partial-differential-equation-toolbox[1]
- 格式:pdf
- 大小:347.73 KB
- 文档页数:5
基于Matlab的四层椭圆头模型EIT正向计算研究李英一;刘文礼;陶佰睿;郭福三【摘要】目的:探寻一种可用于头部EIT(电阻抗成像技术)正问题相对精确并且实现简单的求解方法,使得逆问题的结果能够更加接近人体头部的真实阻抗分布.方法:利用Matlab构建一种比传统圆形或同心圆更加符合人脑形状的二维四层椭圆头模型结构,并对其进行剖分和正向仿真计算.结果:实现了模型的建立、剖分、偏微分方程的求解以及解的可视化.结论:与使用其它编程语言实现正向计算相比,这一方法更加直观,程序调试以及修改都更加容易;构建的模型更加接近人头部的真实结构,为逆问题的精确求解奠定了基础.【期刊名称】《齐齐哈尔大学学报(自然科学版)》【年(卷),期】2015(031)006【总页数】3页(P9-11)【关键词】四层椭圆头模型;电阻抗成像技术;正问题;仿真计算【作者】李英一;刘文礼;陶佰睿;郭福三【作者单位】齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006;齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006【正文语种】中文【中图分类】TP391.41Matlab是一种以矩阵为基本数据元素的数值计算工具,它既有高效的科学计算功能,又有强大的图形处理功能,并且其一个重要特色就是拥有一套程序扩展系统和被称之为工具箱的特殊应用子程序。
Matlab提供了一个图形用户界面(GUI)的偏微分方程数值求解工具Partial Differential Equation TOOLBOX[1]。
利用该工具,可以交互式地实现偏微分方程数学模型的几何模型建立、边界条件设定、三角形网格剖分和加密,以及偏微分方程类型设置、参数给定、方程求解和结果图形显示。
它包括了数值求解的前处理、计算和后处理等一套完整的程序,可以直观、快速、准确、形象地实现偏微分方程的数值求解。
(整理)matlab部分工具箱.1)通讯工具箱(Communication Toolbox)。
令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析——信号编码——调制解调——滤波器和均衡器设计——通道模型——同步可由结构图直接生成可应用的C语言源代码。
2)控制系统工具箱(Control System Toolbox)。
鲁连续系统设计和离散系统设计* 状态空间和传递函数* 模型转换* 频域响应:Bode图、Nyquist图、Nichols图* 时域响应:冲击响应、阶跃响应、斜波响应等* 根轨迹、极点配置、LQG3)财政金融工具箱(FinancialTooLbox)。
* 成本、利润分析,市场灵敏度分析* 业务量分析及优化* 偏差分析* 资金流量估算* 财务报表4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox* 辨识具有未知延迟的连续和离散系统* 计算幅值/相位、零点/极点的置信区间* 设计周期激励信号、最小峰值、最优能量诺等5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。
* 友好的交互设计界面* 自适应神经—模糊学习、聚类以及Sugeno推理* 支持SIMULINK动态仿真* 可生成C语言源代码用于实时应用(6)高阶谱分析工具箱(Higher—Order SpectralAnalysis Toolbox * 高阶谱估计* 信号中非线性特征的检测和刻画* 延时估计* 幅值和相位重构* 阵列信号处理* 谐波重构(7)图像处理工具箱(Image Processing T oolbox)。
* 二维滤波器设计和滤波* 图像恢复增强* 色彩、集合及形态操作* 二维变换* 图像分析和统计(8)线性矩阵不等式控制工具箱(LMI Control Toolbox)。
* LMI的基本用途* 基于GUI的LMI编辑器* LMI问题的有效解法* LMI问题解决方案(9)模型预测控制工具箱(ModelPredictive Control Toolbox* 建模、辨识及验证* 支持MISO模型和MIMO模型* 阶跃响应和状态空间模型(10)u分析与综合工具箱(u-Analysis and Synthesis Toolbox)* u分析与综合* H2和H无穷大最优综合* 模型降阶* 连续和离散系统* u分析与综合理论(11)神经网络工具箱(Neursl Network T oolbox)。
The Partial Differential Equation T oolbox extends the MATLAB® technical computing environment with tools for the study and solution of partial differential equations (PDEs) in two-space dimensions (2-D) and time. A set of command-line functions and a graphical user interface let you preprocess, solve, and postprocess generic 2-D PDEs using the Finite Element Method (FEM).Partial Differential Equation Toolbox 1 Solve and analyze partial differential equationsWorking With the Partial Differential Equation ToolboxThe Partial Differential Equation T oolbox lets you work in six modes from the graphi-cal user interface or the command line. Each mode corresponds to a step in the process of solving PDEs using the Finite Element Method.• D raw mode lets you create Ω, the geometry, using the constructive solid geometry (CSG) model paradigm. The graphical interface provides a set of solid building blocks (square, rectangle, circle, ellipse, and polygon) that can be combined to define complex geometries.•B oundary mode lets you specify conditions on different boundaries or remove sub d omain borders.• P DE mode lets you select the type of PDE problem and the coefficientsc, a, f, and d . By specifying the coefficients for each subdomain independently, you can represent different material properties.