当前位置:文档之家› 结晶釜的设计课程设计

结晶釜的设计课程设计

结晶釜的设计课程设计
结晶釜的设计课程设计

课程设计

题目结晶釜的设计

学院化学化工学院

专业化学工程与工艺

班级化工1001 学生付沛松

学号 20100221040

指导教师化学工程系课程指导小组

二〇一二年十二月三十一日

目录

1. 结晶釜的结构 (3)

1.1 结晶釜的功能和用途 (3)

1.2 结晶釜的反应条件 (3)

2. 设计标准 (4)

3. 设计方案的分析和拟定 (4)

4. 各部分结构尺寸的确定和设计计算 (5)

4.1 罐体和夹套的结构设计 (5)

4.1.1 罐体几何尺寸计算 (6)

4.1.2 夹套几何尺寸计算 (7)

4.2 结晶釜的强度计算 (8)

4.2.1 强度计算(按内压计算强度) (8)

4.2.2 稳定性校核(按外压校核厚度) (10)

4.2.3水压试验校核 (13)

4.3 结晶釜的搅拌器 (14)

4.3.1 搅拌装置的搅拌器 (14)

4.3.2 搅拌器的安装方式及其与轴连接的结构设计 (14)

4.3.3 搅拌装置的搅拌轴设计 (15)

4.4 结晶釜的传动装置设计 (16)

4.4.1 常用电机及其连接尺寸 (16)

4.4.2凸缘法兰 (16)

4.4.3安装底盖 (16)

4.5 结晶釜的轴封装置设计 (16)

4.5.1 填料密封 (17)

4.5.2 机械密封 (17)

4.6结晶釜的其他附件设计 (18)

4.6.1 支座 (18)

4.6.2 手孔和人孔 (18)

4.6.3 设备接口 (18)

5. 参考文献 (21)

1.结晶釜的结构

1.1 结晶釜的功能和用途

结晶釜主要由搅拌容器、搅拌装置、传动装置、轴封装置、支座、人孔、工艺接管和一些附件组成。搅拌容器分罐体和夹套两部分,主要由封头和筒体组成,多为中、低压压力容器;搅拌装置由搅拌器和搅拌轴组成,其形成通常由工艺设计而定;传动装置是为带动搅拌装置设置的,主要由电机、减速器、联轴器和传动轴等组成;轴封装置为动密封,一般采用机械密封或填料密封;它们与支座、人孔、工艺管等附件一起,构成完整的结晶釜。

结晶釜是物料混合反应后,夹层内需冷冻水或冷媒水急剧降温的结晶设备,其关键环节在于夹层面积的大小,搅拌器的结构形式和物料出口形式,罐体内高精度抛光,以及罐体内清洗无死角的要求来满足工艺使用条件。

结晶釜是化工、制药、食品等行业的物料混合、加温、降温、搅拌等国内过程中的混合反应设备。由于工艺和介质不同,物料有易燃、易爆、巨毒、高温高压的状况常为多见。设备的搅拌形式、转速、加温和降温的要求不同。该设备的设计选材、结构和减速机防爆与不防爆要求也不同。

1.1 结晶釜的反应条件

结晶釜的设计要注重反应的条件,一般考虑夹套和搅拌器的材料、上下进出口的设计,主要分为温度、压强、进料口和出料口、材料这几个因素。

温度----这个一般都应当有严格的控制,所以在设计的时候要注意温度计选择。要是反应温度高可能要使用油浸泡温度计,所以要留可以装油的管槽,要是温度低还要注意冰封现象发生。要是温度在100度到0度之间,要求不高的情况下,可以用塞子直接套温度计(注意压强)。

压强----压强的高低要选择合适的反应釜,一般只要能承受两倍的大气压就可以了。本设计是在负压条件下完成。

进料口和出料口----一般进料口做一定大就一个可以了,要注意一些比如回流口、真空口什么的,还有就是出料口的大小,有些物质反应后不容易放出,所以要设计合适。

材料----一般反应釜都是玻璃的,要是工业生产最好用搪瓷的,搅拌的金属要注意保护不要被腐蚀,放料活塞要可以防腐。

还有就是夹套的进出水的控制,防止部分比如盐水的滞留。

2. 设计标准

(1)HG/T 20569-94 《机械搅拌设备》

(2)GB 150-1998 《钢制压力容器》

(3)HG 21563~21572-95 HG 21537.7~8-92 《搅拌传动装置》

(4)TCED S8-90 《压力容器强度计算书统一格式》

(5)CD 130A20-86 《化工设备设计文件编制规定》

3. 设计方案的分析和拟定

此次我要设计的是全容积为3.53m,操作容积为2.53m的结晶釜。

1、设计压力:容器内的设计压力为负压,夹套内的设计压力为0.2MPa,由此可知本反应釜是在常压下工作。

2、设计温度:容器内的设计温度80到100℃,夹套内的设计温度<150℃,设计温度均不高,不需要对反应釜作保温措施。

3、介质选择:容器内的介质为染料及有机溶剂,夹套内的介质为冷却水或蒸汽。

4、搅拌器:选用推进式搅拌器,搅拌轴转速为50 r/min,功率为4kW。

5、材料选择:选用最常用的Q235-A碳素钢材,由此釜中的其他接管法兰等钢材也选用Q235-A碳素钢材。封头为标准的椭圆封头,材质也选用Q235-A碳素钢。

6、传动系统:

选用库存电机Y1322-6,转速960r/min,功率4.5kW,给定搅拌传动系统用V 带传动。

7、接管设计:已知结晶釜的用途为冷却结晶,因此反应釜需要冷却水入口、加料口、人孔、温度计管口、压缩空气入口、放料口、手孔、备用管口、压料管、压料管套管。

公称尺寸:冷却水入口公称尺寸DN=25、加料口公称尺寸DN=25、人孔公称尺寸DN=25、温度计管口公称尺寸DN=80、压缩空气入口公称尺寸DN=25、放料口公称尺寸DN=40、冷凝水出口公称尺寸DN=25、手孔公称尺寸DN=100、备用管口公称尺寸DN=40、压料管DN=50、压料管套管DN=80。

8、焊接选择:焊接采用电弧焊,焊条牌号:采用J 507焊条。

9、法兰焊接:法兰焊接按相应法兰标准的规定,角焊缝及搭接焊缝的焊叫尺寸按两焊件中较薄板的厚度。

此外,设计中还需选择接管、管法兰、设备法兰、轴承、联轴器、轴封形式,最后完成设计时,需将设计的反应釜绘制成装配图及绘出传动系统部件图。

4. 各部分结构尺寸的确定和设计计算

4.1 罐体和夹套的结构设计

罐体一般是立式圆筒形式容器,有顶盖、筒体、罐底,通过支座安装在基础平台上。罐底通常为椭圆形封头。顶盖在受压状态下常选用椭圆形封头,对于常压或操作压力不大而直径较大的设备,顶盖可采用薄钢板制造的平盖,并在薄钢板上加设型钢(槽钢和工字钢)制的横梁,用以支承搅拌器及其传动装置。

顶盖和钢底分别与筒体相连。罐底与筒体的连接常采用焊接连接。顶盖与筒体的连接型式分为开拆和不可拆两种,筒体直径1D ≤1200㎜,宜采用可拆连接。当要求可拆时,做成法兰连接。夹套型式与罐体相同。

4.1.1 罐体几何尺寸计算

1、釜体形式为常用结构圆筒形,封头形式为常用结构椭圆形。原始尺寸如下表4-1:

表4-1 原始尺寸

2

初算筒体内径1D 按式

3

14i

V

D π?

计算,得

0621.12

.11

4433

1=??==ππi V D m 全容积V (3m )

3.5 操作容积1V (3m )

2.5 传热面积F (2m )

7.4

取圆整筒体内径1D =2000mm ,一米高的容积 m 1V =1.3333m ,内表面积

m 1F =6.282m 。

选取釜体封头容积 封1V =0.405 3m 釜体高度1H 按式

()m V V V H 111/封-= 计算,得

()m V V V H 111/封-==(3-0.405)/1.333=2.421m

选取圆整釜体高度 1H =2000 mm

实际容积V 按式

封111V H V V m +?= 计算,得

封111V H V V m +?==1.333*2.000+0.405=3.0653m

4.1.2 夹套几何尺寸计算

夹套直径2D 选取夹套筒体内径 2D =1D +100=2100 mm,

装料系数η按式

V V /操=η 计算,得

V V /操=η=0.8/1.0=0.8

夹套筒体高度H 2按式

V

V V H

m

112

)

(封-≥

η

计算,得

()m V V V H 112/封-≥η=(0.8*3.0-1.333)/0.785=0.93m

选取圆整夹套筒体高度 H 2=930mm 。

以内径为公称直径的椭圆封头的型式和尺寸,选取罐体封头表面积 m 1F =2.213

2m 。

筒体的容积、面积和质量,选取一米高筒体表面积 m 1F =6.282m 。

实际总传热面积F 按式

121F H F F m +?=`

校核,得

封121F H F F m +?==3.14*0.95+1.1625=4.14552m >3.5 2m

综上所述,筒体和夹套尺寸为下表4-6所示:

表4-6 筒体和夹套尺寸

直径(mm) 高度(mm ) 筒体 2000 1000 夹套 2100

930

4.2 夹套反应釜的强度计算

4.2.1 强度计算(按内压计算强度)

据工艺条件或腐蚀情况确定,设备材料选用Q235-A 。

由工艺条件给定, 设计压力(罐体内) 1p =0.2MPa , 设计压力(夹套内) 2p =0.3MPa , 设计温度(罐体内) 1t <100℃, 设计温度(夹套内) 2t <150℃。

选取罐体及夹套焊接接头系数 φ=0.85。

罐体筒体计算厚度1δ按式

[]11112p D p t

-=

φσδ

计算,得

[]mm p D p t

04.12

.085.011321000

2.021111=-???=-?=

φσδ 夹套筒体计算厚度2δ按式

[]22222p D p t

-=

φσδ

计算,得

[]mm p D p t

72.13.085.011321100

3.022

222=-???=-=

φσδ 罐体封头计算厚度'1δ按式

[]11

1'15.02p D p t

-=

φσδ

计算,得

[]mm p D p t

04.12

.05.085.011321000

2.05.02111'1=?-???=-?=

φσδ

夹套封头计算厚度'2δ按式

[]222'25.02p D p t

-=

φσδ

计算,得

[]mm p D p t

72.13.05.085.011321100

3.05.022

22'2=?-???=-=

φσδ

壁厚附加量321C C C C ++=,其中C 1为钢板负偏差,初步取1C =0.6mm, 腐蚀裕量2C =2mm,热加工减薄量3C =2(封头热加工3C =0.5mm ),因此:C =0.6+2+0=2.6mm

罐体筒体设计厚度c 1δ按式

2

11C c +=δδ

计算,得

211C c +=δδ=1.04+2.0=3.04mm

夹套筒体设计厚度c 2δ按式 2

22C c +=δδ

计算,得

222C c +=δδ=1.72+2.0=3.72mm

罐体封头设计厚度'1c δ按式

2'

1'1C c +=δδ 计算,得

C c +='1'1δδ=1.04+2.0=3.04mm 夹套封头设计厚度'2c δ按式

2'2'2C c +=δδ 计算,得

2'2'2C c +=δδ=1.72+2.0=3.72mm

圆整选取罐体筒体名义厚度 n 1δ=5mm

圆整选取夹套筒体名义厚度 n 2δ=5mm 圆整选取罐体封头名义厚度 '1n δ=5mm 圆整选取夹套封头名义厚度 '2n δ=5mm

4.2.2 稳定性校核(按外压校核厚度)

1、假设罐体筒体名义厚度 n 1δ=8 mm 钢板厚度负偏差,选取钢板厚度负偏差 1C =0.6mm 据经验规律,腐蚀裕量 2C =2.0mm

厚度附加量C 按式

21C C C +=

计算,得

21C C C +==0.6+2.0=2.6mm

罐体筒体有效厚度e 1δ按式 C n e -=11δδ

计算,得

C n e -=11δδ=8-2.6=5.4 mm

罐体筒体外径O D 1按式

n O D D 1112δ+=

计算,得

n O D D 1112δ+==1000+2*8=1016mm

筒体计算长度L 按式

1231h H L += 计算,得

1231h H L +==950+250/3=1033.3mm

系数 O D L 1=1033.3/1016=1.017

系数 e O D 11δ=1016/5.4=188.15

许用外压力[]p 按式

[]e O D B p 11δ=

计算,得

[]e

O D B p 11δ=

=85/188.15=0.45MPa>0.3MPa

确定罐体筒体名义厚度 n 1δ=8 mm

2、假设罐体封头名义厚度 '1n δ=8 mm 选取钢板厚度负偏差 1C =0.6mm 据经验规律,腐蚀裕量 2C =2.0mm 厚度附加量C 按式

21C C C += 计算,得

21C C C +==0.8+2.0=2.6mm

罐体封头有效厚度'1e δ按式

C n e -='1'1δδ

计算,得

C n e -='1'1δδ=8-2.6=5.4 mm 罐体封头外径'1O

D 按式

'1'1'12n O D D δ+= 计算,得

'1'1'12n O D D δ+==1000+2*8=1016mm

标准椭圆封头当量球壳外半径'1O R 按式

'1'19.0O O D R = 计算,得

'1'19.0O O D R ==0.9*1016=914 mm 系数A 按式

A =

(

)

'1'1125

.0e O R δ

计算,得

(

)

0007385.04.5914125

.0125.0'11'

===

e

O R A δ

查 ()A f B =曲线,得系数 B =100MPa

许用外压力[]p 按式

[]e

O R B

p 1'1'/δ=

计算,得

[]Mpa R B p e O 5908.04

.5914100

/1'

1'===

δ>0.3 MPa

确定罐体封头名义厚度 '1n δ=8mm

4.2.3水压试验校核

罐体试验压力T p 1按式

[][]t T p p σσ1

125.1=

计算,得

[][]Mpa p p t

T 25.01131132.025.125.11

1=??==σσ

夹套水压试验压力T p 2按式

[]

[]t T p p σσ2225.1=

计算,得

[][]Mpa p p t

T 375.0113

113

3.025.125.12

2=?

?==σσ查碳素钢、普通低合金钢钢板许用应力,得材料屈服点应力

pa 235s M =σ

计算,得

Mpa s T 8.17923585.09.09.0=??=≤φσσ

罐体圆筒应力T 1σ按式

()e

e T T D p 111112δδσ+=

计算,得

()()Mpa D p e e T T 27.234.524.5100025.0211111=?+?=+=

δδσ

< 179.8 Mpa

夹套内压试验应力T 2σ

()()Mpa D p e e T T 38.384

.524.51100375.0211222=?+?=+=

δδσ<179.8 Mpa

所以夹套水压试验强度足够。

综上所述,筒体和夹套具体加工尺寸如下表4-10:

表4-10 筒体和夹套局加工尺寸

筒体(mm )

封头(mm)

罐体 8 8 夹套

5 5

4.3 结晶釜的搅拌器 4.3.1 搅拌装置的搅拌器

搅拌器的型式主要有:桨式、推进式、框式、涡轮式、螺杆式和螺带式等。 当用来调和(低黏度均相液体混合)时,适用的搅拌器型式有推进式和涡轮式,主要受到容积循环速率的影响。 当用来分散(非均匀相液体混合),适用的搅拌器型式有涡轮式,主要受到液滴大小(分散度)、容积循环速率的影响。

当用于固体悬浮时,按固体粒度、含量及密度,决定用桨式、推进式或涡轮式,主要受到容积循环速率、湍流强度的影响。

当用于气体吸收时,适用的搅拌器型式有涡轮式,主要受到剪切作用、容积循环速率、高速度的影响。

当用于传热时,适用的搅拌器型式有桨式、推进式、涡轮式,主要受到容积循环速率、流经传热面的湍流速度的影响。 当用于高黏度操作时,适用的搅拌器型式有框式、涡轮式、螺杆式、螺带式、带横挡板的桨式,主要受到容积循环速率、低速度的影响。

当用于结晶时,按控制因素用涡轮式、桨式和桨式变种,主要受到容积循环速率、剪切作用低速度的影响。

本反应釜搅拌装置的搅拌器采用桨式。 4.3.2 搅拌器的安装方式及其与轴连接的结构设计

此次任务选用的是桨式搅拌器。它与轴的连接是通过轴套用平键或紧定螺钉固定,轴端加固定螺母。为防螺纹腐蚀加轴头保护帽。

本反应釜的桨式搅拌器直径

mm D D J 330100033.033.01=?==

桨式搅拌器直径J D =400mm

桨式搅拌器的主要尺寸,当mm D J 400=时,D =50mm,mm d 901=, 160M D =,键槽B =16mm,t =55.1mm, H =95mm,质量m =4.59Kg,n

N 不大于0.025。

4.3.3 搅拌装置的搅拌轴设计

搅拌轴的机械设计内容主要是材料选定、结构设计(包括轴的支承结构)和强度校核 。

因本结晶釜的转速=n 50r/min ,因此不需要进行临界转速的校核。 1、 搅拌轴的材料:选用45号钢。

2、 搅拌轴的结构:常用实心或空心直轴,其结构型式根据轴上安装的搅拌器类型、支承的结构和数量、以及与联轴器的连接要求而定,还要考虑腐蚀等因素的影响。

本结晶釜搅拌轴的结构型式选用实心直轴。 3、搅拌轴强度校核:

由结晶釜设计任务书给定,轴功率P =4kW

搅拌轴转数 n =50r/min 常用轴材料为45号钢。

轴所传递的扭矩

mm N n P T ?=÷??=?=191102004

1055.91055.9366

查表得轴常用材料的[]T T 及0A 值,材料许用扭转剪应力][τ=35Mpa ,系数

0A =112。

轴端直径

mm n P A d 4.30200

411233

0=?=≥

开一个键槽,轴径扩大5%,为d =30.4*1.05%=31.9mm 圆整轴端直径d =40mm 。 因此搅拌轴的直径40mm 。

4、搅拌轴的形位公差和表面粗糙度要求:搅拌轴转速n =50r/min ,直线度允许差1000:0.1。

5、搅拌轴的支承:一般搅拌轴可依靠减速器内的一对轴承支承。搅拌轴的支撑采用滚动轴承。反应釜搅拌轴的滚动轴承,通常根据转速、载荷的大小及轴径d 选择,高转速、轻载荷可选用角接触球轴承;低速、重载荷可选用圆锥滚子轴承。

根据轴端直径d=40mm ,选用角接触球轴承 采用背对背安装成对轴承。

4.4 结晶釜的传动装置设计

结晶釜的搅拌器是由传动装置来带动。传动装置通常设置在釜顶封头的上部。结晶釜传动装置的设计内容一般包括:电机、减速机的选型;选择联轴器;选用和设计机架和底座等。

4.4.1 常用电机及其连接尺寸

Y系列全封闭自扇冷式三相异步电动机为最常用的;当有防爆要求时,可选用YB系列。

本结晶釜用库存电机Y132M2-6,转速960r/min,电机功率P=4kW。

4.4.2凸缘法兰

凸缘法兰一般焊接于搅拌容器封头上,用于连接搅拌传动装置,亦可兼作安装,维修,检查用孔。凸缘法兰分整体和衬里两种结构形式,密封面分突面(R)和凹面(M)两种。

本反应釜凸缘法兰焊接于搅拌容器封头上,采用整体结构形式,密封面采用突面(R)。根据搅拌轴的直径和附图,由表4-15凸缘法兰主要尺寸,选择公称直径DN=500mm,螺纹为M24,螺栓数量为20个,质量为102kg的R型凸缘法兰。

4.4.3安装底盖

安装底盖采用螺柱等紧固件,上与机架连接,下与凸缘法兰连接,是整个搅拌传动装置与容器连接的主要连接件。

安装底盖的常用形式为RS和LRS型,其他结构(整体或衬里)、密封面形式(突面或凹面)以及传动轴的安装形式(上装或下装),按HG21565-95选取。

安装底盖的公称直径与凸缘法兰相同。形式选取时应注意与凸缘法兰的密封面配合(突面配突面,凹面配凹面)。

本反应釜安装底盖采用螺柱等紧固件,上与机架连接,下与凸缘法兰连接。采用RS型形式,整体结构、密封面形式(突面)以及传动轴的安装形式(上装),按HG21565-95选取。安装底盖的公称直径与凸缘法兰相同,均为DN=500mm。

4.5 结晶釜的轴封装置设计

轴封是搅拌设备的一个重要组成部分。其任务是保证搅拌设备内处于一定的正压力的真空状态以及防止反应物料逸出和杂质的渗入。鉴于搅拌设备以立式容器中心顶插式搅拌为主,很少满釜操作,轴封的对象主要为气体;而且搅拌设备由于反应工况复杂,轴的偏摆振动大,运转稳定性差等特点,故不是所有形式的轴封都能用于搅拌设备上。

结晶釜搅拌轴处的密封,属于动密封,常用的有填料密封和机械密封两种形

式,它们都有标准,设计时可根据要求直接选用。

4.5.1 填料密封

填料密封是搅拌设备最早采用的一种轴封结构,它的基本结构是由填料,填料箱,压盖,紧压螺栓及油杯等组成。因其结构简单,易于制造,在搅拌设备上曾得到广泛应用。一般用于常压,低压,低转速及允许定期维护的搅拌设备。

当采用填料密封时,应优先选用标准填料箱。标准填料箱中,HG21537.7-92为碳钢填料箱,HG21537.8-92为不锈钢填料箱。

填料箱密封的选用还注意以下几方面:

①当填料箱的的结构和填料的材料选择合理,并有良好润滑和冷却条件时,可用于较高的工作压力,温度和转速条件下;

②当填料无冷却,润滑时,转轴线速度不应超过1m/s;

4.5.2 机械密封

机械密封是一种功耗小,泄漏率低,密封性能可靠,使用寿命长的转轴密封。主要用于腐蚀,易燃,易爆,剧毒及带有固体颗粒的介质中工作的有压和真空设备。

由于反应釜多采用立式结构,转速低,但搅拌轴直径大,尺寸长,摆动和振动较大,故机械密封常采用外装式(静环装于釜口法兰外恻),小弹簧(补偿机构中含有多个沿周向分布的弹簧),旋转式(弹性元件随轴旋转)的结构,当介质压力、温度低且腐蚀性大时,可采用单端面(由一对密封端面组成),非平衡

型(载荷系数K≥1)的机械密封。当介质压力,温度高或介质为易燃,易爆,

有毒时,应采用双端面(由两对密封面组成),平衡型(载荷系数K<1)的机械密封。

当搅拌设备采用机械密封时,在下列情况下,应采用必要的措施,以便保证密封使用性能,提高使用寿命。

①当密封腔介质温度超过80℃时,对单端面和双端面机械密封,都应采用冷却措施;

②为防止密封面干摩擦,对单端面机械密封,应采用润滑措施;

③当采用双端面机械密封时,应采用密封液系统,向密封端面提供密封液,用于冷却,润滑密封端面;

④必要时,应对润滑液,密封液进行过滤;

⑤当采用润滑及密封液系统时,需考虑一旦润滑液,密封液漏入搅拌容器内,应不会影响容器内物料的工艺性能,不会使物料变质,必要时应采用缓冲液杯和漏夜收集器等防污染措施。

本反应釜一般在常压,低压,低转速下使用,故采用填料密封。因其结构简单,易于制造,在搅拌设备上曾得到广泛应用,且便于定期维护此搅拌设备。

4.6结晶釜的其他附件设计

4.6.1 支座

夹套反应釜多为立式安装,最常用的支座为耳式支座。标准耳式支座(JB/T4725-92)分为A型和B型两种。当设备需要保温或直接支承在楼板上时

选B 型,否则选A 型。

每台反应釜常用4个支座,但作承重计算时,考虑到安装误差造成的受力情况变坏,应按两个支座计算。

本反应釜为夹套立式安装,不需要保温,选用B 型标准耳式支座,耳座为4个。

耳式支座的实际承受载荷的近似计算:

()3

0104-????????+?++=nG S G h p kn G g m Q e e e , 本结晶釜耳座单重m =8.3 Kg ,支座的总质量为M=33.2Kg 。 4.6.2 手孔和人孔

手孔和人孔的设置是为了安装,拆卸,清洗和检修设备内部的装置。

手孔直径一般为150-250mm,应使工人带上手套并握有工具的手能方便的通过。当设备的直径大于900mm 时,应开设人孔。人孔的形状有圆形和椭圆两种。 圆形人孔制造方便,应用较为广泛。人孔的大小及位置应以人进出设备方便为原则,对于反应釜,还要考虑搅拌器的尺寸,以便搅拌轴及搅拌器能通过人孔放入罐体内。

由任务书给定,本反应釜需开设手孔,没有人孔。根据任务书要求,公称直径DN=100mm 。本反应釜选用带颈平焊法兰手孔,突面(RF 型)。由参考文献16表11-4手孔尺寸选用带颈平焊法兰手孔,螺柱为M16,数量为4个,螺母数为8个,总质量为13.3kg 。

4.6.3 设备接口 1、 接管与管法兰

接管和管法兰是用来与管道或其他设备连接的。标准管法兰的主要参数是公称通径(DN )和公称压力(PN )。接管的伸出长度一般为从法兰密封面到壳体外径为150mm ,当考虑设备保温等要求时,可取伸出长度为200mm 。 管法兰分为:板式平焊法兰(PL ),带颈平焊法兰(SO ),带颈对焊法兰(WN )等,法兰密封面形式主要有突面(RF ),凹凸面(MFM ),榫槽面(TG )三种。本任务书要求蒸汽入口、加料口和冷凝水出口的公称直径DN=25,由公称直径与钢管外径,选用外径为32,质量为0.4kg 的钢管。由标准突面板式平焊钢制管法兰主要尺寸,选用外径为100mm ,内径为33mm ,螺纹为M10,理论质量为0.65kg 的法兰。 由标准突面板式平焊钢制管法兰主要尺寸,选用外径为190mm ,内径为91mm ,螺纹为M16,理论质量为2.60kg 的法兰。

温度计管口的公称直径DN=65,由表4-16公称直径与钢管外径,选用外径为76,质量为1.7kg 的钢管。由标准突面板式平焊钢制管法兰主要尺寸,选用外径为160mm ,内径为78mm ,螺纹为M12,理论质量为1.61kg 的法兰。

