当前位置:文档之家› 水箱液位控制系统报告

水箱液位控制系统报告

水箱液位控制系统报告
水箱液位控制系统报告

内蒙古科技大学

测控专业毕业实习报告

题目:基于组态软件的水箱液位控制系统姓名:

学号:

专业:测控技术与仪器

班级:测控09-1班

指导教师:李文涛(教授)

目录

前言 (1)

1 工艺过程概述 (2)

1.1

1.2

1.2.1

1.2.2

2高炉热风炉温度控制系统设计

2.1

2.2

2.3

3 总结

参考文献

前言

液位作为工业生产过程中重要工艺参数之一,在各个领域都有广泛的应用,诸如液体贮槽、进料罐、成品罐、中间缓冲容器及水箱等设备的液位控制。例如火电厂的锅炉汽包液位控制,为了保证发电站的安全生产,提高发电效率,我们需要实时监测、控制汽包的液位。

随着控制技术的发展,良好的人机接口已经成为广大工业客户的迫切要求,而在工程项目的实际设计中,如何提供一个直观、实时、有效、可靠的人机接口也日益受到工程人员的高度重视。目前,主要有两种方法。一是开发人员用VB,VC++等语言编写复杂的程序从底层开发,开发周期长,通用性差;二是用工控组态软件进行开发。组态软件能提供一个友好的界面,易于操作,图形丰富形象,实时性好,开发周期短。因此,目前大多数工程项目都采用后种方法。组态软件功能强大,操作简单,易学易用,普通工程人员经过短时间的培训就能迅速掌握多数工程项目的设计和运行操作。使用组态软件能够避开复杂的计算机软、硬件问题,集中精力去解决工程问题本身,根据工程作业的需要和特点,组态配置出高性能、高可靠性和高度专业化的工业控制监控系统。

本文主要研究以单容水箱为被控对象,设计了基于组态软件的计算机单回路控制系统,以实现水箱液位的自动控制。本文介绍了组态王6.51软件的组成, PCI1710与PCI1720板卡、JYB-G型压力变送器计算机控制实验系统装置, 并将PI控制的方法引用到对单容水箱液位系统的控制中。

第一章总体方案设计

1.1 水箱液位控制系统的组成

本设计是控制一个单容水箱的液位,是一个简单的单回路控制系统。其基本组成包括一个被控对象、一个检测变送单元、一个调节器和一个执行器。本设计没有采用通用的调解器,而是用计算机代替调节器进行计算机控制。其结构框图如图1.1所示。

图1.1 单容水箱液位控制系统框图

在该控制系统中,被控变量由于受到扰动(如生产负荷的改变)的影响,常常偏离给定值,即被控变量产生了偏差。控制器接受了偏差信号后,按一定的控制规律使其输出信号发生变化,通过执行器改变控制变量,以抵消干扰对被控变量的影响,从而使被控变量回到给定值上来。

1.2 被控变量及控制变量的选择

在生产过程中,影响生产工艺正常运行的因素很多,但并非所有的影响因素都需要加以自动控制。被控变量的正确选择对稳定生产过程、提高劳动生产率、改善生产条件等具有决定性的意义。在本设计中我们需要控制水箱的液位,而水箱的液位我们可以直接用液位变送器来测量,而且测量和变送信号滞后远小于被控过程的滞后,因此我们选择水箱液位作为被控变量。

在生产过程中,控制变量的选择通常需要考虑工艺的合理性与生产的经济性。在该系统中,影响水箱液位的参数有两个,包括液体的流入量和流出量。但是在这里流出的水是给生产使用,生产负荷直接关系到产品的质量,关系到设备和人员的安全。因此我们选择液体的流入量作为控制变量显得更为合理。

1.3 控制规律的选择

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简

称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

在本设计中我们要求控制及时,因此首选比例控制规律。比例控制具有反应快,控制及时等优点,但同时比例控制也有控制结果存在余差的缺点。为了消除余差使控制更加精确,最终确定选用PI调节规律。

第二章硬件连接与调试

本设计是一个简单的单回路负反馈控制系统,液位变送器测量出液位的高度,将实际的物理量转化成4~20mA的电流信号,该信号转化成1~5V电压信号传送给PCI-1710输入板卡,经板卡A/D转换后送入计算机中,与给定值进行比较得出偏差值, 这些偏差值经过PID算法处理后得到一个输出指令,该指令送给PCI-1720输出板卡,经D/A转化后还原成电压信号,该信号送给执行器去改变阀门开度,从而改变进水流量, 以实现对水箱液位的控制。

2.1 硬件选型

2.1.1 压力变送器选型

本设计中压力变送器选用的是ColliHigh公司的JYB-K系列压力/液位变送器。输出4~20mA电流信号,采用24V直流电源供电,精确度达到了±0.5%FS,环境温度为-10~60℃。该型传感器可广泛用于水厂、污水处理厂、城市供水、高楼水池、水井、矿井、工业水池、油池、水文地质、水库、河道、海洋等场合。

