当前位置:文档之家› 圆锥曲线间的三个统一统一定义、统一公式、统一方程

圆锥曲线间的三个统一统一定义、统一公式、统一方程

圆锥曲线间的三个统一统一定义、统一公式、统一方程
圆锥曲线间的三个统一统一定义、统一公式、统一方程

圆锥曲线间的三个统一

内蒙古巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅 世界之美在于和谐,圆锥曲线间也有其内在的和谐与统一,通过对圆锥曲线图形和已知公式的变换,我们可以得出以下结论。

一、四种圆锥曲线的统一定义

动点P 到定点F 的距离到定直线L 的距离之比等于常数e ,则当01e <<时,动点P 的轨迹是椭圆:当1e =时,动点P 的轨迹是抛物线;当1e >时,动点P 的轨迹是双曲线;若0e =,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为焦点,L 为准线。

二、四种圆锥曲线的统一方程

从第1点我们可以知道离心率影响着圆锥曲线的形状。为了实现统一我们把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们

的半通径为p ,则2

b p a

=。 如图1,将椭圆22

221(0)x y a b a b

+=>>按向量(,0a )平移 得到2222()1x a y a b -+= ∴22

2222b b y x x a a

=+ ∵椭圆的半通径211||b F M p a ==,2

221b e a

=- ∴椭圆的方程可写成2222(1)y px e x =+- (01)e <<

类似的,如图2,将双曲线22

221(0,0)x y a b a b

-=>>按向量(,0)a -平移得到 2222()1x a y a b +-= ∴22

2222b b y x x a a

=+

∵双曲线的半通径222||b F M a

=,2

221b e a =- ∴双曲线方程可写成2222(1)(1)y px e x e =+->

对于抛物线22(0)y px x =>P 为半通径,离心率1e =,它也可写成

2222(1)(1)y px e x e =+-=

对于圆心在(P ,0),半径为P 的圆,其方程为222()x p y p -+=,它也可写成2222(1)(0)y px e x e =+-=

于是在同一坐标下,四种圆锥曲线有统一的方程2222(1)y px e x =+-,其中P 是曲线的半通径长,当0e =,01e <<,1,1e e =>时分别表示圆、椭圆、抛物线、双曲线。

三、四种圆锥曲线的统一焦点坐标、准线方程和焦半径公式

在同一坐标系下,作出方程2222(1)y px e x =+-所表示的四种圆锥曲线,如图3,设P 、B 、A 、C 分别是圆的圆心,椭圆的左焦点、抛物线的焦点、双曲线的右焦点统一记为2222(1)y px e x =+-的焦点F 则有222(1)(1)11

c a a e P OC c a e a c e e --=-===>+++ (1)21

p p OA e e ===+,222(1)(01)11a c a e p OB a c e a c e e --=-===<<+++ (0)1

p OP p e e ===+ 即方程2222(1)y px e x =+-所表示的四种圆锥曲线的一个焦点为(,0)1p F e +,设焦点F 相应的准线为x m =,则有OF e m

=-。 ∴准线L 为(1)

p x m e e -==+,对于圆0e =表示准线L 在无限远处,设点00(,)M x y 为曲线2222(1)y px e x =+-上在y 轴右侧的动点,则点M 对焦点F 的

焦半径00||()1

p mF e x m ex e =-=++。 圆锥曲线的内在统一,使我们可以将圆、椭圆、双曲线和抛物线有机地联系起来,从而更好地理解圆锥曲线的含义,更好地运用圆锥曲线解决实际问题。

圆锥曲线中的数学思想方法

内蒙古巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅

在解决圆锥曲线的有关问题时,数学思想方法尤为重要,通过对我们平时所遇到的例题及习题的归纳、总结,可以得出以下一些关于圆锥曲线问题中的数学思想方法,帮助我们解决问题。

思想方法一:分类讨论思想

例 1. 给定抛物线22y x =设(,0)A a ()a R +∈,P 是抛物线上的一点,且||PA d =,试求d 的最小值。

解:设00(,)P x y (0)x ≥,则2002y x =

∴||d PA ====又a R +∈,00x ≥

∴(1)当01a <<时,10a ->,此时有00x =

min d a ==

(2)当1a ≥时,此时有01x a =-

min d =

评注:引起分类讨论的情况有:参数的取值范围、去绝对值符号、大小关系不等式等,在讨论中要思维全面,谨慎,做到不懂不漏。

思想方法二:转化思想

例2 已知过点A (―2,―4)且斜率为1的直线L 交抛物线22(0)y px p =>于B 、C 两点,若|AB|、|BC|、|CA|成等比数列,求抛物线方程。