放料口的公称直径DN=40,由表4-16公称直径与钢管外径,选用外径为45的钢管。由标准突面板式平焊钢制管法兰主要尺寸,选用外径为130mm ,内径为

46mm ,螺纹为M12,理论质量为1.20kg 的法兰。

手孔的公称直径DN=100,由表4-13公称直径与钢管外径,选用外径为108的钢管。由附表4-12标准突面板式平焊钢制管法兰主要尺寸,选用外径为100mm ,内径为110mm ,螺纹为M16,理论质量为3.02kg 的法兰。

2、 补强圈

容器开孔后由于壳体材料的削弱,出现开孔应力集中现象。因此,要考虑补强。补强圈就是用来弥补设备壳体因开孔过大而造成的强度损失的一种最常用形式。补强圈形状应与被补强部分相符,使之与设备壳体密切贴合,焊接后能与壳体同时受力。补强圈上有一小螺纹孔(M10),焊后通入压缩空气,以检查焊缝的气密性。补强圈的厚度和材料一般均与设备壳体相同。

当采用补强圈补强时,其接管壁厚可参照下列数值选取:

Ф108X6 Ф133X6 Ф159X8 Ф219X8 Ф273X8 Ф325X10 Ф377X10 本任务书要求蒸汽入口、加料口和冷凝水出口的公称直径为25,由补强圈尺寸系列选用厚度为6mm ,质量为0.48kg 的补强圈。

视镜的公称直径为80,由补强圈尺寸系列选用厚度为6mm ,质量为0.88kg 的补强圈。

温度计管口的公称直径为65,由补强圈尺寸系列选用厚度为6mm ,质量为0.71kg 的补强圈。

放料口的公称直径为40,由补强圈尺寸系列选用厚度为6mm ,质量为0.48kg 的补强圈。

手孔的公称直径为100,由补强圈尺寸系列选用厚度为6mm ,质量为1.02kg 的补强圈。

3、液体出料管

出料管结构设计主要从物料易放尽,阻力小和不易堵塞等因素考虑。另外还 要考虑温差应力的影响。

本反应釜的釜壁温度与夹套壁温相等,采用图液体出料管图。

根据任务书要求放料口的公称直径为40,由出料管尺寸得出料管的直径 ,得

mm d 11540751=+=

4-17 出料管尺寸

4、 过夹套的物料进出口

根据附图,物料进出口的结构均按过夹套的物料进出口图。

根据任务书要求冷凝水出口和加料口的公称直径为25,由表出料管尺寸得出料管的直径 ,得

mm d 10025751=+=

5、 夹套进气管

当夹套装设进气管时,要防止直冲罐壁,影响罐体强度。

根据附图,蒸汽入口和压缩空气入口的结构均采用夹套进气管图。

6、视镜

视镜主要用来观察设备内物料及其反应情况,也可作为料面指示镜,一般成对使用,当视镜需要斜装或设备直径较小时,采用带颈视镜。

根据附图,本反应釜的视镜需要斜装,因此采用带颈视镜。

根据任务书要求视镜的公称直径为80。由参考文献查得选取螺柱数量为8,直径为M12,质量为6.8kg ,材质为碳素钢,标准图号HGJ501-86-4的视镜,数量为2个,总质量为13.6kg 。

夹套反应釜课程设计

有搅拌装置的夹套反应釜 前言 《化工设备机械基础》化学工程、制药工程类专业以及其他相近的非机械类专业,对化下设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并具有设计钢制的、典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: ⑴熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 ⑵在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可

行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 ⑶准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 ⑷用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

结晶器水设计

在方坯连铸中,低、中、高碳钢对结晶器水量的控制有何要求? 09-29 结晶器冷却水量可根据经验按结晶器周边长度计算。对于方坯结晶器冷却水量可取结晶器周边每毫米长度供水2.0~3.0L/min。根据这一原则,可计算出不同断面方坯结晶器的供水量,见表1。 表1 方坯结晶器的供水量 铸坯断面,mm 150×150 120×120 90×90 结晶器供水量,m3/h 72~108 57.6~86.4 43.2~64.8 对于凹陷比较敏感的低碳钢种,结晶器采用弱冷,冷却水量取下限;对于中、高碳钢种,结晶器采用强冷,冷却水量取上限。 矩型坯连铸机二冷水控制数学模型的实现 ?作者:王博弥春霞 ?出处: ?阅读: ?发布时间:2003-11-24 0:00:00 ?供稿:山东莱芜钢铁集团有限公司自动化部钢区车间炼钢站 1 概述 目前钢铁生产厂的铸坯生产大多都采用立弯式连铸机,该类型的连铸机从浇注到成材需要经过两次水冷却,即一次冷却和二次冷却。一次冷却是由结晶器来完成,这个阶段的目的是使钢水冻结成型,然后钢坯进入二冷区,二次冷却水在整个连铸生产阶段是最重要的,它的冷却效果直接影响着钢坯的质量。根据钢坯的规格,对二次冷却水的要求也是不一样的,本文

主要介绍大方坯连铸机的二次冷却水模型。 2 二冷水的工艺简介及控制思路 钢水从钢包注入中间罐后,经由水口进入结晶器进而冻结成型,然后在引锭杆的牵引下钢坯进入二冷区。二冷水的控制方式根据现场实际工艺要求(包括钢种、规格、质量等要求),理论上确定沿浇铸方向预测凝固厚度梯度和温度分布变化,与实测表面温度和拉速来控制冷却水的流量和压力。再经过PID调节对钢坯进行不同程度的冷却。 3 二冷水数学模型的控制方式 首先要对矩形坯连铸机的生产工艺特点及设计控制系统的优缺点进行具体的分析,掌握各设备的控制方法和控制参数,然后确定相应的计算方法。 3.1 二冷水控制方法 配水系统分为结晶器冷却水和二次冷却水两大部分,结晶器冷却为全水冷却,分为宽窄两个回路,水量不同;二次冷却水分四段进行配水控制,即足辊段、Ⅰ段、Ⅱ段、Ⅲ段,共分为七个回路。其中足辊段为全水冷,单一回路。其他三段为水汽喷雾冷却,依据内外弧和窄边分为六个回路。结晶器水量为固定参数,不予调节。二冷各段采用水表控制。 各回路二冷水量分配比: 4.2 主要实验 理论上较理想的配水曲线应该是一条二次曲线:Q=aV2+bV+c,但实际上计算a、b、c系数是十分困难的,所以一般用折线仿真曲线的方法进行配水控制,即每一段的配水根据拉速的变化计算公式为: Qi=Ai*V+Bi V---拉速M/分; Qi---各段水量L/分; Ai,Bi----二冷配水参数,随冷却方式和铸坯断面不同而不同。计算所得Qi值作为每段水量的给定 值,然后PLC按照该给定值进行PID控制。

搅拌反应釜课程设计(优选.)

课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 设计时间:

要求与说明 一、学生采用本报告完成课程设计总结。 二、要求文字(一律用计算机)填写,工整、清晰。所附设备安 装用计算机绘图画出。 三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录 一、设计任务书 (5) 二、设计方案简介 (6) 1.1罐体几何尺寸计算 (7) 1.1.1确定筒体内径 (7) 1.1.2确定封头尺寸 (8) 1.1.3确定筒体高度 (9) 1.2夹套几何计算 (10) 1.2.1夹套内径 (10) 1.2.2夹套高度计算 (10) 1.2.3传热面积的计算 (10) 1.3夹套反应釜的强度计算 (11) 1.3.1强度计算的原则及依据 (11) 1.3.2按内压对筒体和封头进行强度计算 (12) 1.3.2.1压力计算 (12) 1.3.2.2罐体及夹套厚度计算 (12) 1.3.3按外压对筒体和封头进行稳定性校核 (14) 1.3.4水压试验校核 (16) (二)、搅拌传动系统 (16) 2.1进行传动系统方案设计 (17) 2.2作带传动设计计算 (17) 2.2.1计算设计功率Pc (17) 2.2.2选择V形带型号 (17) 2.2.3选取小带轮及大带轮 (17) 2.2.4验算带速V (18) 2.2.5确定中心距 (18) (18) 2.2.6 验算小带轮包角 1 2.2.7确定带的根数Z (18) 2.2.8确定初拉力Q (19) 2.3搅拌器设计 (19) 2.4搅拌轴的设计及强度校核 (19) 2.5选择轴承 (20) 2.6选择联轴器 (20) 2.7选择轴封型式 (21) (三)、设计机架结构 (21) (四)、凸缘法兰及安装底盖 (22) 4.1凸缘法兰 (22) 4.2安装底盖 (23) (五)、支座形式 (24) 5.1 支座的选型 (24) 5.2支座载荷的校核计算 (26)

反应釜课程设计说明书

课程设计 资料袋 机械工程学院(系、部) 2012 ~ 2013 学年第二学期 课程名称指导教师职称 学生专业班级班级学号题目酸洗反应釜设计 成绩起止日期 2013 年 6 月 24 日~ 2013 年 6 月 30 日 目录清单 . . .