2.1.2板卡选型

本设计的输入板卡选择了研华的PCI-1710板卡,该板卡是一个12位,16通道的A/D采集卡;可采用16路单端或8路差分模拟量输入,或组合方式输入;12位A/D 转换器采样数率可达100KHz;每个输入通道的增益可编程。可以说PCI-1710板卡是一款多功能数据采集卡。其先进的电路设计使得它具有更高的质量和更多的功能。

输出板卡采用研华PCI-1720板卡,该板卡是一款PCI总线的4路12位隔离数字量到模拟量的输出卡。它能够在输出和PCI总线之间提供2500VDC的直流隔离保护,PCI-1720非常适合需要有高电压保护的工业现场。

用户可以单独将四个通道的输出设为不同的输出范围:0~+5V、0~+10V、±5V、±10V、0~20mA(Sink)或4~20mA(Sink)。当系统热重启(电源不关闭)时,根据跳线设置,PCI-1720能够保持上一次的模拟量输出设置和输出值或者返回默认配置。这种特有的功能能够避免在系统意外重启动过程中的误操作所带来的危险。

2.1.3 执行器选型

执行器我们选用的是Honeywell公司的ML7402A电动执行器,该执行器内置一个选择正反作用的插头,用于提供模拟输出0~10Vdc或者2~10Vdc的调制控制。该执行器安装方便快速、低功耗、无需连杆、无需调整、阀门定位准确、正反作用可

调等优点。

2.2 硬件安装与连接

2.2.1 板卡安装

首先我们需要把PCI-1710L和PCI-1720两个板卡安装在计算机PCI插槽上,安装完后打开计算机设备管理器,查看设备驱动是否安装好,如果安装无误,那我们就会看到图2.1所示窗口。

图2.1 PCI板卡设备管理界面

2.2.2 板卡接线

研华PCI-1710板卡可以接收16路单端或者8路差分信号输入。在本次设计中,选择通道0单端输入方式。图2.2所示为板卡接线端子部分截图,从图中我们可以看到,通道0对应的单端输入外部连线应接68#(信号输入)端口和60#(地)端口。

研华PCI-1720板卡可以四路电流或电压输出。在本设计中由于执行器接收的是电压信号,因此我们选择通道0电压输出。图2.3所示为板卡接线端子部分截图,通道0对应的输出的外部接线端口为5#(信号输出)和6#(地)端口。

图2.2 PCI-1710板卡接线端子截图图2.3 PCI-1710板卡接线端子截图

2.2.3 压力变送器接线

图2.4所示为压力变送器的接线图,在该图中变送器输出4~20mA电流信号,由于PCI-1710板卡只能接受电压信号,所以在电路串入一个250Ω高精度电阻,板卡接收电阻两端1~5V电压信号。其中图中1号端子与板卡上68号端子相连,2号端子与板卡上60号端子相连。

图2.4 压力变送器接线图

2.2.4 执行器的连接

由于在本设计中所用执行器只接收电压信号,而输出板卡也能输出电压信号,因此只需将板卡的5号端子与执行器正接线端子相连,6号端子与执行器的负接线端子相连即可。图2.5是水箱面板上的接线实物图。

图2.5 水箱连线实物图

2.3 硬件调试

首先,我们先对各个模块进行调试。在对输入输出板卡进行调试时,先在计算机应用程序里面找到“Advantech Device Manger”(研华设备管理器),打开如图2.6所示,由图可知设备管理器已经找到了这两块板卡。图中I/O=dc00H为设备的物理地址,是组态软件和板卡通讯的地址。点击Setup可对板卡的各项参数进行更

改,点击Test可对板卡进行测试。

图2.6 研华设备管理器界面

下面首先对PCI-1710L板卡进行测试。研华PCI-1710L板卡可以接受多种电压信号,如图2.7所示,在Input range栏中可以选择0-10V、0-5V、±5V电压输入,本设计中,由于压力变送器输出信号经转换后输出1-5V电压信号,因此我们选择

0-5V,通道0作为输入通道。

图2.7 PCI-1710L板卡测试界面

接下来是PCI-1720S的测试。如图2.8所示,研华PCI-1720板卡可以四通道输出电流或者电压,电流可以选择0-20mA或者4-20mA输出;电压可以选择0-5V或者0-10V输出,也可以在Manual Output窗口中选择手动输出。由于在本设计中执行器接收0~10V电压,因此我们选择0通道0-10V电压输出。

图2.8 PCI-1720板卡测试界面

第三章组态软件设计

3.1 MCGS组态软件简介

MCGS (Monitor and Control Generated System,通用监控系统)是一套用于快速构造和生成计算机监控系统的组态软件,它能够在基于Microsoft(各种32位Windows 平台上)运行,通过对现场数据的采集处理,以动画显示、报警处理、流程控制、实时曲线、历史曲线和报表输出等多种方式向用户提供解决实际工程问题的方案,它充分利用了Windows图形功能完备、界面一致性好、易学易用的特点,比以往使用专用机开发的工业控制系统更具有通用性,在自动化领域有着更广泛的应用。