解:直线L 的方程为2y x =-设B (11,x y ),22(,)C x y

由222y x y px

=-??=? 得22(2)40x p x -++= ∴122(2)x x p +=+ 124x x =

∵|AB|、|BC|、|CA|成等比数列 ∴||||||||

BC CA AB BC = 过A 作直线l '∥x 轴,设B 、C 在l '上的射影分别是B ',C '

则211||||||||2x x BC B C AB AB x ''-=='+ 221

2||||||||x CA C A BC B A x x '+==''- ∴

21222122x x x x x x -+=+- 即22112()(2)(2)x x x x -=++ ∴212121212()42()4x x x x x x x x +-=+++

得24(2)1644(2)4p p +-=+++ 化简为2340p p +-=

解得1p =满足1?>或4p =-(舍去)

故所求的抛物线方程为22y x =

评注:如何将“|AB|、|BC|、|CA|成等比数列”这一条件转化为A 、B 、C 三点坐标间的关系是解题的关键,本题巧妙运用了“投影”方法将这一条件转化为在水平线上的三线段之间的比例关系,从而达到转化的目的。

思想方法三:化归思想

例3 直线L :1y kx =+与双曲线C :2221x y -=的右支交于不同的两点A 、B 。

(1)求实数k 的取值范围。

(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点。 解:(1)将直线L 的方程1y kx =+代入双曲线C 的方程2221x y -=,得 22(2)220k x kx -++= ①

依题意直线L 与双曲线C 的右支交于不同两点

∴2222220(2)8(2)0

2220,022k k k k k k k ??-≠??=-->?-<>--?

2)设A 、B 两点的坐标分别为1122(,)(,)x y x y

则由①可得 12222k x x k +=-,12222

x x k =- ②

假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c ,0)则由FA ⊥FB 得1212()()0x c x c y y --+=

整理得:221212(1)()()10k x x k c x x c ++-+++= ③

把②式及c =代入③式化简得:2560k +-=

∴65k =-或6(2,5

k =?-(舍去)

∴65k =-

使得以AB 为直径的圆经过双曲线C 的右焦点F 。 评注:解决数学问题的过程,实质就是在不断转化与化归的过程。应在解题时注意思维调控,恰当转化解题途径,使解题更加便捷。

思想方法四:数形结合思想

例4 函数y =________。

分析:原式=,其几何模型是定曲线2y x =上的动点(,)p x y 到两定点A (3,2),B (0,1)的距离之差,要求其最大值。

||||||y AP PB AB =-≤== ∴max y 评注:利用问题模型的几何意义,借助图形性质来解决问题,可使抽象问题具体化,复杂问题简单化。

思想方法五:函数与方程思想

例5 斜率为2的直线与等轴双曲线2212x y -=相交于两点12,P P ,求线段12P P 中点的轨迹方程。

解:设直线方程为2y x m =+代入双曲线方程得2234120x mx m +++= ∵直线与双曲线相交于12,P P

∴22(4)43(12)0m m ?=-??+>

∴6m >或6m <-

设12,P P 的坐标为11(,)x y 22(,)x y ,线段12P P 中点为(,)x y 则12223

x x x m +=

=-且4x <-或4x > ∴32m x =- 代入直线方程得: 所求轨迹方程为12

y x = (4x >或4x <-) 思想方法六:构造思想 例6 已知,x y 满足22

11625

x y +=,求3y x -的取值范围。 解:令3y x -=b ,则3y x b =+

原问题转化为:在椭圆22

11625

x y +=相切时,有最大截距与最小截距 由22311625

y x b x y =+???+=?? 消去y 得2216996164000x bx x ++-= 由0?= 得13b =±

∴3y x =的取值范围为[-13,13]

评注:应用构造思想解题的关键有①要有明确方向,即为何构造②要弄清条件的本质特点,以便进行逻辑组合。

思想方法七:对称思想

例7 在直线L :90x y --=上任取一点M 过M 且以椭圆22

1123

x y +=的焦点为焦点作椭圆。问M 在何处时,所作的椭圆长轴最短,并求出其方程。

解:∵22

1123

x y +=的两焦点12(3,0),(3,0)F F -,1F '是1F 关于L 的对称点 又11F F '的直线方程为30x y ++=与90x y -+=联立,求得1(9,6)F '-,这时12F F '的方程为230x y +-=