过程设备设计 设计说明书 酸洗反应釜的设计 起止日期: 2013 年 6 月 24 日至 2013 年 6 月 30 日 学生 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2013年6月26日

课程设计任务书 2012—2013学年第二学期 机械工程学院(系、部)专业班级 课程名称:过程设备设计 设计题目:酸洗反应釜设计 完成期限:自 2013 年 6 月 24 日至 2013 年 6 月 30 日共 1 周 指导教师(签字):年月日系(教研室)主任(签字):年月日 目录

第一章绪论 (4) 1.1 设计任务 (2) 1.2 设计目的 (2) 第二章反应釜设计 (2) 第一节罐体几何尺寸计算 (2) 2.1.1 确定筒体径 (2) 2.1.2 确定封头尺寸 (2) 2.1.3 确定筒体高度 (2) 2.1.4 夹套的几何尺寸计算 (3) 2.1.5 夹套反应釜的强度计算 (4) 2.1.5.1 强度计算的原则及依据 (4) 2.1.5.2 筒及夹套的受力分析 (4) 2.1.5.3 计算反应釜厚度 (5) 第二节反应釜釜体及夹套的压力试验 (6) 2.2.1 釜体的水压试验 (6) 2.2.1.1 水压试验压力的确定 (6) 2.2.1.2 水压试验的强度校核 (6) 2.2.1.3 压力表的量程、水温及水中Cl-的浓度 (6) 2.2.2 夹套的水压试验 (6) 2.2.2.1 水压试验压力的确定 (6) 2.2.2.2 水压试验的强度校核 (6) 2.2.2.3 压力表的量程、水温及水中Cl-的浓度 (6) 第三节反应釜的搅拌装置 (1) 2.3.1 桨式搅拌器的选取和安装 (1) 2.3.2 搅拌轴设计 (1) 2.3.2.1 搅拌轴的支承条件 (1) 2.3.2.2 功率 (1) 2.3.2.3 搅拌轴强度校核 (2) 2.3.2.4 搅拌抽临界转速校核计算 (2) 2.3.3 联轴器的型式及尺寸的设计 (2) 第四节反应釜的传动装置与轴封装置 (1) 2.4.1 常用电机及其连接尺寸 (1) 2.4.2 减速器的选型 (2) 2.4.2.1 减速器的选型 (2) 2.4.2.2 减速机的外形安装尺寸 (2) 2.4.3 机架的设计 (3) 2.4.4 反应釜的轴封装置设计 (3) 第五节反应釜其他附件 (1) 2.5.1 支座 (1) 2.5.2 手孔和人孔 (2) 2.5.3 设备接口 (3) 2.5.3.1 接管与管法兰 (3) 2.5.3.2 补强圈 (3) 2.5.3.3 液体出料管和过夹套的物料进出口 (4) 2.5.3.4 固体物料进口的设计 (4) 第六节焊缝结构的设计 (7) 2.6.1 釜体上的主要焊缝结构 (7) 2.6.2 夹套上的焊缝结构的设计 (8) 第三章后言............................................................. 错误!未定义书签。 3.1 结束语 ......................................................... 错误!未定义书签。 3.2 参考文献....................................................... 错误!未定义书签。

设备设计结晶釜的设计付沛松

课程设计 题目结晶釜的设计 学院化学化工学院 专业化学工程与工艺 班级化工1001 学生付沛松 学号 20100221040 指导教师化学工程系课程指导小组 二〇一二年十二月三十一日

目录 1. 结晶釜的结构 (3) 1.1 结晶釜的功能和用途 (3) 1.2 结晶釜的反应条件 (3) 2. 设计标准 (4) 3. 设计方案的分析和拟定 (4) 4. 各部分结构尺寸的确定和设计计算 (5) 4.1 罐体和夹套的结构设计 (5) 4.1.1 罐体几何尺寸计算 (6) 4.1.2 夹套几何尺寸计算 (7) 4.2 结晶釜的强度计算 (8) 4.2.1 强度计算(按内压计算强度) (8) 4.2.2 稳定性校核(按外压校核厚度) (10) 4.2.3水压试验校核 (13) 4.3 结晶釜的搅拌器 (14) 4.3.1 搅拌装置的搅拌器 (14) 4.3.2 搅拌器的安装方式及其与轴连接的结构设计 (14) 4.3.3 搅拌装置的搅拌轴设计 (15) 4.4 结晶釜的传动装置设计 (16) 4.4.1 常用电机及其连接尺寸 (16) 4.4.2凸缘法兰 (16) 4.4.3安装底盖 (16) 4.5 结晶釜的轴封装置设计 (16) 4.5.1 填料密封 (17) 4.5.2 机械密封 (17) 4.6结晶釜的其他附件设计 (18) 4.6.1 支座 (18) 4.6.2 手孔和人孔 (18) 4.6.3 设备接口 (18) 5. 参考文献 (21)

1.结晶釜的结构 1.1 结晶釜的功能和用途 结晶釜主要由搅拌容器、搅拌装置、传动装置、轴封装置、支座、人孔、工艺接管和一些附件组成。搅拌容器分罐体和夹套两部分,主要由封头和筒体组成,多为中、低压压力容器;搅拌装置由搅拌器和搅拌轴组成,其形成通常由工艺设计而定;传动装置是为带动搅拌装置设置的,主要由电机、减速器、联轴器和传动轴等组成;轴封装置为动密封,一般采用机械密封或填料密封;它们与支座、人孔、工艺管等附件一起,构成完整的结晶釜。 结晶釜是物料混合反应后,夹层内需冷冻水或冷媒水急剧降温的结晶设备,其关键环节在于夹层面积的大小,搅拌器的结构形式和物料出口形式,罐体内高精度抛光,以及罐体内清洗无死角的要求来满足工艺使用条件。 结晶釜是化工、制药、食品等行业的物料混合、加温、降温、搅拌等国内过程中的混合反应设备。由于工艺和介质不同,物料有易燃、易爆、巨毒、高温高压的状况常为多见。设备的搅拌形式、转速、加温和降温的要求不同。该设备的设计选材、结构和减速机防爆与不防爆要求也不同。 1.1 结晶釜的反应条件 结晶釜的设计要注重反应的条件,一般考虑夹套和搅拌器的材料、上下进出口的设计,主要分为温度、压强、进料口和出料口、材料这几个因素。 温度----这个一般都应当有严格的控制,所以在设计的时候要注意温度计选择。要是反应温度高可能要使用油浸泡温度计,所以要留可以装油的管槽,要是温度低还要注意冰封现象发生。要是温度在100度到0度之间,要求不高的情况下,可以用塞子直接套温度计(注意压强)。 压强----压强的高低要选择合适的反应釜,一般只要能承受两倍的大气压就可以了。本设计是在负压条件下完成。 进料口和出料口----一般进料口做一定大就一个可以了,要注意一些比如回流口、真空口什么的,还有就是出料口的大小,有些物质反应后不容易放出,所以要设计合适。 材料----一般反应釜都是玻璃的,要是工业生产最好用搪瓷的,搅拌的金属要注意保护不要被腐蚀,放料活塞要可以防腐。 还有就是夹套的进出水的控制,防止部分比如盐水的滞留。

反应釜温度过程控制课程设计

过程控制系统课程设计 课题:反应釜温度控制系统 系别:电气与控制工程学院 专业:自动化 姓名:彭俊峰 学号:092413238 指导教师:李晓辉 河南城建学院 2016年6月15日

引言 (1) 1系统工艺过程及被控对象特性选取 (2) 1.1 被控对象的工艺过程 (2) 1.2 被控对象特性描述 (4) 2 仪表的选取 (5) 2.1过程检测与变送器的选取 (5) 2.2执行器的选取 (6) 2.2.1执行器的选型 (7) 2.2.2调节阀尺寸的选取 (7) 2.2.3调节阀流量特性选取 (7) 2.3控制器仪表的选择 (8) 3.控制方案的整体设定 (10) 3.1控制方式的选择 (10) 3.2阀门特性及控制器选择 (10) 3.3 控制系统仿真 (12) 3.4 控制参数整定 (13) 4 报警和紧急停车设计 (14) 5 结论 (15) 6 体会 (16) 参考文献 (17)

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC温度调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

乙酸乙酯间歇反应釜课程设计

乙酸乙酯间歇反应釜 工 艺 设 计 说 明 书

目录 前言 (3) 摘要 (4) 一.设计条件和任务 (4) 二.工艺设计 (6) 1. 原料的处理量 (6) 2. 原料液起始浓度 (7) 3. 反应时间 (7) 4. 反应体积 (8) 三. 热量核算 (8) 1. 物料衡算 (8) 2. 能量衡算 (9) 3. 换热设计 (12) 四. 反应釜釜体设计 (13) 1. 反应器的直径和高度 (13) 2. 筒体的壁厚 (14) 3. 釜体封头厚度 (15) 五. 反应釜夹套的设计 (15) 1. 夹套DN、PN的确定 (15) 2. 夹套筒体的壁厚 (15) 3. 夹套筒体的高度 (16) 4. 夹套的封头厚度 (16) 六. 搅拌器的选型 (17) 1. 搅拌桨的尺寸及安装位置 (17) 2. 搅拌功率的计算 (18) 3. 搅拌轴的的初步计算 (18) 结论 (19) 主要符号一览表 (20) 总结 (21) 参考书目 (22)