组态王由工程浏览器、工程管理器和画面运行系统三部分组成。

(1)工程浏览器。工程浏览器是工程开发设计工具,用于创建监控画面、监控的设备及相关变量、动画链接、命令语言以及设定运行系统配置等的系统组态工具。

(2)工程管理器。工程管理器用于新工程的创建和已有工程的管理,对已有工程进行搜索、添加、备份、恢复以及实限数据词典的导入和导出功能。

(3)画面运行系统。工程运行界面从采集设备中获得通信数据,并依据工程浏览器的动画设计显示动态画面,实现人与控制设备的交互操作。画面运行环境是一个独立的运行系统,它按照组态结果数据库中用户指定的方式进行各种处理,完成用户组态设计的目标和功能。

组态软件功能强大,操作简单,易学易用。使用组态软件能够避开复杂的计算机软、硬件问题,该设计结合仪表过程控制实验系统设备的实际情况,制作了多个控制界面。主要完成通用工作站的数据采集、实时和历史数据的显示、报警、流程控制、动画显示、趋势曲线、报表输出等事件,系统稳定可靠,能够自动的完成监控和报警,并且,随时能够打印各种报表,反映了控制现场的状况,节省了人力,提高了效益。因此,被广泛的应用于工业生产中。

3.2水箱液位控制系统的监控界面

利用MCGS 进行组态建立一个应用工程一般包括以下几个过程:创建新工程;定义硬件设备并添加工程变量;制作图形画面并定义动画链接;编写命令语言;运行系统的配置,对运行系统、报警、历史数据记录、用户等进行设置;保存工程运行并调试。水箱液位控制系统的整体监控画面如图3.1所示,实时曲线如图3.2所示。

图3.1 水箱液位整体监控画面图

图3.2 水箱液位实时曲线

总结

两周的毕业实习很快就结束了,虽然只有短短的两周时间,但我感觉收获颇多。本次实习我们是设计一个简单的单回路水箱液位控制系统,虽然比较简单,但其与复杂控制系统的原理是相同的。它也有执行器、控制器、变送器、被控对象等部分,正所谓:麻雀虽小五脏俱全。我们这次设计由九个人来完成,我主要是负责硬件的连接与调试。虽然这个设计比较简单,但是因为它用到板卡需要与计算机连接,而在此之前我也没接触过组态软件,也不了解这些板卡。所以在此次设计中我还是遇到了很多困难,但是通过和小组人员的讨论和请教老师,我还是把困难都一一克服了。

本次设计也算是对我们所学课程的一次综合应用。其主要涉及的课程有《过程控制》、《自动控制原理》、《控制仪表与装置》、《自动化软件》等多门课程。虽然这些课我自认为学的还不错,但当我做起设计来,我这些知识整合在一起时我就发现我对这些知识掌握得还不够好。很多理论知识虽然上课时能看懂,但把它与实际的生产现场相结合时就不太明白了。而这正是我们当代大学圣所具有的共性:即理论知识学得不错,但进工厂工作后却什么都不会。这主要是由于我们实践的少,缺乏动手操作能力。所以我感觉这次实习还是很有必要的,尤其对于即将走上工作岗位的我们来说,这次课程设计就显得更为重要。这也在提醒我们学知识必须加强理论与实践的结合,正所谓“纸上得来终觉浅,绝知此事要躬行”。

参考文献

[1] 李文涛.过程控制[M]. 北京:科学出版社,2012.

[2] 雄伟.工控组态软件及应[M]. 北京:中国电力出版社,2011.

[3] 邵世煌.计算机控制技术[M]. 北京:纺织工业出版社,1991.

[4] 何玉樵.化工过程控制及仪表[M]. 成都:成都科技大学出版社,1991.

[5] 潘海.基于组态王的水箱液位控制系统设计[J].科技资讯,2009(26).

[6] 张玲霞,李学军,李杰.基于组态王的液位控制系统仿真实验[J]. 长春大学学

报,2010(04).

[7] 袁荣华,黄世钊,冯钏山,潘树林.基于组态王的水箱液位监控系统设计及测试

[J]. 广西大学学报,2008(01).

[8] 陈曦,丁跃浇,肖翀.基于PLC和组态王的单容水箱液位定值控制实验[J]. 湖南

理工学院学报,2011(01).

[9] 崔成梅,陈金艳,马永青.工业过程控制的模块化设计方法[J]. 黑龙江科技信息,

2008(17).

[10] 石浩旭.基于组态王的远程过程控制系统的设计[J]. 科技致富向导, 2011(15).

[11] 王树青.工业过程控制工程[M]. 北京:化学工业出版社,2003.

[12] 关业伟,鲁凯生.组态王和MATLAB的DDE应用研究[J]. 船海工程, 2005(06).

[13] 龚运新,方立友.工业组态软件实用技术[M].北京:清华大学出版社,2005.