230

90

x y x y +-=??-+=? 得(5,4)M =- 这时122||a F F '==∴椭圆方程为22

14536

x y += 评注:用对称思想解题,不仅可以利用对称的性质,沟通已知与未知的关系,使分散的条件相对集中,促成问题的解决。

思想方法八:参数思想

例8 在椭圆2244x y x +=上,求使22z x y =-取得最大值和最小值的点P 的坐标。

解:将已知方程转化为22

(2)141

x y -+= 设椭圆上动点P 为(22cos ,sin )θθ+

∴22z x y =-=222241(22cos )sin 5cos 8cos 35(cos )55

θθθθθ+-=++=+- ∴当4cos 5θ=-,即点P 坐标为23(,)55或23(,)55-时,min 15

z =- 当cos 1θ=,即点P 坐标为(4,0)时,max 16z =

评注:参数法是很重要的一种方法,特别是求最值问题、不等式问题,引入参数往往能减少变元,避免繁琐的运算。

总之,数学思想方法会有很多,并且不同的题目也会有不同的方法,在解题过程中不断地反思,总结经验,对规律性的东西加以归纳整理,在平时练习或考试中加以应用,肯定能够以简驭繁,事半功倍,使解题建立在较高水平上。

圆锥曲线的定义、性质、方程

专题13 圆锥曲线的定义、性质和方程 ★★★高考在考什么 【考题回放】 1.已知△ABC 的顶点B 、C 在椭圆2 3 x +y 2=1上,顶点A 是椭圆的一个焦点,且 椭圆的另外一个焦点在BC 边上,则△ABC 的周长是(C ) (A )2 3 (B )6 (C )4 3 (D )12 2.已知双曲线22221x y a b -=的一条渐近线方程为y =4 3x ,则双曲线的离心率为(A) (A )53 (B )43 (C )54 (D )3 2 3.如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F ,一条渐近线方程为x y 2= , 那么它的两条准线间的距离是( C ) A .36 B .4 C .2 D .1 4.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A ) 16 17 ( B ) 1615 ( C ) 87 ( D ) 0 5.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍, 则该椭圆的标准方程是 2 21164 +=y x . 6.如图,F 为双曲线C :()22 2210,0x y a b a b -=>>的右焦点。P 为双曲线C 右支 上一点,且位于x 轴上方,M 为左准线上一点,O 为坐标原点。已知四边形OFPM 为 平行四边形,|PF |=λ|OF |。 (Ⅰ)写出双曲线C 的离心率e 与λ的关系式; (Ⅱ)当λ=1时,经过焦点F 且平行于OP 的直线交双曲线于A 、B 点,若|AB |=12,求此时的双曲线方程。 【专家解答】 ∵四边形OFPM 是 ,∴||||OF PM c ==, 作双曲线的右准线交PM 于H ,则2 ||||2 a PM PH c =+,又22 2222|||||| 222 PF OF c e e a PH c a e c c λλλ====---, 220e e λ--=。 (Ⅱ)当1λ=时,2e =,2c a =,2 2 3b a =,双曲线为 22 22 143x y a a -=四边形

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

高中数学选修2-1圆锥曲线的统一定义 例题解析

圆锥曲线的统一定义 例题解析 【例1】以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线; ②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(2 1 +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号) 【分析】本题主要考查圆锥曲线的定义和性质主要由a,b,c,e 的关系求得 【解】双曲线的第一定义是:平面上的动点P 到两定点是A,B 之间的距离的差的绝对值为常数 2a, 且2||a AB <,那么P 点的轨迹为双曲线,故①错, 由1 ()2 OP OA OB =+,得P 为弦AB 的中点,故②错, 设22520x x -+=的两根为12,x x 则12125 ,12 x x x x +==可知两根互与为倒数,且均为正,故③ 对, 22 1259x y -=的焦点坐标(),而2 2135 x y +=的焦点坐标(),故④正确. 【点评】要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e 的相互关系. 【例2】设,2 0π θ<<曲线1sin cos 1cos sin 2222=-=+θθθθy x y x 和有4个不同的交点. (Ⅰ)求θ的取值范围; (Ⅱ)证明这4个交点共圆,并求圆半径的取值范围. 【分析】本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力. 【解】(I )两曲线的交点坐标(x ,y )满足方程组 ?????=-=+,1sin cos ,1cos sin 2222θθθθy x y x 即?????-=+=. sin cos ,cos sin 22θθθθy x