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

反应釜温度过程控制课程设计

过程控制系统课程课题:反应釜温度控制系统 系另I」:电气与控制工程学院 专业:自动化_____________ 姓名: ________ 彭俊峰_____________ 学号:__________________ 指导教师: _______ 李晓辉_____________ 河南城建学院 2016年6月15日

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC 调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。 反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm, 反应器总容积,耐压。为安全起见,要求反应器在系统开、停车全过程中压力不超过。反应器压力报警上限组态值为。反应器的工艺流程如图1-1所示。 S8Q A a珑厲娜口 图1-1釜式反应器工艺流程图 该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D g为阀门公称直径、K v为国际标准流通能力。 表1-1主要测控参数表

结晶器设计计算

通过结晶器的热流量 通过结晶器放出热流,可用下列计算 Q=LEVP{C1(Te-Tl)+lf+cs(Ts-To)} (3.1)式中:Q:结晶器钢水放出的热量,kj/min; L:结晶器横截面周长,4.012m; E:出结晶器坯壳厚度,0.012m; V:拉速,2.2m/min; P:钢水密度,7.4×10⒊kj/kg·℃; 由此可得: Q=LEVP{C1(Te-Tl)+lf+cs(Ts-To)} =62218kj/min 结晶器水缝面积计算 结晶器的水缝面积与单位水流量(冷却强度)铸坯尺寸的大小以及冷却水流速有关,结晶器水缝面积可用下式计算: F=QkS×106/(3600V)(mm2)(3.2)式中:Qk:单位水流量m3/n·m,经验值取100-500m3/n·m;取100m3/n·m。 S:结晶器周边长度,4×120×103m; V:冷却水流速,取6-10m/s,实际取8m/s; 即结晶器水缝面积为: F+QkS×106/(3600v)=1.67×103mm3 3.5 结晶器的冷却系统 为使结晶器壁有较高的导热系数,在铜壁与冷却水之间不能产生水垢 和沉淀物。由于结晶器的热负荷很高,接触结晶器壁的冷却水有时会达到汽化的温度。为了防止出现水垢,水必须经过软化处理或脱盐处理[9]。 结晶器内冷却水的流量,一般按断面周长长度每毫米2-2.5每毫米计算。经过净化及软处理的水一般都是循环使用。采用封闭式供水系统。充分利用回水系压有利于节能。

3.5.1 结晶器的倒锥度 钢水在结晶器内凝固是因坯壳收缩形成气隙,通常是将结晶器作成倒锥度,后者定义为: △ =(S 上—S 下 )/S 上 ×L (3.3) 式中:△:结晶器的倒锥度 %/m; S 上,S 下 :结晶器的上边口,下边口长; L:结晶器长度。 倒锥度取值不能太小,也不能太大。过小则作用不大,过大则增大了拉坯阻力,甚至卡钢而不能出坯[9]。高碳钢的收缩量大,所以须用较大的倒锥度[7]。高速拉坯时,应采用较小的倒锥度。在此设计中,倒锥度可取0.96%/m,为了不致产生太大的拉坯阻力。实际的倒锥度略小于上述值,约为0.4-0.8%/m。 3.5.2 结晶器冷却水量的计算 单位时间内通过结晶器冷却水缝(水槽)的水量对结晶器钢水热量传递和坯壳凝固有重要的参数影响。结晶器冷切水量计算方法有: 结晶器热平衡法 假定结晶器钢水热量全部由冷却水带走,则结晶器钢水凝固放出的热量与冷却水带走的相等,即: Q=W×C×△Q (3.4) 则 W=Q/(△Q) 式中: Q:结晶器内的钢水凝固放出热量,2218kj/min; W:结晶器全部水量,L/min; C:水的比热容,4.2kj/kg×℃; △Q:结晶器进出水量温度差6℃ 即 W=Q/(△Q)=2468L/min (1)从保证水缝内冷却水流速>6m/s来求结晶器水量得: W1:36×S×V/10000(m3/h)(3.5)式中: S:水缝面积,1.67×103m m2 W1:冷却水量,m3/h; V:冷却水流速,8m/s。

反应釜设计程序.doc

反应釜设计程序 (1)确定反应釜操作方式根据工艺流程的特点,确定反应釜是连续操作还是间歇操作。 (2)汇总设计基础数据工艺计算依据如生产能力、反应时间、温度、装料系数、物料膨胀比、投料比、转化率、投料变化情况以及物料和反应产物的物性数据、化学性质等。 (3)计算反应釜体积 (4)确定反应釜设计(选用)体积和台数。 如系非标准设备的反应釜,则还要决定长径比以后再校算,但可以初步确定为一个尺寸,即将直径确定为一个国家规定的容器系列尺寸。 (5)反应釜直径和筒体高度、封头确定。 (6)传热面积计算和校核。 (7)搅拌器设计。 (8)管口和开孔设计。 (9)画出反应器设计草图(条件图),或选型型号。 3.设计要求(1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料夹套反应釜的总装配图;(7)从总装图中测绘一张零件图或一张部件图。1罐体和夹套的设计1.1 确定筒体内径表4-2 几种搅拌釜的长径比i值搅拌釜种类设备内物料类型长径比i值一般搅拌釜液-固相或液-液相物料i=1~1.3气-液相物料i=1~2发酵罐类I=1.7~2.5 当反应釜容积V小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i取小值,此次设计取i=1.1。一般由工艺条件给定容积V、筒体内径按式4-1估算:得D=1366mm.式中V--工艺条件给定的容积,;i——长径比,(按照物料类型选取,见表4-2)由附表4-1可以圆整=1400,一米高的容积=1.539 1.2确定封头尺寸椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 =0.4362 ,(直边高度取50mm)。1.3确定筒体高度反应釜容积V按照下封头和筒体两部分之容积之和计算。筒体高度由计算H1==(2.2-0.4362)/1.539=1.146m,圆整高度=1100mm。按圆整后的修正实际容积由式V=V1m×H1+V封=1.539×1.100+0.4362=2.129 式中;——一米高的容积/m ——圆整后的高度,m。1.4夹套几何尺寸计算夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径可根据内径由500~600700~18002000~3000 +50 +100 +200选工艺装料系数=0.6~0.85选取,设计选取=0.80。1. 4.1夹套高度的计算H2=(ηV-V封)/V1m=0.755m1.4.2.夹套筒体高度圆整为=800mm。1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F封=2.345。1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=4.401.4.5实际的传热面积F== 5.6665>3,由《化工设备机械基础》式4-5校核5.6665〉3所以传热面积合适。2夹套反应釜的强度计算强度计算的参数的选取及计算均符合GB150-1998《钢制压力容器》的规程。此次设计的工作状态已知时,圆筒为外压筒体并带有夹套,由筒体的公称直径mm,被夹套包围的部分分别按照内压和外压圆筒计算,并取其中较大者。...[ 过程装备夹套反应釜化工机械化工课程设计] 反应釜设计 摘要

夹套反应釜-课程设计

课程设计任务书 ..................................................... 错误!未定义书签。 1.1. 1. 设计方案的分析和拟定 (4) 2. 罐体和夹套的设计 (5) 2.1. 罐体和夹套的结构设计 (5) 2.2. 罐体几何尺寸计算 (5) 2.2.1. 确定筒体内径 (5) 2.2.2. 确定封头尺寸 (6) 2.2.3. 确定筒体高度H1 (6) 2.3. 夹套几何尺寸计算 (6) 2.3.1. 确定夹套内径 (6) 2.3.2. 确定夹套高度 (7) 2.3.3. 校核传热面积 (7) 2.4. 夹套反应釜的强度计算 (7) 2.4.1. 强度计算的原则及依据 (7) 2.4.2. 按内压对筒体和封头进行强度计算 (8) 2.4.3. 按外压对筒体和封头进行稳定性校核 (10) 2.4.4. 水压试验校核 (11) 3. 反应釜的搅拌器 (12) 3.1. 搅拌器的选用 (12) 3.2. 挡板 (12) 4. 反应釜的传动装置 (12) 4.1. 电动机、减速机选型 (13)

4.2. 凸缘法兰 (13) 4.3. 安装底盖 (14) 4.4. 机架 (14) 4.5. 联轴器 (14) 4.6. 搅拌轴设计 (14) 5. 反应釜的轴封装置 (16) 6. 反应釜的其他附件 (17) 6.1. 支座 (17) 6.1.1. 确定耳式支座实际承受载荷Q (17) 6.1.2. 确定支座的型号及数量 (18) 6.2. 手孔 (18) 6.3. 设备接口 (18)