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

基于PLC水箱液位控制系统

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。 The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

基于PLC的液位控制系统设计

毕业论文(设计)题目:基于PLC控制的高精度液位控制系统的设计 姓名:濮孝金 学号: 专业:机械电子工程 年月

摘要 在工农业生产过程中,经常需要对水位进行测量与控制,而日常生活中应用 到的水位控制也相当广泛。在以往水塔液位控制系统中,常规继电器的频繁操作容易导致机械磨损,不方便更新和维护,不能满足人们的实际需求;另外,随着人口的递增和生活条件的提高,人们用水的需求量也日益增加。 为了提高液位控制系统的质量和效率,节约能源,本次模拟水塔液位控制系统的装置考虑结合可编程逻辑控制器,继电器和传感器等技术,实现液位控制系统的自动控制。本设计使用西门子S7-300 PLC可编程控制器作为液位控制系统的核心,配合硬件与软件实现液位控制池液位动态平衡,过高、过低水位报警等功能。主要 的实验方法是在水箱上安装一个自动水位测量装置,通过水位变送器检测水箱实际液位并将该液位反馈到PLC控制器,经A/D转换后,所得数据与PLC内部设定数据进行比较,控制器处理数据并发送相应指令改变电机的转速从而控制抽 水速率,改变进水量,使水位稳定地保持在设定值附近。此外,通过液位标定计算出控制器输出PIW数值与实际水位的关系,就可以在触摸屏上直观显示实时水位情况。实验结果表明本设计能较好地完成自动液位控制的功能。 关键词:水塔液位控制,水位控制,继电器,PLC Abstract In the course of routine industrial and agricultural production we the need to measure the water level and

control it. Furthermore everyday level control applications are quite extensive , such as hydropower , water towers and other water control . According to the water supply system in the past, frequent operation towers will produce mechanical wear of conventional relay convenient maintenance and updates, that means it can not meet the actual needs of the people, and with Gradual growth of population and living conditions, the demand for water is also increasing .In order to improve the quality of the water supply system, energy conservation, so I considered use a programmable logic controller, relay and sensor technology, with hardware and software to achieve low water level alarm, warning switch between work and procedures manual / automatic to design practical level control tower scheme. I completed the set up of this simulation using the tank water tower , based on Siemens S7-300 PLC programmable controller tank water level control system as the core .I completed a water tank to

下水箱液位控制系统

摘要 液位控制是常见的工业过程控制之一,它广泛运用于水塔、锅炉、高层建筑水箱、罐、工业化工槽等受压容器的液位测量。随着科技的进步,人们对生产的控制精度要求越来越高,所以提高液位控制系统的性能显得十分重要。 本文介绍了一种基于组态软件WinCC和西门子STEP 7的下水箱液位控制系统的设计过程。控制对象为实验室的水箱液位设备,采用以太网进行通讯,用软件完成了系统硬件配置,实现了任意液位高度的手动/自动调节。在系统远程监控方面,利用WinCC软件进行了远程监控界面的设计,通过对液位数据的采集、处理、输出处理,实现了对液位高度的实时监控、自动/手动的无扰切换、报警显示等功能。 关键词:液位控制;实时监控;以太网;WinCC软件

Abstract The level control is one of the common industrial process control, it is widely used in cooling towers, boilers, high-rise buildings, water tanks, tanks, industrial chemical tank level measurement of the pressure vessel. With the advances in technology, production control accuracy requirements are high, so to improve the performance of the liquid level control system is very important. This paper introduces a kind of based on Wincc configuration software and Siemens STEP 7 under the tank liquid level control system of the design process. This design uses the Ethernet communication, the software system hardware configuration, design and debugging of various modules of the ladder to achieve a any level of a high degree of manual / automatic adjustment. Wincc software system RMON RMON interface design, the level of data collection, processing, output processing, the liquid level in the real-time monitoring, automatic / manual bumpless switching, alarm display and other functions. Keywords: evel control;data collection;Siemens STEP 7;Wincc software

水箱水位控制系统

2.水箱水位控制系统 系统有3个贮水箱,每个水箱有2个液位传感器,UH1,UH2,UH3为高液位传感器,“1”有效;UL1,UL2,UL3为低液位传感器,“0”有效。Y1、Y3、Y5分别为3个贮水水箱进水电磁阀;Y2、Y4、Y6分别为3个贮水水箱放水电磁阀。SB1、SB3、SB5分别为3个贮水水箱放水电磁阀手动开启按钮;SB2、SB4、SB6分别为3个贮水箱放水电磁阀手动关闭按钮。 (二)控制要求 1.上电运行时系统处于停止状态。 2.SB1、SB3、SB5在PLC外部操作设定,通过人为的方式,按随机的顺序将水箱放空。 3.只要检测到水箱“空”的信号,系统就自动地向水箱注水,直到检测到水箱“满”信号为止。水箱注水的顺序要与水箱放空的顺序相同,每次只能对一个水箱进行注水操作。 4.为减少外部控制器件,现将每个水箱的放水控制按钮改为一个(即只有SB1、SB3、SB5),分别控制每个水箱的放水开启和关闭。也即,按一下SB1,水箱1放水,再按一下SB1,水箱1停止放水;按一下SB2,水箱2放水,再按一下SB2,水箱2停止放水;按一下SB3,水箱3放水,再按一下SB3,水箱3停止放水。系统其它控制要求保持不变。 (三)I/O配置表

