ) 3 用最小二乘法进行直线拟合时,若测量10次,则自由度等于8。 ( ) 4 按贝塞尔公式计算得到的实验标准差随测量次数的增大而变小。 ( ) 5 按A 类评定和B 类评定得到的不确定度,两者之间没有本质上的差别。 ( ) 6 测量不确定度是被测量最佳估计值可能误差的度量。 ( ) 7 用一稳定的1 V 电压源校准电压表,从电压表上得到的示值为1.01 V , 则其示值不确定度为+0.01 V 。 ( ) 8 误差可以有不确定度,不确定度也可以有误差。 ( ) 9 两个矩形分布的合成为梯形分布。 ( ) 10 在检测实验室认可工作中规定,对于某些条件不成熟的检测项目可以暂时不进行测量不确定度的评定。 ( ) 二 单项选择题(每题2分,共20分) 1 取包含因子k =2所得到的扩展不确定度U ,其置信概率为: 。 A :99% B :95% C :95.45% D :不能确定 2 随机变量x 服从正态分布,其出现在区间 [-σ,2σ ]内的概率为: 。 A :68.27% B :81.86% C :95.45% D :不能确定 3 两个不确定度分量分别为:u 1和u 2,则两者的合成标准不确定度为: 。 A :u 1+u 2 B :21u u - C :2221u u + D :不能确定 4 测量不确定度的A 类评定可以采用贝塞尔法和极差法,两种方法所得到的标准不确定度的自由度 。 A :相等 B :贝塞尔法得到的自由度大 C :极差法得到的自由度大 D :当测量次数较少时,极差法得到的自由度大 5 测得某物体的质量为m =12345 g ,其扩展不确定度为U 95=120 g ,则测量结果的最正确表示方法是 。 A :m =(12345 ±120) g B :m =(1235 ±12)?10 g C :m =(1234 ±12)?10 g

误差累积方法估计拉伸试验的侧量不确定度

误差累积方法估计拉伸试验的侧量不确定度 引言 基于误差累积原理和利用试验方法标准及检定标准规定的测量误差要求,提出估计测量不确定度的方法要点。因为不同材料对于某些例如应变速率或应力速率等控制参数呈现不同的响应,所以不可能对所有材料计算出单一的不确定度值。此处提供的误差累积方法可以把它看成为按本标准进行试验(1级试验机和1级引伸计)的实验室的测量不确定度上限。应当注意,当评定试验结果的总分散度时,测量的不确定度应看做包含由于材料的不均匀性而引起的固有分散度。附录K中给出的相互比较试验的分析统计方法,并不能分离出这两种分散度的影晌源。估计实验室间分散度的其他有用的方法是,采用一种具有保证材料性能的持证标准材料(CRM)。已经选定供作室温拉伸试验使用的标准材料(CRM)为一种直径14 mm 每批It的标准材料镍铬合金(Nimonic75 ),正在共同体标准物质局(BCR)监督认证程序之中。 不确定度的估计 1 与材料无关的参数 将各种误差源产生的误差累加在一起的方法已做相当详细的处理。最近,两个ISO文件(ISO 5725- 2和测量不确定度的表达指南),对精密度和不确定度的估计给出了指导。下面的分析采用了常规的方和根方法。表ii给出了各种拉伸性能试验参数的误差与不确定度的期望值。由于应力应变曲线的形状特点,有些拉伸性能原则上能以较高的精密度测定。例如,上屈服强度R,。仅仅取决于力和横截面积的测量误差;而规定强度R,却取决于力、变形(位移)、标距和横截面积的测量误差。对于断面收缩率Z,则需考虑试验前、后横截面积的测量误差。 表J1 确定拉伸试验数据的最大允许测量不确定度(使用方和根方法) 2. 2 与材料有关的参数 对于室温拉伸试验,材料受应变速率(或应力速率)控制参数影响明显的拉伸性能是尺。、凡L和Rp,抗拉强度R,也与应变速率相关,但试验中,通常以比测定Rp高得多的应变速

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

混凝土抗压强度检测结果的不确定度评定.

混凝土抗压强度检测结果的不确定度评定 一、概述: 混凝土的抗压强度是在规定加荷速率下,测试混凝土抵抗压力破坏的极限应力。 检测用混凝土试块的尺寸为150×150×150mm з, 混凝土设计强度等级为C30。混凝土抗压强度的检验依据GB/T50080-2002《普通混凝土力学性能试验方法》进行。试验选用1500kN 材料试验机,混凝土试块强度等级

平度和不垂直度引起的不确定度分量。由于试验在规定速率范围内进行,且对不平度和不垂直度有严格要求,混凝土试块成型前对每个试模都进行了测量,不符合要求的试模已经予以剔除。因此由加荷速率、不平度、不垂直度引起的不确定度分量可以忽略不计。 三、不确定度分量的计算 1.样品的不均匀性引起的不确定度 18块混凝土抗压强度的测量值分别为:42.2,44.1,40.2,42.6,41.6,44.3,42.4,44.2,45.8,41.8,46.0,45.6,40.7,43.8,40.4,44.5,44.6,39.7。 取18个测量值的平均值作为测量结果,则对不确定度采用A 类评定,则: f =43.03 ()()47.012 )(=--=∑n n f f u i f ()%1.1,==f u u f r f 2.面积引起的不确定度分量 混凝土的受压面积为正方体,实际测量时是测量试块的边长,两个边长的乘积即为受压面的面积。评定边长测量的不确定度如下所示: 2.1测量边长所用钢板尺的最大示值误差为±0.10mm ,按B 类评定,包含因子按均匀分布来取值,k=3,因此由钢板尺的最大允差带来标准不确定度为:

测量不确定度培训试题-答案

测量不确定度评定培训试题 姓名: 分数: 一. 单项选择题(每题5分,共计30分) 1. 对被测量Y 进行n 次重复测量,测量结果分别为y y y n ,........,21,则其n 次测量平均值y 的实验标准差为 B 。 A:1)(12 )(-=∑-=n i y s n i y y B:)1()(12 )(-=∑-=n n i y s n i y y C:n i y s n i y y ∑-==12 )()( 2. 在不确定度的评定中,常常需要对输入量的概率分布做出估计。在缺乏可供判断的信息情况下,一般估计为 A 是较为合理的。 A:正态分布 B:矩形分布 C:三角分布 D :两点分布 3. 随机变量x 服从正态分布,其出现在区间 [-2σ ,2σ ]内的概率为: C 。 A :68.27%; B :81.86%; C :95.45%; D :不能确定。 4. 两个不确定度分量分别为:u 1和u 2,则两者的合成标准不确定度为: C 。 A :u 1+u 2; B :21u u -; C :2221u u +; D :不能确定。 5. 某长度测量的两个不确定度分量分别为:u 1= 3mm ,u 2=4mm ,若此两项不确定度分量均独立无关,则其合成标准不确定度u c 应为 D 。A :7mm ; B :12mm ; C :3.5mm ; D :5mm 6. 若某被测量受许多因素的影响,并且这些影响的大小相互接近且相互独立,则该被测量接近于满足 A 。 A:正态分布 B:矩形分布 C:三角分布 D :反正弦分布 二.填空题(每空4分,共计40分) 1. 测量不确定度是指:根据所用到的信息,表征赋予了被测量值分散性的 非负参数。 2. 若测量结果为l =10.001mm ,其合成标准不确定度u =0.0015mm ;取k =2,则测量结果报告可以表示为:l =(10.001mm±0.0015mm )mm ;k =2。 3. 按级使用的数字式仪表,其测量仪器最大允许误差导致的不确定度通常服从均匀 分布。 4. 在相同条件下进行测量,不同测量结果的扩展不确定度是相同的。 5. 有限次的重复测量结果通常服从正态分布,t 分布的极限情况(即n →∞)为 正态 分布。 6. 用千分尺测量某尺寸,若读数为20.005mm ,已知其20 mm 的示值误差为0.002mm ,则其修正值为0.002mm ,修正后的测量结果为20.007。 三. 判断题(每题2分,共计10分) 1. 计量标准(测量参考标准)的不确定度就是标准不确定度。( × ) 2. 标准偏差反应数据的分散性,数据分散性越小,标准偏差就越小。( × ) 3. 单次测量的标准偏差是通过一次测量得到的。( × ) 4. 相对不确定度的量纲与被测量的量纲相同。( √ ) 5. 在测量条件完全相同的情况下,对某个被测量重复测量20次得到的标准偏差一定小于重复测量10次得到的标准偏差。 ( × ) 四. 1. 求10次测量结果的平均值及单次测量标准偏差x u ;平均值:10.010 x u =0.0012 2. 若所用量具的示值误差为0.005mm ,计算其B 类分量;()B u =0.0029 3. 求出本测量过程的合成标准不确定度及扩展不确定度。()c u =0.0031 U=0.0093

测量不确定度分析方法

测量不确定度分析方法 不确定度是表征测量值的分散性并与测量结果相联系的一 个参数,由分析与评定得到。一切测量结果都不可笔尖地存在不确定度,测量结果(数据、报告等)也越来越多采用不确定度来表达其质量和可靠程度。不确定度越小,测量水平越高,测量结果的使用价值越高,反之亦然。为统一对测量结果不确定度的评定与表达方法,国际标准化组织(ISO)等七个国际组织于1993年联合发布了《测量不确定度表示指南》。我国《测量不确定度评定与表示》等同采用此《指南》。 一、测量不确定度的意义 1.基本概念:测量不确定度是表征合理赋予被测量之值的分散性、与测量结果相联系的参数。在测量结果的完整表述中,应包括测量不确定度。 不确定度可以是标准差或其倍数,或是说明了置信水准的区间的半宽。以标准差表示的不确定度称为标准不确定度,以u表示。以标准差的倍数表示的不确定度称为扩展不确定度,以U表示。扩展不确定度表明了具有较大置信概率的区间的半宽度。 2.测量结果的重复性 测量结果的重复性是指在相同测量条件下,对同一被测量进

行连续多次测量所得到结果之间的一致性。这里的相同 测量条件包括:相同的测量程序、相同的观测者、使用相同的测量仪器、相同地点、在短时间内进行重复测量。这些条件也称为“重复性条件”。 测量重复性可以用重复观测结果的实验标准差定量地给出。3.测量结果的复现性 测量结果的复现性是指在改变了的测量条件下,同一被测量的测量结果之间的一致性。这里变化了的测量条件包括:测量原理、测量方法、观测者、测量仪器、参考测量标准、地点、时间、使用条件。这些条件可以改变其中一项、多项或者全部,它们会影响复现性的数值。因此,在复现性的有效表述中,应说明变化的条件。复现性可以用复现性条件下,重复观测结果的实验标准差定量地给出。这里,测量结果通常理解为已修正结果。复现性又称为“再现性” 二、测量误差与测量不确定度的主要区别 测量误差为测量结果减去被测量的真值,是客观存在的一个确定的值,但由于真值往往不知道,故误差无法准确得到。测量不确定度是说明测量分散性的参数,由分析和评定得到,因而与分析者的认识程度有关。误差与不确定度是两个不同的概念,不应混淆或误用。测量结果可能非常接近真值,但由于认识不足,评定得到的不确定度可能较大。也可能测量误差实际上较大,但由于分析估计不足,给出的不确

相关主题
文本预览
相关文档 最新文档