圆锥曲线间的三个统一统一定义、统一公式、统一方程

圆锥曲线间的三个统一 巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅 世界之美在于和谐,圆锥曲线间也有其在的和谐与统一,通过对圆锥曲线图形和已知公式的变换,我们可以得出以下结论。 一、四种圆锥曲线的统一定义 动点P 到定点F 的距离到定直线L 的距离之比等于常数e ,则当01e <<时,动点P 的轨迹是椭圆:当1e =时,动点P 的轨迹是抛物线;当1e >时,动点P 的轨迹是双曲线;若0e =,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为焦点,L 为准线。 二、四种圆锥曲线的统一方程 从第1点我们可以知道离心率影响着圆锥曲线的形状。为了实现统一我们把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们 的半通径为p ,则2 b p a =。 如图1,将椭圆22 221(0)x y a b a b +=>>按向量(,0a )平移 得到2222()1x a y a b -+= ∴22 2222b b y x x a a =+ ∵椭圆的半通径211||b F M p a ==,2 221b e a =- ∴椭圆的方程可写成2222(1)y px e x =+- (01)e << 类似的,如图2,将双曲线22 221(0,0)x y a b a b -=>>按向量(,0)a -平移得到

2222()1x a y a b +-= ∴22 2222b b y x x a a =+ ∵双曲线的半通径222||b F M a =,2 221b e a =- ∴双曲线方程可写成2222(1)(1)y px e x e =+-> 对于抛物线22(0)y px x =>P 为半通径,离心率1e =,它也可写成 2222(1)(1)y px e x e =+-= 对于圆心在(P ,0),半径为P 的圆,其方程为222()x p y p -+=,它也可写成2222(1)(0)y px e x e =+-= 于是在同一坐标下,四种圆锥曲线有统一的方程2222(1)y px e x =+-,其中P 是曲线的半通径长,当0e =,01e <<,1,1e e =>时分别表示圆、椭圆、抛物线、双曲线。 三、四种圆锥曲线的统一焦点坐标、准线方程和焦半径公式 在同一坐标系下,作出方程2222(1)y px e x =+-所表示的四种圆锥曲线,如图3,设P 、B 、A 、C 分别是圆的圆心,椭圆的左焦点、抛物线的焦点、双曲线的右焦点统一记为2222(1)y px e x =+-的焦点F 则有222(1)(1)11 c a a e P OC c a e a c e e --=-===>+++ (1)21 p p OA e e ===+,222(1)(01)11a c a e p OB a c e a c e e --=-===<<+++ (0)1 p OP p e e ===+ 即方程2222(1)y px e x =+-所表示的四种圆锥曲线的一个焦点为(,0)1 p F e +,设焦点F 相应的准线为x m =,则有OF e m =-。

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径:)(21c a x e PF +=,)(2 2x c a e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与 准线距离、焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c , 有关角21PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相 应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形: (三)性质 方程:12222=-b y a x )0,0(>>b a 122 22=-b x a y )0,0(>>b a 取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b 焦距:2c

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

圆锥曲线的统一定义 (2)

§2.5圆锥曲线的统一定义 教学目的: 1、知识与技能: 掌握椭圆、双曲线的第二定义以及准线的概念 2.过程与方法 类比抛物线的定义引出椭圆和双曲线的第二定义,借助几何画板等多媒体手段探究出轨迹的形成,进一步推导出椭圆和双曲线的方程。 3.情感、态度与价值观 通过本节课的学习,可以培养我们类比推理的能力,探究能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力. 教学重点:圆锥曲线的统一定义的形成 教学难点:圆锥曲线方程的推导 教学过程: 一.情境设置 复习回顾 1、抛物线的定义: 探究与思考: 1≠d PF 呢 2、在推导椭圆的标准方程时,我们曾得到这样一个式子: 将其变形为: 你能解释这个式子的几何意义吗? 二、知识建构 例1.已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 :=的距离的比是常数 c a (a>c>0),求 P 的轨迹. 变题:已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 := 的距离的比是常数 c a (c>a>0),求P 的轨迹. 222)(y c x a cx a +-=-a c x c a y c x =-+-22 2)(