(四)PLC控制系统原理图(硬件电路图) (五)调试指南 1.上电时候系统处于停止状态,所有灯不亮。 2.按动SB1、SB3、SB5按钮,可随机将三个水箱放空,对应Y2、Y4、Y6的亮。 3.只要检测到水箱“空”(即低液位传感器UL1-UL3亮),系统能自动地向水箱注水,对应Y1、Y3、Y5亮,直到检测到水箱“满”信号为止(即高液位传感器UH1-UH3亮)。 4.4.水箱注水的顺序与水箱放空的顺序相同,每次只对一个水箱进行注水操作(Y1、Y3、Y5互锁)。 5.5.按一下SB1,水箱1放水(Y2亮),再按一下SB1,水箱1停止放水(Y2灭); 6.6.按一下SB2,水箱2放水(Y4亮),再按一下SB2,水箱2停止放水(Y4灭); 7.7.按一下SB3,水箱3放水(Y6亮),再按一下SB3,水箱3停止放水(Y6灭)。 8.8.先放空的水箱先进水,已通过梯形图实现。(参见梯形图步骤8)

液位控制系统设计说明

目录 第1章绪论............................................................................................... - 1 - 第2章设计方案........................................................................................ - 2 - 2.1 方案举例......................................................................................... - 2 - 2.2 方案比较......................................................................................... - 3 - 2.3 方案确定......................................................................................... - 3 - 第3章硬件设计........................................................................................ - 4 - 3.1 控制系统......................................................................................... - 4 - 3.1.1 AT89C51单片机 ..................................................................... - 4 - 3.1.2 AT89C51的信号引脚............................................................... - 6 - 3.1.3 单片机最小系统 ....................................................................... - 7 - 3.2 感应系统......................................................................................... - 8 - 3.3 指示系统......................................................................................... - 9 - 3.4 液位控制系统................................................................................. - 10 - 3.5 电机与报警系统.............................................................................. - 11 - 第4章软件设计...................................................................................... - 14 - 4.1 延时子程序.................................................................................... - 14 - 4.2 感应系统程序................................................................................. - 14 - 4.3 指示系统程序................................................................................. - 15 - 4.4 电机和警报系统程序 ....................................................................... - 16 - 4.5 液位预选系统程序 .......................................................................... - 16 - 4.6 系统主流程图................................................................................. - 19 - 第5章系统测试...................................................................................... - 21 - 5.1 仿真测试过程................................................................................. - 22 - 5.2 仿真结果....................................................................................... - 24 -总结...................................................................................................... - 25 - 致谢...................................................................................................... - 26 - 参考文献................................................................................................... - 25 -附录1 系统仿真电路 ................................................................................ - 28 - 附录2 源程序.......................................................................................... - 29 -

基于PLC水箱液位控制系统毕业设计

上传说明: 本论文仅供大家学习和参考用

本科毕业论文 基于PLC的液位控制系统设计 考生姓名:准考证号: 专业层次:工业自动化(本)院(系):电子信息工程学院指导教师:职称: 二OO 年十月

摘要 本次毕业设计的课题是基于PLC的液位控制系统的设计。在设计中,笔者主要负责的是数学模型的建立和控制算法的设计,因此在论文中设计用到的PID算法提到得较多,PLC方面的知识较少。 本文的主要内容包括:PLC的产生和定义、过程控制的发展、水箱的特性确定与实验曲线分析, FX2系列可编程控制器的硬件掌握,PID参数的整定及各个参数的控制性能的比较,应用PID控制算法所得到的实验曲线分析,整个系统各个部分的介绍和讲解PLC的过程控制指令PID指令来控制水箱水位。 关键词:FX2系列PLC,控制对象特性,PID控制算法,扩充临界比例法,PID指令,实验。

The liquid level control system based on PLC ABSTRACT The subject of graduation design is based on PLC, liquid level control system design. In the design, the author is mainly responsible for the mathematical model and control algorithm design, so the design used in the paper referred to was more PID algorithm, PLC in less knowledge. Main contents of this article: PLC creation and definition, process control, development, and water tanks and experiment to determine the characteristics curve analysis, FX2 series PLC hardware control, PID tuning parameters and various parameters of the control performance comparison, the application PID control algorithm obtained experimental curve analysis, the entire system, introduce and explain the various parts of the PLC process control commands to control the tank level PID instruction. Keywords:FX2 series PLC, the control object characteristics, PID control algorithm, to expand the critical proportion method, PID instruction, experimental.

