当前位置:文档之家› 最新贪婪算法-装箱问题等练习

最新贪婪算法-装箱问题等练习

最新贪婪算法-装箱问题等练习
最新贪婪算法-装箱问题等练习

贪婪算法练习

练习题1:考虑1、8、9、11这四种面值的硬币,要找出币值24的零钱,怎么找能使硬币数最少? 利用matlab 编程求解。

解:设x j 为二进制变量,如果硬币j 被选中,则,x j =1,否则x j

=0, 则找硬币问题的数学模型如下:

min

∑=n j j x 1

; m n j j j x v =∑=1;

用贪婪算法求解,其MA TLAB 程序如下:

function [n,x]=payback(v,y,m)

[m,n]=size(y);

for i=1:n

for j=1:n

练习题2:利用matlab 编程FFD 算法完成下题:

设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。

function [nbox,p]=sjy(n,v,limitv)

[m,n]=size(v);

w=limitv*ones(m,n);

p=zeros(n);

nbox=0;

for i=1:n

for j=1:i

if v(i)

w(j)=w(j)-v(i);p(i,j)=1;break;

else

continue;

end

w(j+1)=w(j+1)-v(i);p(i,j+1)=1; nbox=nbox+1;

end

end

运行结果:

p =

1 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

练习题3:如果把选择策略从“选出一个下标最小的箱子并把物品ai 放入该箱子中”(FF 算法)改为选择最佳的箱子(已装载物品大小和最大的-这个称为best fit-BF 最佳适应算法),再计算一次上题。比较两次求解的结果。

练习题4:背包问题:c=[10,5,15,7,6,18,3];w=[2,3,5,7,1,4,1];limitw=15;n=7;求最优解。

练习题5:“超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm 3 , 奖品i 占用的空间为w i dm 3 ,价值为v i 元, 具体的数据如下:

v i = { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}

w i = {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。 模型的建立:

设x j 为二进制变量,如果物品j 被选中,则x j =1,否则,x j

=0,如此可将本题转化为如下优化模型:

max

∑=n j j j x v 1;

s.t. n

j W x x w j n j j j

,,2,1},1,0{;1 =∈≤∑= 模型的解决:对此优化问题,我们可以选用价值密度贪婪准则,从剩下的物品中选择可装入购物车的单位价值w v j j

,最大的物品,即按w v j j 非递增的次序装入物品,只要正被考虑的物

品装的进就装入小车。

其MA TLAB 编程代码如下:

function [a1,b1]=sort1(n,a,b)%按单位价值排序

[m,n]=size(a);

d=zeros(m,n);

for k=1:n

d(k)=a(k)/b(k);

end%单位价值

for h=1:n-1

for j=1:n-h%向后排序

贪心算法经典例题

贪心算法经典例题 发布日期:2009-1-8 浏览次数:1180 本资料需要注册并登录后才能下载! ·用户名密码验证码找回密码·您还未注册?请注册 您的账户余额为元,余额已不足,请充值。 您的账户余额为元。此购买将从您的账户中扣除费用0.0元。 内容介绍>> 贪心算法经典例题 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。 从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④ 6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] a.in: 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

利用贪婪算法实现多种实际问题

利用贪婪法实现多种实际问题 《算法设计与分析》课程设计任务书 学院名称:数学与计算机学院专业:信息与计算科学专业年级:2007 一、设计题目 题目十四:利用贪婪算法实现多种实际问题 二、主要内容 给出多种可以用贪婪算法解决的典型问题,并分析、证明、编程。 三、具体要求 (1)贪婪算法的基本思想; (2)给出背包问题的贪婪算法; (3)给出有限期计算机作业调度的贪婪算法; (4)给出上面两个算法的证明; (5)给出上面两个算法的程序。 (6)给出时间复杂度。 四、主要技术路线提示 在用贪婪算法解决资源分配问题、布线问题、0-1背包问题过程中,使用贪婪算法解决问题,通常需要做好以下几个方面的工作: 1、明确问题的求解目标。 2、分析问题所包含的约束条件。 3、建立优化函数。优化函数通常可以通过综合分析问题的求解目标及约束条件归纳出来。 4、制定贪婪准则。 五、进度安排 1、第一周:分析题目的需求,设计抽象数据类型、构思算法、通过类的设计实现抽象数据类型并编写上机程序 2、第二周完成程序开发,进行测试并分析结果,最后撰写课程设计报告 I

利用贪婪法解决实际问题 六、完成后应上交的材料 上交的成果的内容必须由以下四个部分组成,缺一不可。 1.上交源程序:学生按照课程设计的具体要求所开发的所有源程序(应该放到一个文件夹中)。 2.上交程序的说明文件:(保存在.txt中),在说明文档中应该写明上交程序所在的目录,上交程序的主程序文件名,如果需要安装,要有程序的安装使用说明。 3.课程设计报告电子文档:(保存在word 文档中,文件名要求按照“学号姓名算法分析课设报告.doc”起名,如文件名为“200300109张三算法分析课设报告.doc”),按照课程设计的具体要求建立的功能模块,每个模块要求按照如下几个内容认真完成: 其中包括: (1)需求分析: 在该部分中叙述每个模块的功能要求等。 (2)概要设计 在此说明每个部分的算法设计说明(可以是描述算法的流程图),每个程序中使用的存储结构设计说明(如果指定存储结构请写出该存储结构的定义。 (3)详细设计 各个算法实现的源程序,对每个题目要有相应的源程序(可以是一组源程序,每个功能模块采用不同的函数实现)。 源程序要按照写程序的规则来编写。要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。 (4)调试分析 包括测试数据,测试输出的结果,时间复杂度分析,和每个模块设计和调试时存在问题的思考(问题是哪些?问题如何解决?),算法的改进设想。 (5)课设总结 总结可以包括:课程设计过程的收获、遇到问题、遇到问题解决问题过程的思考、程序调试能力的思考、对算法设计与分析这门课程的思考、在课程设计过程中对《算法设计与分析》课程的认识等内容。 4.课程设计报告打印稿。 七、推荐参考资料 教材: 《算法设计与分析》 Anany Levitin 著潘彦译清华大学出版社,2007。 《算法设计与分析》宋文等编重庆大学出版社,2001。 参考书:[1] 《算法设计与分析》周培德电子工业出版社,2000。 [2] 《算法设计与分析》王晓东电子工业出版社,2004 指导教师签名日期年月日 系主任审核日期年月日 II