圆锥曲线的统一定义:平面内到一定点 F 与到一条定直线l 的距离之比为常数 e 的点的轨迹.( 点F 不在直线l 上) (1)当 0< e <1 时, 点的轨迹是 (2)当 e >1 时, 点的轨迹是 (3)当 e = 1 时, 点的轨迹是 其中常数e 叫做圆锥曲线的离心率, 定点F 叫做圆锥曲线的焦点, 定直线l 就是该圆锥曲线的准线. 思考 1、上述定义中只给出了一个焦点,一条准线,还有另一焦点,是否还有另一准线? 2、另一焦点的坐标和准线的方程是什么? 3、题中的|MF|=ed 的距离d 到底是到哪一条准线的距离?能否随意选一条? 准线: 定义式: )0(12222>>=+b a b y a x ) 0,0(122 22>>=-b a b y a x

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

高中数学学案:圆锥曲线的定义在解题中的应用

高中数学学案:圆锥曲线的定义在解题中的应用 1. 了解圆锥曲线的统一定义,能够运用定义求圆锥曲线的标准方程. 2. 理解圆锥曲线准线的意义,会利用准线进行相关的转化和计算. 1. 阅读:选修11第52~53页(理科阅读选修21相应内容);阅读之前先独立书写出圆锥曲线的统一定义,并尝试根据圆锥曲线的统一定义推导出椭圆方程. 2. 解悟:①写出圆锥曲线的统一定义,写出椭圆x 2a 2+y 2b 2=1(a>b>0)和双曲线x 2a 2-y 2 b 2=1(a>0,b>0)的准线方程;②椭圆、双曲线、抛物线各有几条准线?有什么特征? 3. 在教材上的空白处完成选修11第54页练习第2题(理科完成选修21相应任务). 基础诊断 1. 点P 在椭圆x 225+y 2 9=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 到左准线 的距离为 25 3 . 解析:设椭圆的左,右焦点分别为F 1,F 2,由题意知PF 1+PF 2=2a =10,PF 1=2PF 2,所以PF 1=203,PF 2=103.因为椭圆x 225+y 29=1的离心率为e =45,所以点P 到左准线的距离d =PF 1e =20 345=253. 2. 已知椭圆x 225+y 29=1上一点的横坐标为2,则该点到左焦点的距离是 33 5 . 解析:椭圆x 225+y 29=1,则a =5,b =3,c =4,所以离心率e =c a =4 5.由焦半径公式可得该点到左 焦点的距离为a +ex =5+45×2=33 5. 3. 焦点在x 轴上,且一个焦点到渐近线的距离为3,到相应准线的距离为9 5的双曲线的标准 方程为 x 216-y 2 9=1 . 解析:设双曲线的方程为x 2a 2-y 2b 2=1,焦点为(-c,0),(c,0),渐近线方程为y =±b a x,准线方程为x =±a 2c ,由题意得焦点到渐近线的距离d =bc a 2+ b 2=bc c = b =3,所以b =3.因为焦点到相应准线的

用圆锥曲线定义求曲线方程

用圆锥曲线定义求曲线方程 圆锥曲线的定义尽管简单,但很重要,是推导标准方程和研究几何性质的基础和根源。圆锥曲线这一部分是高考考试的重点内容,其中对定义考查的试题又层出不穷,高考常常涉及,2008高考试题中有七套考察了定义。回归定义和有意识利用定义是高三学生需要加强的一个意识。 把握圆锥曲线的定义从两个方面入手即可:定义表达式和限制条件。现归纳对比如下表: 圆锥曲线定义表达式限制条件 椭圆+ =2a <2a 双曲线- =+2a >2a 抛物线=d P不在定直线L上 圆锥曲线的应用主要有三个方面: 1.求曲线的轨迹,即定义法。 2.涉及椭圆和双曲线上的点和两个焦点的“焦点三角形”问题,常利用定义表达式结合余弦定理解决。 3.研究曲线上的点和定点间距离的最值问题(和抛物线的焦点弦问题)。 现只对利用定义求曲线方程这部分试题总结如下: 一、与向量法有关的圆锥曲线定义试题