设计目的:培养学生把所学“化工机械基础”及其相关课程的理论知识,在设备课程设计中综合地加以运用,把化工工艺条件与化工设备设计有机结合起来,使所学有关机械课程的基本理论和基本知识得以巩固和强化。培养学生对化工设备设计的基本技能以及独立分析问题、解决问题的能力。 设计要求:(1)树立正确的设计思想。(2)要有积极主动的学习态度和进取精神。(3)学会正确使用标准和规范,使设计有法可依、有章可循。(4)学会正确的设计方法,统筹兼顾,抓主要矛盾。(5)在设计中应注意处理好尺寸的圆整,处理好计算与结构设计的关系。 设计内容:设计一台带有搅拌装置的夹套反应釜,包括设备总装配图一张,零部件图一至二张,设计计算说明书一份。 设计任务书 设计参数及要求 容器内夹套内工作压力,Mpa 设计压力,Mpa 0.2 0.3 工作温度,℃ 设计温度,℃<120 <150 介质有机溶剂冷却水或蒸汽全容积V ,m3 2.5 操作容积V1,m3 2.0 传热面积,m37 腐蚀情况微弱 推荐材料不锈钢 搅拌器型式桨式 搅拌速度,r/min <120

结晶器设计计算修订稿

结晶器设计计算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

通过结晶器的热流量 通过结晶器放出热流,可用下列计算 Q=LEVP{C1(Te-Tl)+lf+cs(Ts-To)} ()式中:Q:结晶器钢水放出的热量,kj/min; L:结晶器横截面周长,4.012m; E:出结晶器坯壳厚度,0.012m; V:拉速,2.2m/min; P:钢水密度,×10⒊kj/kg·℃; 由此可得: Q=LEVP{C1(Te-Tl)+lf+cs(Ts-To)} =62218kj/min 结晶器水缝面积计算 结晶器的水缝面积与单位水流量(冷却强度)铸坯尺寸的大小以及冷却水流速有关,结晶器水缝面积可用下式计算: F=QkS×106/(3600V)(mm2)() 式中:Qk:单位水流量m3/n·m,经验值取100-500m3/n·m;取100m3/n·m。 S:结晶器周边长度,4×120×103m; V:冷却水流速,取6-10m/s,实际取8m/s; 即结晶器水缝面积为: F+QkS×106/(3600v)=×103mm3

结晶器的冷却系统 为使结晶器壁有较高的导热系数,在铜壁与冷却水之间不能产生水垢 和沉淀物。由于结晶器的热负荷很高,接触结晶器壁的冷却水有时会达到汽化的温度。为了防止出现水垢,水必须经过软化处理或脱盐处理[9]。 结晶器内冷却水的流量,一般按断面周长长度每毫米每毫米计算。经过净化及软处理的水一般都是循环使用。采用封闭式供水系统。充分利用回水系压有利于节能。 3.5.1 结晶器的倒锥度 钢水在结晶器内凝固是因坯壳收缩形成气隙,通常是将结晶器作成倒锥度,后者定义为: △ =(S 上—S下)/S上×L ()式中:△:结晶器的倒锥度 %/m; S 上,S下:结晶器的上边口,下边口长; L:结晶器长度。 倒锥度取值不能太小,也不能太大。过小则作用不大,过大则增大了拉坯阻力,甚至卡钢而不能出坯[9]。高碳钢的收缩量大,所以须用较大的倒锥度[7]。高速拉坯时,应采用较小的倒锥度。在此设计中,倒锥度可取%/m,为了不致产生太大的拉坯阻力。实际的倒锥度略小于上述值,约为。 3.5.2 结晶器冷却水量的计算 单位时间内通过结晶器冷却水缝(水槽)的水量对结晶器钢水热量传递和坯壳凝固有重要的参数影响。结晶器冷切水量计算方法有:

漏斗型结晶器漏斗形状的设计

漏斗型结晶器漏斗形状的设计 盛义平赵静一 (燕山大学) 摘要分析了SMS漏斗型结晶器在使用中出现局部高温、产生热裂纹、寿命低的原因,提出了结晶器漏斗形状的更为合理的设计要求和设计方法。 关键词漏斗型结晶器漏斗曲面设计 DESIGN OF FUNNEL-CURVED SURFACE OF FUNNEL-SHAPED MOLD SHENG Yiping ZHAO Jingyi (Yanshan University) ABSTRACT The reasons of local overheating,thermal cracking resulting in shorter life of funnel-shaped mold are investigated.The more reasonable requirements and method for designing funnel-shaped mold are suggested. KEY WORDS funnel-shaped mold,funnel-curved surface,design 1 前言 薄板坯连铸具有节约能源、减少基建投资、降低生产成本、提高钢材收得率等许多优点,是国际上竞相开发的重大新技术。 利用高温坯壳的可塑性和凝固收缩性开发的横剖面形状从上到下变化的漏斗型结晶器是薄板坯连铸的关键技术之一。具有代表性的当属SMS漏斗型结晶器和DANIELI透镜型结晶器,见图1。 变横剖面结晶器形状复杂,加工成本高,所以希望结晶器有较长的使用寿命。但是,薄板坯连铸的高拉速加大了结晶器的热负荷,再加上漏斗形状设计得不尽合理,使结晶器的使用寿命还未达到其预期的寿命。DANIELI公司分析了SMS漏斗型结晶器后指出[1],在结晶器的横剖面上,在AB直线与BC直线的交点B处,铸坯凝固壳与结晶器壁间存在着一个约0.6 mm的间隙,DANIELI公司开发的透镜型薄板坯结晶器在横剖面上用一段光滑的曲线BC代替了SMS结晶器在相应位置处的直线,使结晶器的整个横剖面曲线光滑连接,B点处的间隙下降到0.06 mm。Thomas等人亦分析研究了SMS结晶器[2],发现SMS结晶器的最高温度比传统的厚板坯连铸机结晶器的最高温度高60~70 ℃;在结晶器的各个横剖面上,最高温度出现在漏斗区域的外弯处(漏斗的侧边缘),最低温度出现在漏

季戊四醇毕业设计

前言 季戊四醇是由甲醛和乙醛缩合而成,在涂料、汽车、轻工、建筑、合成树脂、炸药等方面具有广泛的应用,此外,还用于医药、农药等生产。基于在山西三维有限公司实习所得,同时结合专业课的深入学习以及老师的悉心教导,我开展了对季戊四醇的车间工艺设计。 本次设计内容以甲醛、乙醛和氢氧化钠为原料经过缩合反应,得到季戊四醇混合物,在经过中和、脱醛、蒸发、结晶工序得到季戊四醇晶体,最后经过分离、干燥等工序得到季戊四醇产品。由此工艺可知,设计任务是非常庞大的,这不仅要求我们要有扎实的专业理论知识,更要有灵敏的理解感悟能力,同时要熟练掌握计算机,熟练运用画图工具,其成果包括工艺流程图、主设备图、车间布置图、物料衡算、热量衡算、工艺设备选型设计、经济核算、设计说明书的撰写、查阅英文文献并翻译等。由此可见任务极其艰巨,在设计中我多次无从下手,苦恼之极,但静下心来仔细研究、摸索,终有路可寻,虽然很辛苦,当从中所学知识及能力是无法估量的,精神上更加丰富。 本设计为初步设计,我按照设计任务书要求内容,一步一步完成,但由于经验不足,理论和实践知识不够扎实,在设计中还有大量不足之处,诚请老师给予指正。 2011年05月30日

年产10000吨季戊四醇生产车间工艺设计 摘要 本设计为年产10000吨季戊四醇生产车间工艺设计。季戊四醇是一种典型的新戊基结构四元醇,又名四羟甲基甲烷,化学名称为2,2—双(羟甲基)—1,3—丙二醇,其外观为白色粉末状结晶、无臭,略有甜味,可燃,无毒,溶于水,微溶于乙醇,不可溶于甘油、乙二醇、甲酰胺、丙酮、苯、四氯化碳、乙醚和石油醚等有机溶剂。 本设计所采用的工艺路线为:以甲醛和乙醛为原料,氢氧化钠为催化剂在缩合釜内发生缩合反应,再通入中和釜中进行中和,通入脱醛塔脱除甲醛,经过蒸发器蒸出部分水,再在结晶釜中结晶出季戊四醇,在通过干燥器干燥晶体,最终就可获得产品。本设计内容主要包括工艺设计,物料衡算,热量衡算,工艺设备计算与选型,安全与环保,经济核算。本设计所得成果主要有设计说明书,工艺流程图,主设备图,车间布置图。 关键词:季戊四醇,低温钠法,车间工艺,设计

化工反应工程反应器课程设计

化学反应工程课程设计题目年产80000t乙酸乙酯间歇釜式反应器设计系别化学与化工学院 专业应用化学 学生姓名 学号年级 指导教师职称副教授 2013 年 6 月20 日