液位控制系统设计

液位控制系统设计 学院: 专业班级: 学生姓名: 指导老师:

液位控制系统设计 本文主要讲了压力传感器实现的液位控制器的设计方法,以单片机为核心。通过外围硬件电路来达到实现控制的目的,根据需要设定液位控制高度,同时具备报警、高度显示等功能,具有与液面不接触的特点,可用于有毒、腐蚀性液体液位的控制,具有较高的研究价值。该控制器不仅可用于学校进行教学研究,还可用于生产实际,是目前比较缺少的一种产品。随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。 。关键词:单片机;水位检测;控制系统;仿真 0 引言 随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,液位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。中国使用单片机的历史只有短短的30年,在初始的短短五年时间里发展极为迅速。1986 年在上海召开了全国首届单片机开发与应用交流会,很多地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜索,将会看到上万个介绍单片机的网站,这还不包括国外的。电子界,在2003年7月,https://www.doczj.com/doc/6e18464357.html, (91 猎头网)在上海、广州、北京等大城市所做的一次专业人才需求报告中,单片机人才的需求量位居第一。大家都有些奇怪一块小小的片子,为何有这样的魔力?我们首先从它的构成说起:单片机,亦称单片微电脑或单片微型计算机。它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/0)等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。正因为如此他才改变了我的生活它为我们改变了什么?纵观我们现在生活的各个领域,从导弹的导航装置,到飞机上各种仪表的控制,从计算机的网络通讯与数据传输,到工业自动化过程的实时控制和数据处理,以及我们生活中广泛使用的各种智能IC 卡、电子宠物等,这些都离不开单片机。以前没有单片机时,这些东西也能做,但是只能使用复杂的模拟电路,然而这样做出来的产品不仅体积大,而且成本高,并且由于长期使用,元器件不断老化,控制的精度自然也会达不到标准。在单片机产生后,我们就将控制这些东西变为智能化了,我们只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品的体积变小了,成本也降低了,长期使用也不会担心精度达不到了。所以,它的魔力不仅是在现在,在将来将会有更多的人来接受它、使用它。据统计,我国的单片机年容量已达3 亿片,且每年以大约20%的速度增长,但相对于世界市场我国的占有率还不到1%。特别是沿海地区的玩具厂等生产产品多数用到单片机,并不断地

水池水位自动控制系统设计

水池水位自动控制系统设计与制作 摘要 根据物体在水中漂浮的性质,可以用一个浮球来感知水塔里水位的升降,用来控制水泵,使水泵能自动对水池上水,水满时能自动断电停止,真正做到了水池的全自动控制功能,解决了人们日常用水的诸多不便。 本毕业论文范文写的是水池水位自动控制电路的作用是根据水位的高低,自动地控制水泵的启动与停止。水泵和水位的高低是相互反馈的。这样就可以实现水位自动控制的目的。我所设计的水位制动控制装置是有以下几部分组成:水位自动控制电路,高低水位报警器,数码显示。水位自动控制在一定范围内(如 2 -6 米),当水位低至2米时使水泵启动上水;当水位升至6米时,使水泵停止工作。因特殊情况水位超限(如高至7米、低于2米)报警器报警。设有手动按键,便于随机控制。由数码管直观显示当前水位。本系统可以随时的控制水位的高低,防止过量放水或来水无人打开关。 关键词:水池;浮子开关;自动上

Abstract According to the nature of an object floating in the water, you can use a float to sense the water level in the lift tower to control the pump, the pump automatically to the water tower, Sheung Shui, water, power off automatically when full stop pumping water tower, and truly automatic control tower to solve the inconvenience of daily water. Pham Van of the thesis is written in the role of water level automatic control circuit is based on the level of the water level, automatic control of pump start and stop. Pumps and water level is the level of mutual feedback. This level can automatically control. I designed the brake control device is the water level has the following components: automatic water level control circuit, high and low water level alarm, digital display. Automatic water level control within a certain range (eg. 2-6 meters), when the water level as low as 2 meters, the Sheung Shui to start the pump; when the water level to 6 meters, the pump stopped working. Water level gauge due to special circumstances (such as up to 7 meters, as low as 2 meter) alarm to the police. With manual buttons, easy to stochastic control. Visual display by the LED current level. The system can control the water level at any level, to prevent excessive drainage or runoff and no open relations Keywords:water tower; float switch; automatic pumpin

(完整版)水位控制系统设计

课题名称:水箱水位控制系统设计专业:电气工程及其自动化学号: 姓名:

水箱水位控制系统设计 摘要 本设计主要基于单片机的硬件电路设计,实现一种能够实现水位自动控制、具有自动保护、自动声光报警功能的控制系统。本控制系统由A/D转换部分、单片机控制部分、数码显示部分、电机驱动部分、电机控制部分等构成。同时对各个部分进行了详细的论述。在设计中对水塔水位控制原理进行分析,选用AT89C51单片机作为控制水塔水位的处理芯片,由AT89C51的P1口直接来控制.设计方案采用模块化程序设计方法,结合程序流程图,编写程序代码,最后利用KEIL公司的u Vision3软件及伟福仿真软件进行仿真实验,达到单片机自动控制水塔水位变化的目的. 关键词:单片机,水塔水位控制原理,AT89C51,伟福仿真软件