例1已知=(c, o)(c>0),=(n, n)(n R),| |的最小值为1,若动点P同时满足下列三个条件; ①| |= (a>c>0) ②(其中 ③动点P的轨迹C经过点B(0,-1) Ⅰ求c的值; Ⅱ求曲线C的方程; Ⅲ是否存在方向向量为a=(1,k)(k )的直线l,使l与曲线C 交于不同的点N、M且?若存在,求出k的取值范围;若不存在,请说明理由。 分析:本题的三个条件中的①②实质是用向量法给出了圆锥曲线的定义。因为F为一定点,②(其中实质说明E点在定直线x= ,且PE平行于x轴, 即垂直于直线x= ;①| |= 结合②说明了动点P到定点F和到定直线x= 的距离之比为定值。又根据a>c>0可知P点的轨迹为椭圆。 解:Ⅰ由①②可知P点轨迹为中心在原点,焦点在x轴上的椭圆,故可设方程为 又由=(c, o)(c>0),=(n, n)(n R),| |的最小值为1可知点F 到直线y=x的距离为1,可求得c= Ⅱ又点B(0,-1)在椭圆上可得b2=1,a2=3 所以曲线方程为 Ⅲ假设存在方向向量a0=(1,k)(k≠0)的直线l满足条件,

专题-圆锥曲线与方程(教师)

专题-圆锥曲线与方程 抓住3个高考重点 重点1 椭圆及其性质 1.椭圆的定义:椭圆的第一定义:对椭圆上任意一点M 都有1212||||2||2MF MF a F F c +=>= 椭圆的第二定义:对椭圆上任意一点M 都有 || ,(01)MF e e d =<< 2.求椭圆的标准方程的方法 (1)定义法:根据椭圆定义,确定2 2 ,a b 的值,再结合焦点位置,直接写出椭圆的标准方程. (2)待定系数法:根据椭圆焦点是在x 轴还是在y 轴上,设出相应形式的标准方程,然后根据条件确定关于,,a b c 的方程组,解出2 2 ,a b ,从而写出椭圆的标准方程. 3.求椭圆的标准方程需要注意以下几点? (1)如果椭圆的焦点位置不能确定,可设方程为2 2 1(0,0,)Ax By A B A B +=>>≠或22 221x y m n += (2)与椭圆2222 221()x y m n m n +=≠共焦点的椭圆方程可设为22222 21(,)x y k m k n m k n k +=>->-++ (3)与椭圆22221(0)x y a b a b +=>>有相同离心率的椭圆方程可设为22 122x y k a b +=(10k >,焦点在x 轴上)或 22 222 y x k a b +=(20k >,焦点在y 轴上) 4.椭圆的几何性质的应用策略 (1)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形:若涉及顶点、焦点、长轴、短轴等椭圆的基本量,则要理清它们之间的关系,挖掘出它们之间的联系,求解自然就不难了. (2)椭圆的离心率2 21c b e a a ==-当e 越接近于1时,椭圆越扁,当e 越接近于0时, 椭圆越接近于圆, 求椭圆的标准方程需要两个条件,而求椭圆的离心率只需要根据一个条件得到关于,,a b c 的齐次方程,再结合2 2 2 a b c =+即可求出椭圆的离心率 [高考常考角度] 角度1若椭圆12222=+b y a x 的焦点在x 轴上,过点)2 1,1(作圆12 2=+y x 的切线,切点分别为A ,B ,直线AB 恰好 经过椭圆的右焦点和上顶点,则椭圆方程是 14 52 2=+y x . 解析:方法一:设过点)21,1(的直线方程为:当斜率存在时,1 (1)2 y k x =-+,即22120kx y k -+-=

高考数学一轮复习 圆锥曲线的统一定义教案

江苏省泰兴市第三中学2015届高考数学一轮复习 圆锥曲线的 统一定义教案 一、教学目标 1. 了解圆锥曲线的统一定义. 2.掌握根据标准方程求圆锥曲线的准线方程的方法。 二、教学重点、难点 重点:圆锥曲线的统一定义。 难点:圆锥曲线的统一定义 三、教学过程 (一) 创设情境 我们知道,平面内到一个定点F 的距离和到一条定直线L (F 不在L 上)的距离 的比等于1的动点P 的轨迹是抛物线。如图(1)即 1PF PA =时,点P 的轨迹是抛物线。 下面思考这样个问题:当这个比值是一个不等于1的常数时,我们来观察动点P 的轨迹又是什么曲线呢?比如: 12PF PA =和2PF PA =时,动点P 的轨迹怎么变化? (二 )师生探究 下面我们来探讨这样个问题: 例1:已知点P (x,y )到定点F (c,0)的距离与它到定直线l :x=2 a c 的距离的比是常数 c a (a >c >0),求点P 的轨迹。