• M esh mode lets you control the fully automated mesh generation and refinement process.• S olve mode lets you invoke and control the nonlinear and adaptive solver for elliptic problems. For parabolic and hyperbolic PDEproblems, you can specify the initial values and obtain solutions at specific times. For the eigenvalue solver, you can define the interval over which to search for eigenvalues.• P lot mode lets you select from different plot types, including surface, mesh, and contour. Y ou can simultaneously visualize multiple solution properties using color, height, and vector fields. The FEM mesh can be overlaid on all plots and shown in the displaced position. For parabolic and hyperbolic equations, you can animatethe solution as it changes with time.Defining and Solving Partial Differential EquationsWith the Partial Differential Equation T oolbox, you can define and numerically solve different types of PDEs, including elliptic, parabolic, hyperbolic, eigenvalue, nonlinear elliptic, and systems of PDEs with multiple variables.Elliptic PDEThe basic scalar equation of the toolbox is the elliptic PDEwhere is the vector (∂/∂x ,∂/∂y ), and c is a 2-by-2 matrix function on Ω, the bounded planar domain of interest. c, a, and f can be complex valued functions of x and y.Nonlinear Elliptic PDEA nonlinear Newton solver is available for the nonlinear elliptic PDEwhere the coefficients defining c, a, and fcan be functions of x, y, and the unknown solution u. All solvers can handle the PDE system with multiple dependent variablesY ou can handle systems of dimensiontwo from the graphical user interface.An arbitrary number of dimensions canbe handled from the command line.The toolbox also provides an adaptivemesh refinement algorithm for ellipticand nonlinear elliptic PDE problems.Using the graphical user interfaceto define the complex geometryof a wrench, generate a mesh,and analyze it for a given loadconfiguration.Toolbox Application ModesThe Partial Differential Equation T oolbox graphical interface includes a set ofappli c ation modes for common engineeringand science problems. When you select a mode, PDE coefficients are replaced with appli c ation-specific parameters, such asY oung’s modulus for problems in structural mechanics. Available modes include:• Structural Mechanics - Plane Stress• Structural Mechanics - Plane Strain• Electrostatics• Magnetostatics• AC Power Electromagnetics• Conductive Media DC• Heat Transfer• DiffusionThe boundary conditions are alteredto reflect the physical meaning of the different boundary condition coefficients. The plotting tools lets you visualizethe relevant physical variables for the selected application.Required ProductsMATLABRelated ProductsOptimization Toolbox. Solve standardand large-scale optimization problems.Statistics Toolbox. Apply statistical algorithms and probability models.Symbolic Math Toolbox andExtended Symbolic Math Toolbox. Perform computations using symbolic mathematics and variable-precision arithmetic.Platform and System RequirementsFor platform and system requirements, visit /products/pde ■8557v02 10/03For demos, application examples,tutorials, user stories, and pricing:•Visit •Contact The MathWorks directlyUS & Canada 508-647-7000Benelux +31 (0)182 53 76 44France +33 (0)1 41 14 67 14Germany +49 (0)241 470 750Italy +39 (011) 2274 700Spain +34 93 362 13 00Switzerland +41 (0)31 954 20 20UK +44 (0)1223 423 200Visit to obtaincontact information for authorizedMathWorks representatives in countriesthroughout Asia Pacific, Latin America,the Middle East, Africa, and the restof Europe.Visualization tools provide multiple ways to plot results. A contourplot with gradient arrows shows the temperature and heat flux.The temperature gradient is displayed using 3-D plotting tools.T el: 508.647.7000 info@ © 2003 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.。
MATLAB的主要功能1. 数值计算和符号计算功能2. 绘图功能3. MA TLAB语言体系4. MA TLAB工具箱Matlab语言的特点编程简单,类似于其他语言,如C集成度更高,扩展性更好数学问题数值解能力强大由Maple内核构成的符号运算工具箱可以继承Maple所有解析解的求解能力在数学、工程领域各种“工具箱”强大的系统仿真能力,Simulink建模Mathlab的命令窗口(command window)1. 命令窗口的作用命令窗口处于窗口的右侧,用来输入数据、操作命令和显示运行结果。
命令窗口(Command Window)是用户使用的主要场所,此时,可以输入变量、数组及运算命令,进行一些简单的运算;用↑↓←→键搜索、修改以前使用过的命令操作, 用clc清除窗口; 用help sqrt ( help input …)寻求有关帮助;2. 命令行的输入规则一个命令行输入一条命令,命令行以回车结束。
一个命令行也可以输入若干条命令,各命令之间以逗号分隔,若前一命令后带有分号,则逗号可以省略。
如果一个命令行很长,要加续行符(三个小黑点…)。
3. 命令行的编辑各种编辑键,如方向键,删除键等,基本同其它软件,可见课本. 比较特殊的是:上箭头键(up)可调入前一行命令.4. 常用操作系统命令●>disp(x) 显示x的内容,与x 的区别是:前者仅显示x的内容,后者多个"x=".●> diary 建立一个diary文件,如diary abc.dia. 文件名和扩展名可任取,并开始记录此后MA TLAB的所有操作,用diary off停止记录,并可用type abc.dia显示记录内容.●> path 显示当前搜索路径●管理文件的命令:●> what, 显示当前目录下的m, mat, mex文件●> dir, 或> ls, 显示当前目录下的所有文件●> cd path 改变当前目录为path●> cd, >chdir, >pwd, 都可显示当前的工作目录●> type abc, 显示文件abc.m的内容●> delete abc.m, 删除m文件abc.m(必须有扩展名)●> which abc, 显示abc.m所在的目录,若要显示其它类型文件的目录,必须加扩展名.●> quit, 退出MATLAB.MATLAB的通用命令管理命令和函数:功能强大的工具箱是MATLAB的另一特色。
MatlabPDE工具包在电场电势可视化教学中的应用作者:张勇吴卫华来源:《江苏理工学院学报》2020年第02期摘要:为了使学生更易理解电场、电势以及两者之间的关系,需要在电场电势教学中采用可视化教学方式。
展示了如何利用Matlab PDE工具包描述电场、电势以及两者之间的关系,并进一步提出了应用实例。
PDE工具包可以形象地表示出帶电体的电场、电势以及两者之间的关系,并且在使用过程中不需要任何编程基础。
Matlab PDE工具包可以在大学物理电场电势教学中广泛地加以推广。
关键词:Matlab;PDE工具包;可视化教学;电场;电势中图分类号:O441;G642.4 文献标识码:A 文章编号:2095-7394(2020)02-0087-07“大学物理”是大学理工科非物理类专业学生一门重要的通识必修基础课。
由于课程中的某些概念比较抽象,学生不易理解,因此,需要结合图形将难以理解的物理概念及公式形象地表示出来,即构建可视化的大学物理教学方式。
在电场电势章节教学中,我们发现,学生对复杂带电体的电场、电势以及两者之间关系的理解有困难,虽然大多数教材都配套了对应的PPT(Microsoft Office PowerPoint),其中也含有一些对于带电体电场以及电势的形象描述,但是仍不够全面,这就要求教师尝试掌握一种直观、形象描述电场、电势的方法,采用可视化教学方式十分必要。
Matlab是由美国MathWorks公司出品的一款商业数学软件,可实现矩阵运算、绘制函数和数据、实现算法等应用。
目前,Matlab在科研及教学领域已得到普及,并且被广泛应用于大学物理可视化教学。
[1-4]但是,在应用过程中需要使用者有相应的Matlab编程基础,这对初学者而言还是有一定困难的。
Matlab中的PDE工具包(Partial Differential Equation (PDE) Toolbox)是一款强大的软件工具包,它为使用者求解偏微分方程提供了方便。
matlab完整版(三相闭环)三闭环错位选触⽆环流可逆直流调速系统1. 系统仿真应⽤软件及其简介三闭环错位选触⽆环流可逆直流调速系统仿真应⽤的软件是MATLAB 7.0。
MATLAB是为了在科学研究和⼯程应⽤中,克服⼀般语⾔对⼤量数学运算,尤其是涉及矩阵运算时编制程序复杂、调试⿇烦等困难,美国Math Works公司于1967年构思并开发了矩阵实验室(Matri Laboratory’,MATLAB)软件包。
经过不断的更新和扩充,该公司于1984年推出了MATLAB的正式版,特别是1992年推出具有跨时代意义的MATLAB 4.0版,并于1993年推出其微机版,以配合当时⽇益流⾏的Microsoft Windows 操作系统⼀起使⽤。
截⽌到2005年,该公司先后推出了MATLAB 4.x,MATLAB 5.x,MATLAB 6.x,MATLAB 7.xD等版本,该软件的应⽤范围越来越⼴。
常见的MATLAB⼯具箱有以下⼏种。
Control System Toolbox——控制系统⼯具箱Communication Toolbox——通讯⼯具箱Financial Toolbox——财政⾦融⼯具箱System Identification Toolbox——系统辨识⼯具箱Fuzzy Logic Toolbox——模糊逻辑⼯具箱Higher-Order Spectral Analysis Toolbox——⾼阶谱分析⼯具箱Image Processing Toolbox——图象处理⼯具箱computer vision system toolbox----计算机视觉⼯具箱LMI Control Toolbox——线性矩阵不等式⼯具箱Model predictive Control Toolbox——模型预测控制⼯具箱µ-Analysis and Synthesis Toolbox——µ分析⼯具箱Neural Network Toolbox——神经⽹络⼯具箱Optimization Toolbox——优化⼯具箱Partial Differential Toolbox——偏微分⽅程⼯具箱Robust Control Toolbox——鲁棒控制⼯具箱Signal Processing Toolbox——信号处理⼯具箱Spline Toolbox——样条⼯具箱Statistics Toolbox——统计⼯具箱Symbolic Math Toolbox——符号数学⼯具箱Simulink Toolbox——动态仿真⼯具箱Wavele Toolbox——⼩波⼯具箱DSP system toolbox-----DSP处理⼯具箱这⾥只重点介绍MATLAB在本系统中Simulink的仿真环境。