目录 前言 (1) 第1章设计内容 (2) 1.1 设计要求 (2) 1.2 方案设计 (2) 第2章硬件电路设计 (3) 2.1 系统框图设计 (3) 2.2 系统原理 (4) 第3章水塔水位控制系统的硬件电路设计 (5) 3.1 水位检测电路 (5) 3.2 水位显示电路 (5) 3.3电机控制电路 (6) 3.4振荡电路和复位电路 (7) 3.5声光报警电路 (7) 第4章软件程序设计 (8) 4.1 系统主程序流程图 (8) 4.2编写C程序 (9) 第5章硬件制作与调试 (10) 结论 (11) 附录 (12) 仿真总图 (12) 源代码 (13)

前言 水塔是在日常生活和工业应用中经常见到的蓄水装置,在我们的生活中起到了重要的作用,而水基于单片机的水塔水位控制系统使水塔水位自动保持在一定的位置,通过对其水位的控制对外供水,以满足需要。塔里面的水位控制是一个水塔发挥作用的关键。该系统使用水位传感器对水塔水位进行检测并将检测到的信号传给单片机来进行处理,通过调整定时器的定时时间来增大或者缩小占空比,并编写程序加以控制,从而实现电机的调速。最后,使用液晶屏显示当前水位状态以及电动机的转速。该系统通过了报警模块来实现了过低水位蜂鸣器鸣笛报警、过低警戒水位自动处理、正常水位蜂鸣器鸣笛报警以及正常水位处理。本系统适应在不同的用水场合下的用水速度需要,节省工作时间,提高了整体工作的效率,实现水塔水位的自动控制。 液位控制是工业控制中的一个重要问题,针对液位控制过程中存在大滞后、时变、非线性的特点,为适应复杂系统的控制要求,人们研制了种类繁多的先进的智能控制器,模糊PID控制器便是其中之一。模糊PID控制结合了PID控制算法和模糊控制方法的优点,可以在线实现PID参数的调整,使控制系统的响应速度快,过渡过程时间大大缩短,超调量减少,振荡次数少,具有较强的鲁棒性和稳定性,在模糊控制中扮演着十分重要的角色。

上水箱液位控制系统-过控课设

摘要 在过程工业中被控制量通常有以下四种: 液位、压力、流量、温度。而液位不仅是工业过程中常见的参数,且便于直接观察,也容易测量。过程时间常数一般比较小。以液位过程构成实验系统,可灵活地进行组态,实施各种不同的控制方案。液位控制装置也是过程控制最常用的实验装置。国外很多实验室有此类装置,如瑞典LUND大学等。很多重要的研究报告、模拟仿真均出自此类装置! 本次设计也是基于这套水箱液位控制装置来实现的。这套系统由多个水箱,液位检测变送器,电磁流量计,涡轮流量计,自动调节阀,控制面板等喝多器件构成。 液位控制的发展从七十年代到九十年代经历了几个阶段,控制理论由经典控制理论到现代控制理论,再到多学科交叉;控制工具由模拟仪表到DCS,再到计算机网络控制;控制要求与控制水平也由原来的简单、安全、平稳到先进、优质、低耗、高产甚至市场预测、柔性生产。而其中应用最广泛的就是PID 控制器。 这次首先是用一天半的时间让我们熟悉各种建模的方法。学会建立了最初的四种模型。接着后几天就是开始熟悉各种控制系统,以及运用它们去控制水箱的液位,从而更加深刻的理解控制的概念。并且在过程中,要熟练学会调整PID的参数,学会使用MATLAB等。 关键词:水箱液位;PID控制;串级控制;前馈控制;经验凑试法

目录 1引言 (1) 2 实验设备 (2) 2.1 THJ-FCS型或THJ-3型高级过程控制系统实验装置 (2) 2.2计算机及相关软件。 (6) 2.2.1 SIMATIC WinCC简介 (6) 2.2.2 监控界面 (7) 3 设备工作原理及运行过程 (8) 3.1 设备工作原理 (8) 3.2 控制系统流程图 (9) 3.3系统投运及步骤 (10) 4 参数整定与结果分析 (12) 4.1 参数整定 (12) 4.1.1 比例(P)调节 (12) 4.1.2 比例积分(PI)调节 (14) 4.1.3 比例积分微分(PID)调节 (17) 4.2 结果分析 (19) 总结 (20) 参考文献 (21)

双容水箱液位控制系统

内蒙古科技大学 控制系统仿真课程设计说明书 题目:双容水箱液位控制系统 仿真 学生姓名:任志江 学号:1067112104 专业:测控技术与仪器 班级:测控 10-1班 指导教师:梁丽