结论:点P 的轨迹是焦点为(-c ,0),(c ,0),长轴、短轴分别为2a ,2b 的椭圆。这个椭圆的离心率e 就是P 到定点F 的距离和它到定直线l (F 不在l 上)的距离的比。 变式:如果我们在例1中,将条件(a >c >0)改为(c >a >0),点P的轨迹又发生如何变化呢? 下面,我们对上面三种情况总结归纳出圆锥曲线的一种统一定义. 结论:圆锥曲线统一定义:平面内到一个定点F和到一条定直线L (F 不在L 上)的距离的比等于常数e 的点的轨迹.当0<e <1时,它表示椭圆;当e >1时,它表示双曲线;当e =1时,它表示抛物线.(其中e 是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线是圆锥曲线的准线) 例3:已知动点M 到A (2,0)的距离等于它到直线x=-1的距离的2倍,求点M 的轨迹方程。 例4.椭圆22 2214x y b b +=上一点到右准线的距离是,求该点到椭圆左焦点的距离. 例5.若椭圆22 143 x y +=内有一点(1,1)P -,F 为右焦点,椭圆上有一点M 使||2||MP MF +最小,求点M 的坐标及最小值。

第二章圆锥曲线与方程单元测试卷

第二章圆锥曲线与方程单元测试卷 一、选择题: 1.双曲线2 214 x y -=的实轴长为( ) A .3 B .4 C .5 D .12 2.抛物线22y x =的准线方程为( ) A .14y =- B .18y =- C .12x = D .1 4x =- 3.已知椭圆 22 1102 x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 4.抛物线21 4 x y = 的焦点到准线的距离为( ) A .2 B .4 C .18 D .1 2 、 5.已知椭圆()222104x y a a + =>与双曲线22 193 x y -=有相同的焦点,则a 的值为( ) C.4 D.10 6.若双曲线()22 22103 x y a a -=>的离心率为2,则实数a 等于( ) A.2 B. C. 3 2 D.1 7.曲线221259x y + =与曲线()22 19259x y k k k +=<--的( ) A.长轴长相等 B.短轴长相等 C.焦距相等 D.离心率相等 8.已知抛物线2:4C y x =的焦点为F ,点,A B 在C 上且关于x 轴对称,点,M N 分别为,AF BF 的中点,且AN BM ⊥,则AB =( ) A . B . C .8或8 D .12或12-

… 9.已知双曲线22 221x y a b -=(0,0)a b >>的一条渐近线过点,且双曲线的一个焦点在抛物线 2y =的准线上,则双曲线的方程是( ) A .2212128x y -= B .22 12821x y - = C .22134x y -= D .22 143x y - = 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) D.92 11.已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交 椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于4 5 ,则椭圆E 的离心率的取值范围是( ) A .(0, ]2 B .3(0,]4 C .[2 D .3[,1)4 12.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点 和线段AB 中点的直线的斜率为2- ,则a b 的值为( ) A . B . C . D . 第Ⅱ卷(非选择题共90分) @ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横一上. 13.若双曲线1162 2=-m x y 的离心率2=e ,则=m ________. 14.动圆经过点(3,0)A ,且与直线:3l x =-相切,则动圆圆心M 的轨迹方程是____________.