Using the graphical user interface to define the complex geometry of a wrench, generate a mesh, and analyze it for a given load configuration.
Defining and Solving PDEs
With the Partial Differential Equation Toolbox, you can define and numerically solve different types of PDEs, including elliptic, parabolic, hyperbolic, eigenvalue, nonlinear elliptic, and systems of PDEs with multiple variables.
Elliptic PDE
The basic scalar equation of the toolbox is the elliptic PDE
where is the vector, and c is a 2-by-2 matrix function on,the bounded planar domain of interest.c,a, and f can be complex valued functions of x and y.
Parabolic, Hyperbolic, and Eigenvalue PDEs
The toolbox can also handle the parabolic PDE
the hyperbolic PDE
and the eigenvalue PDE
where d is a complex valued function on and is the eigenvalue. For parabolic and hyperbolic PDEs,c,a,f, and d can be complex valued functions of x,y, and t.
Nonlinear Elliptic PDE
A nonlinear Newton solver is available for the nonlinear elliptic PDE
where the coefficients defining c,a, and f can be functions of x,y, and the unknown solution u. All solvers can handle the PDE system with multiple dependent variables
You can handle systems of dimension two from the graphical user interface. An arbitrary number of dimensions can be handled from the command line. The toolbox also provides an adaptive mesh refinement algorithm for elliptic and nonlinear elliptic PDE problems.
Handling Boundary Conditions
The following boundary conditions can be handled for scalar u:
▪Dirichlet:
on the boundary
▪Generalized Neumann:
on
where
is the outward unit normal and g,q,h, and r can be complex valued functions of x and y defined on
. For the nonlinear PDE, the coefficients may depend on u. For time-dependent problems, the coefficients may also depend on t. For PDE systems, Dirichlet, generalized Neumann, and mixed boundary conditions are supported.
Visualization tools provide multiple ways to plot results. A contour plot with gradient arrows shows the temperature and heat flux. The temperature gradient is displayed using 3-D plotting tools.
Toolbox Application Modes
The Partial Differential Equation Toolbox graphical interface includes a set of application modes for common engineering and science problems. When you select a mode, PDE coefficients are replaced with
application-specific parameters, such as Young’s modulus for problems in structural mechanics. Available modes include:
▪Structural Mechanics - Plane Stress
▪Structural Mechanics - Plane Strain
▪Electrostatics
▪Magnetostatics
▪AC Power Electromagnetics
Product Details, Examples, and System Requirements
/products/pde
Trial Software
/trialrequest
Sales
/contactsales
Technical Support
/support ▪Conductive Media DC
▪Heat Transfer
▪Diffusion
The boundary conditions are altered to reflect the physical meaning of the different boundary condition coefficients. The plotting tools let you visualize the relevant physical variables for the selected application.
Resources
Online User Community /matlabcentral Training Services /training Third-Party Products and Services /connections Worldwide Contacts /contact。