摘要 随着工业生产的飞速发展,人们对生产过程的自动化控制水平、工业产品和服务产品质量的要求也越来高。每一个先进、实用控制算法和监测算法的出现都对工业生产具有积极有效的推动作用。然而,当前的学术研究成果与实际生产应用技术水平并不是同步的,通常情况下实际生产中大规模应用的算法要比理论方面的研究滞后几年,甚至有的时候这种滞后相差几十年。这是目前控制领域所面临的最大问题,究其根源主要在于理论研究尚缺乏实际背景的支持,一旦应用于现场就会遇到各种各样的实际问题,制约了其应用。本设计设计的课题是双容水箱的PID液位控制系统的仿真。在设计中,主要针对双容水箱进行了研究和仿真。本文的主要内容包括:对水箱的特性确定与实验曲线分析,通过实验法建立了液位控制系统的水箱数学模型,设计出了控制系统,针对所选液位控制系统选择合适的PID算法。用MATLAB/Simulink建立液位控制系统,调节器采用PID控制系统。通过仿真参数整定及各个参数的控制性能,对所得到的仿真曲线进行分析,总结了参数变化对系统性能的影响。 关键词:MATLAB;PID控制;液位系统仿真

目录 第一章控制系统仿真概述 (2) 1.1 控制系统计算机仿真 (2) 1.2 控制系统的MATLAB计算与仿真 (2) 第二章 PID控制简介及其整定方法 (6) 2.1 PID控制简介 (6) 2.1.1 PID控制原理 (6) 2.1.2 PID控制算法 (7) 2.2 PID 调节的各个环节及其调节过程 (8) 2.2.1 比例控制与其调节过程 (8) 2.2.2 比例积分调节 (9) 2.2.3 比例积分微分调节 (10) 2.3 PID控制的特点 (10) 2.4 PID参数整定方法 (11) 第三章双容水箱液位控制系统设计 (12) 3.1双容水箱结构 (12) 3.2系统分析 (12) 3.3双容水箱液位控制系统设计 (15) 3.3.1双容水箱液位控制系统的simulink仿真图 (15) 3.3.2双容水箱液位控制系统的simulink仿真波形 (16) 第四章课程设计总结 (17)

水箱液位控制系统

水箱水位控制系统设计 一、系统结构原理 1.1自动控制系统的组成 (1)自动控制系统由控制对象和制动控制设备组成。即由控制对象、传感器、控制器和执行器所组成的闭环控制系统。 (2)所谓控制对象是指所需控制的机器、设备、或生产过程。 (3)被控参数是所需控制和调节的物理量或状态参数化,即控制对象的输出信号,如房间温度、水箱水位。 (4)被控参数的预定值(或理想值)称为给定值(设定值)。给定值与被控参数的测量值之差称为偏差。 (5)扰动是指除给定输入之外,对系统的输出有影响的信号的总称。 (6)传感器是指把被控参数成比例地转变为其他物理量信号(如电阻、电势、电流、气压、位移)的元件或仪表,如热电阻、热电偶等,如果传感器所发出的信号与后面控制所要求的信号不一致时,则需要增加一个变送器,将传感器的输出信号转换成后面所要求的信号。 (7)控制器是指将传感器送来的信号与给定值进行比较,根据比较结果的偏差大小,按照预定的控制规律输出控制信号的原件或仪表。 (8)执行器是动力部件,它根据控制器送来的控制信号大小改变调节阀的开度,对控制对象施加控制作用,使被控参数保持在给定

值。 1.2 水箱水位结构原理 水箱尺寸:长×宽×高=25×20×40 液位控制系统由被控水箱1、蓄水箱2 液位检测仪表差压变送器LT 、调节器LC 、调节阀等组成。 3 cm

二、系统控制要求及指标 2.1水箱水位的控制要求: 液位L=30cm(可任意设置) 稳态误差ess(余差)≤±5mm 过度时间ts≤4分钟 衰减比n>4:1 2.2对自动控制控制系统的基本要求: (1) 稳定性:稳定性是对控制系统最基本的要求。所谓系统稳定,一般指当系统受到扰动作用后,系统的被控制量偏离了原来的平衡状态,但当扰动撤离后,经过若干时间,系统若仍能返回到原来的平衡状态,则称系统是稳定的。 (2) 准确性:给定稳态误差和扰动稳态误差越小,表示稳态精度也越高。 (3)快速性:控制系统不仅要稳定和并有较高的精度,而且还要求系统的响应具有一定的快速性,对于某些系统来说,这是一个十分重要的性能指标。有关系统响应速度定量的性能指标,一般可以用上升时间﹑调整时间和峰值时间来表示。 自动控制的基本要求是它的稳定性。稳定性是指自动控制系统在外界干扰作用下,过度过程能否达到新的稳定状态的性能,系统的稳定程度用衰减比n或衰减率来衡量。 衰减比n是衡量过度过程稳定性的动态指标,它是指过度过程曲线第一个波峰值与同相位第二个波峰值之比。

相关主题
文本预览
相关文档 最新文档