圆锥曲线的统一定义解读

圆锥曲线的统一定义解读 江苏王冬琴 圆锥曲线的统一定义揭示了椭圆、双曲线、抛物线三种曲线的内在关系,使我们充分感受数学的内在的、和谐的美,有了发现美、欣赏美的意识;统一定义的推导需要娴熟的代数恒等变形的技能,整个推导过程渗透了特殊到一般,具体到抽象的数学思想. 一、圆锥曲线的统一定义 1.定义平面内到一定点F 与到一条定直线l ( 点F 不在直线l 上)的距离之比为常数e 的点的轨迹叫圆锥曲线. ①当 0< e <1 时, 点的轨迹是椭圆;②当e= 1 时, 点的轨迹是抛物线;③当e>1 时, 点的轨迹是双曲线,其中常数e叫做圆锥曲线的离心率,定点F叫做圆锥曲线的焦点, 定直线l就是该圆锥曲线的准线. 2.焦半径:圆锥曲线上的点与焦点的连线段叫做焦半径. 运用圆锥曲线的统一定义,可以推导出曲线上一点到焦点的距离就是焦半径,一般用点的坐标和离心率表示. 3.注意事项 (1)统一定义是充分必要条件,即满足条件的点一定在圆锥曲线上,反之,圆锥曲线上的任意一点也满足条件. (2)焦点与准线要对应,对于椭圆或双曲线,其上的一点到一个焦点的距离与它到相应准线的距离的比等于它的离心率。这里的“相应”指的是:“左焦点对应左准线”、“右焦点对应右准线”;特别地,对于焦点在x 轴上的双曲线来说,右支上任意一点到左焦点的距离与这点到左准线的距离之比也等于离心率. (3)准线与圆锥曲线一定没公共点. (4)当点F在直线l上时,设平面内动点M到直线l的距离是d,且MF e d =,若1 e>, 则动点M的轨迹是过F点与直线l成等锐角的两条相交直线;若1 e=,则动点M的轨迹是过F点与直线l成等直角的一条直线;若1 e<,则动点M的轨迹不存在. 二、圆锥曲线的几何性质

利用圆锥曲线的统一定义解题

利用圆锥曲线的统一定义解题 圆锥曲线的统一定义揭示了圆锥曲线的内在联系,使焦点、离心率、准线等构成了一个和谐的整体。恰当而灵活运用统一定义来解题,往往能化难为易,化繁为简,起到事半功倍的效果.下面谈一谈圆锥曲线的统一定义的解题功能。 一、“统一定义”活解曲线方程 例1、已知圆锥曲线过点(4,8)P --,它的一个焦点(4,0)F -,对应这个焦点的准线方程为4x =,求这条曲线的轨迹方程. 解:设(,)M x y 为该圆锥曲线上任一点,由统一定义得:4 44 MF PF x =---,即 0)= 216y x =-,故所求曲线的方程为216y x =- 点评:利用圆锥曲线的统一定义来解,体现问题的本质,避免不必要的讨论,解题过程简捷.求圆锥曲线的轨迹方程时,涉及到焦点、准线、离心率和曲线上点4个条件中的3个,往往用圆锥曲线的统一定义解. 练习1:在平面内到定点(0,4)的距离比它到定直线5y =-的距离小1的动点的轨迹方程。 解:由题设可知:平面内动点到定点(0,4)的距离等于到定直线4y =-距离,由“统一定义”可知,动点的轨迹是以(0,4)为焦点,4y =-为准线的一条抛物线,其方程为216x y =。 二、“统一定义”妙解圆锥曲线的最值 例2、已知点(2,1)A 在椭圆内,F 的坐标为(2,0),在椭圆上求一点P ,使||2||P A P F +最小. 分析:如果直译,很难使问题得到解决.根据所提供数据的特点,已知椭圆的离心率为 1 2 ,而表达式||2||PA PF +中有系数2,可以考虑构造表达式||2||PA PF +的几何意义,紧扣椭圆的定义解答. 解:设椭圆上点P 到准线的距离为d ,则 1 2 PF e d ==,即2||d PF =,则问题转化为,在椭圆上求一点,使它到焦点F 与对应准线的距离之和最小,如图6,根据平面几何中的“垂线段最短”的性质,作2AM 垂直于准线,其与椭圆的交点即为所求点P ,故设 (,1)P x ,代入椭圆方程得x =P 为所求. 点评:根据椭圆的第二定义,通过离心率把到焦点的距离与到对应准线的距离之间进行 转化,结合图形的性质,探求解题方法,优化解题过程。 练习2:已知点A (3,0)、F (2,0),在双曲线22 13y x -=上求一点P ,使1 ||||2 P A P F + 的值最小。 解:1,2,2a b c e ==∴=∴=。设点P 到与焦点F (2,0)相应的准线的距离为d ,则 ||2PF d =。∴1 ||2 PF d =。1||||||2PA PF PA d ∴+=+,这问题就转化为在双曲线上求点P ,

圆锥曲线的定义方程和性质知识总结及试题

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点到定点的距离和它到定直线的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 轴、轴; 长轴长,短轴长; 焦点在长轴上 轴、轴; 长轴长,短轴长; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数 3. 焦半径公式:

相关主题
文本预览
相关文档 最新文档