一、设计任务书及要求 1.1设计题目 80000t/y 乙酸乙酯反应用间歇釜式反应器设计 1.2设计任务及条件 (1)反应方程式: )()()()(2523523S O H R H C O O C CH B OH H C A COOH CH +?+ (2)原料中反应组分的质量比:A :B :S=1:2:1.35。 (3)反应液的密度为1020kg/3m ,并假设在反应过程中不变。C 100?时被搅拌液体物料的物性参数为: 比热容为13.124-??=K mol J C p ,导热系数()C m W ??=/325.0λ,黏度 s Pa .101.54-?=μ。 (4)生产能力:80000t/y 乙酸乙酯,年生产8000小时,,每小时生产10t,乙酸的转化率为40℅。每批装料、卸料及清洗等辅助操作时间为1h 。 (5)反应在100℃下等温操作,其反应速率方程如下: ()K c c c c k r S R B A A /1-= 100℃时,min)./(1076.441mol L k -?=,平衡常数K =2.92。反应器填充系数可取0.70-0.85。乙酸乙酯相对分子质量88;乙酸相对分子质量60;乙醇相对分子质量46;水相对分子质量18。 (6)最大操作压力为10.4P MPa =。加热的方式为用夹套内的水蒸汽进行电加热。 1.3设计内容 1、物料衡算及热量衡算; 2、反应器体积计算及高径比、直径等参数确定; 3、反应搅拌器设计; 4、其他配件; 5、带管口方位图的设备条件图绘制(不用绘制零件图,不用达到设备装配图水平); 6、设计体会;

结晶器液位检测系统的设计与应用

结晶器液位检测系统的设计与应用 摘要:在现代冶金行业中,结晶器液位控制在连铸系统中已经显得越来越重要,它对优质钢种的质量品质、浇铸的安全平稳、操作人员的人力资源的合理优化都有着重要的意义。但由于在结晶器液位控制的过程中存在许多不确定扰动因素,其扰动可能随时不断变化,并且绝大多数的扰动因素都是非线性的,因此无法建立准确的模型,很难使用常规的控制方法,本文介绍的是马钢新区连铸机的结晶器液位自动控制系统。 关键词:结晶器液位检测自动控制系统结晶器液位控制 一、结晶器液位控制系统 在连铸的生产过程中,通常使用塞棒来控制进结晶器的液位,但是塞棒经过钢水的腐蚀和冲刷,头部逐渐变形,因此塞棒位置与钢水流量的特性也在这个过程中产生不断的变化,这种变化通常是非线性的,因此无法用常规PID控制的方法来进行有效调节。针对以上情况,SMS-DEMAG公司运用现代智能控制技术模糊控制和运动控制的思想,通过控制软件控制塞棒开度达到控制液位的目的。 图1塞棒位置与钢水流量的特性关系 通过结晶器液位控制系统,在自动开浇和在浇铸时可以保持铸机结晶器内的钢水液面在一个预定的恒定液位值。如果反馈值与设定液面值有偏差,通过调节中包塞棒位置来改变从中包进入结晶器的钢水流量来补偿这个偏差使液位保持平稳。 结晶器液位控制系统包括: -Measurement(levelgauge)测量单元(VUHZ液位计)

-Controlsystem控制系统 -Stopperrodactuatingsystem塞棒执行系统 图2VUHZ液位控制系统示意图 1.1VUHZ液位计 VUHZ检测单元实际上是电磁式的传感器,它通过测量钢水通过磁场时产生的电流来确定钢液面的高度,测量范围为0~300mm。该测量系统集成于结晶器的设计中。安装于结晶器内弧侧的顶部。用于结晶器液位控制系统冷却系统采用直接用铸机的一次冷却水闭环冷却,安装简便快捷。 工作原理:VUHZ系统用于检测实际的结晶器液面,由电磁线圈在通电后产生一个静态的电磁场,电磁场分布取决于传感器的安装位置,当不同液面高度的钢水进入磁场时,会在传感器的二次线圈中感应出不同大小的电压,感应电压由经过放大器进行放大,通过计算单元的处理器进行处理。计算单元系将原来的电压信号转变成4-20mA的模拟量信号,结晶器液位控制采用闭环控制,系统的逻辑控制功能在运动控制器(motioncontroller)内完成。 图3传感器内部基本结构原理 该传感器由励磁线圈S和检测线圈L和检测线圈R组成。励磁采用峰值15V频率800HZ的信号。励磁产生的电磁信号可以穿透非金属的保护渣层,但不能穿透铜板,因此在传感器的其使用

年产500吨盐酸二甲双胍的工艺工段设计

目录 设计总说明 I 1 概要 I 1.1任务依据 I 1.2设计标准 I 1.3设计资料主要来源 I 2设计内容 I 2.1生产工艺流程 I 2.2设计结构 III The total designed to show that III 1前言 1 1.1 盐酸二甲双胍的性质 1 1.1.1 理化性质 1 1.1.2 临床上用途 2 1.2 发展简史 2 1.3 国内外市场现状及生产现状 4 1.4 选题的意义 5 2生产工艺 6 2.1 设计任务及内容 6 2.2 生产工艺 6 2.3 生产工艺流程确定 7 2.3.1 生产工艺流程 7 2.3.2 工艺流程图 7 2.4 工艺过程说明 7 2.4.1 粗制阶段 7 2.4.2 精制阶段 8

3 物料衡算 9 3.1 缩合罐的物料衡算 9 3.2 离心机的物料衡算 10 3.3 脱色罐的物料衡算 11 3.4 结晶罐的物料衡算 11 3.5 精制离心罐的物料衡算 12 3.6 干燥机的物料衡算 12 4 能量衡算 14 4.1 反应罐能量衡算 14 4.1.1 比热容的计算 14 4.1.2 能量衡算 15 5 主要工艺设备计算 20 5.1 工艺设备选型原则 20 5.2 工艺设备计算 20 5.2.1 结晶反应釜 20 5.2.2 夹套的计算 21 5.2.3 筒体的材料和壁厚 23 5.2.4 选择釜体法兰 24 5.2.5 选用手孔、视镜、温度计、和工艺接管 24 5.2.6 搅拌器的设计计算 25 5.2.7 容器支座的选用计算 25 5.3 离心机 25 5.4 脱色罐 26 5.5 精制结晶罐 26 5.5.1结晶釜尺寸计算 26 5.5.2夹套尺寸计算 27 5.5.3 强度计算(按内压计算强度) 28 5.6 精制离心机 31

真空制盐蒸发结晶器的设计与实践

真空制盐蒸发结晶器的设计与实践 摘要:真空蒸发制盐外热式强制逆循环轴向出料蒸发结晶器,经多个厂家生产应用实践证明是成功的,具有生命力的。这种新型结构,作为一项新技术新设备应加强研究,总结提高,推广应用,不断完善。文章从流体力学、结晶机理角度要求,到具体工程设计参数和 材质选用。论述了该罐的特点。 关健词:真空制盆;蒸发结晶器;结晶机理;罐型结构;设计参数;材质选用 1 前言 蒸发和结晶是重要的化工单元操作过程,在真空制盐行业中处于关键地位并起主导作用。目前我们所采用的蒸发结晶器是在原始蒸发装置的基础上发展起来的,它不再是仅仅为了强化传热及蒸发能力而获得产品,同时更主要的是以提高结晶产品的质量和粒度为目的。所以说传热及蒸发是为结晶产出合格的产品创造传热、传质的条件和环境。在传热蒸发过程中,严格控制料液的过饱和度以及晶核的形成和成长环境,产出合格的结晶产品,这是蒸发与结晶相结合的原理方面向前迈进了一大步。 2 蒸发结晶器的沿革 盐的生产主要是通过对卤水进行加热,使其蒸发浓缩结晶析出固体NaCl的过程。随着社会发展和科学技术进步,盐作为人们食用所占比例越来越小,而是大量作为基础化学工业和其它工业部门的原料。盐的品种由古老的雪花盐、筒盐、锅巴盐,发展到今天的各种特殊要求用途的特种盐。制盐设备也由古老的作坊式手工操作的园锅、镶锅、小方锅、小平锅、大平锅,至近代制盐工业用的内热式强制循环(标准式)蒸发结晶器和现代外热式强制正循环(又分为切向进料和轴向进料两种)蒸发结晶器及外热式强制逆循环(分为径向出

料和轴向出料两种)蒸发结晶器。这也是目前国内制盐企业应用最多的蒸发结晶器(如图1所示)。若为了获得粒径更大的结晶盐可在上述蒸发结晶器上增设奥斯陆(OsLo)育晶器。D·T·B型育晶器或倒园锥型育晶器,这样可获得粒径在Imm至数毫米的结晶盐产品。 a.外热式强制正循环切向进料蒸发结晶器; b.外热式强制正循环轴向进料蒸发结晶器; c.外热式强制逆循环径向出料蒸发结晶器; d..外热式强制逆循环轴向出料蒸发结晶器。 3 NaCl结晶机理简介 3.1 NaCl结晶的环境和条件,NaCl结晶要从盐卤料液中结晶析出,料液必须从外部不断地获得热能,使料液中的水分不断蒸发浓缩,使其达到饱和和过饱和(如图2所示)。 3.1.1 当卤水未达到饱和时NaCl不会产生结晶,当放入NaCI晶体时则会溶解。如图2 AB线下方的不饱和区域(稳定区)。 3.1.2 当卤水继续蒸发NaCl达到饱和,如图2中的AB线即平衡

相关主题
文本预览
相关文档 最新文档