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

贪婪算法在排课问题中分析与应用

贪婪算法在排课问题中分析与应用 摘要:排课问题是教学管理中重要的问题,对教学质量起到十分重要的影响。随着计算机和信息技术的快速发展,通过合理的算法编制排课系统是十分合适的。本文通过排课问题算法的分析,选择贪婪算法来解决排课问题。通过实验表明,目前的算法能够很好的解决排课问题,对问题的解决的复杂度大大降低,使得排课变得十分简单和高效。 关键字:排课,贪婪算法,优先级 1、绪论 在高校日常管理中,教学计划是重要的组成部分。而教学计划的重要体现方式之一就是排课表,其在教学管理中的地位和作用不可低估,课表的管理对教学管理是起到基础和重要的作用。因此排课问题是教学管理中重要的问题,对教学质量起到十分重要的影响。 由于上课约束条件多,课表的编制十分复杂,是一个耗时耗力的工作。目前随着高校人数的越来越多,其很难用手工去编制课表,其工作时间长,工作量大和繁琐的编制过程是一般人很难驾驭的。随着计算机和信息技术的快速发展,通过合理的算法编制排课系统是十分合适的。通过计算机算法的求解来对问题进行抽象和解决。 2、排课算法算法简介 目前对于排课问题的算法较多,主要有蚁群算法、模拟退火算法、遗传算法、整数规划法和贪婪算法等。 (1)蚁群算法 蚁群算法就是将模拟蚂蚁的活动,对参数设置较少。这种算法具备较强的全局搜索能力,但其效率较低,且容易出现停滞[1]。 (2)模拟退火算法 这个算法被较多的学者用来解决排课问题,它是模拟退火的现象,对自然事物进行抽象而来。其比较适合约束条件较少的问题。如果约束条件少,其很快就能获得最优解。但这种算法的参数选择较难,且资源开销大[2]。 (3)遗传算法 遗传算法是基于自然选择和生物遗传的全局优化策略。其优点在于在非线性问题上能够表现出全局最优,可以并行处理而且算法效率相对较高[3]。 但遗传算法本身较为复杂,由于排课问题的约束条件较多,其算法的效率较低,如果排课要求十分严格的话,很有可能造成找不到解。 (4)整数规划法 整数规划法来解决排课问题计算量很大,只适合规模较小排课问题,对于规模较大的,至今都很难找到一个可行算法。 (5)贪婪算法 贪婪算法是指在解决问题的时候,不会考虑整体最优,而是采取局部最优的思想进行最优思想[4]。也就是说,该算法将解决问题分解为每一个步骤,根据其难易程度进行解决,通过满足局部最优的方式来尽可能的获得最满意的解决。虽然在某些情况下,贪婪算法并不能得到最优解,但能得到相对满意的解。 3、排课问题综述 (1)排课原则 排课问题的本质是一个优化问题,是对教师、上课课程、上课时间和上课地点等因素的优化。其目的就是将全校所开设课程在有限的时间和地点下进行合理的安排,确保教学的顺利进行,以达到最优的效果。 为了能够产出一张满意合格的排课表,在排课中要满足一些约束条件。我们将一些约束

算法分析复习题目及答案

一、选择题 1、二分搜索算法是利用 (A)实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A)。 A、找出最优解的性 质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是 ( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4、在下列算法中有时找不到问题解的是(B)。 A、蒙特卡罗算 法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5.回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 6.下列算法中通常以自底向上的方式求解最优解的 是(B)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 7、衡量一个算法好坏的标准是(C)。 A运行速度快B 占用空间少C时间复杂度低D代码短 8、以下不可以使用分治法求解的是 ( D )。 A棋盘覆盖问题 B 选择问题C归并排序D0/1背包问题 9.实现循环赛日程表利用的算法是(A)。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 10、下列随机算法中运行时有时候成功有时候失败的是(C) A数值概率算法B舍伍德算法C拉斯维加斯算法D蒙特卡罗算法 11.下面不是分支界限法搜索方式的是(D)。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 12.下列算法中通常以深度优先方式系统搜索问题解的是(D)。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 13.备忘录方法是那种算法的变形。(B) A、分治法 B、动态规划法 C、贪心法 D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为 (B)。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是(B)。 A、最小堆 B、最大堆 C、栈 D、数组16.最长公共子序列算法利用的算法是 (B)。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 18.下面是贪心算法的基本要素的是(C)。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 19.回溯法的效率不依赖于下列哪些因素 (D) A.满足显约束的值的个 数 B. 计算约束函数的时间C.计算限界函数的时间 D. 确定解空间的时间

算法分析与设计选修课-贪心算法应用研究

武汉理工大学 算法设计与分析论文题目:贪心算法应用研究 姓名:吴兵 学院:信息工程 专业班级:电子133 学号: 1409721303131 任课教师:张小梅

目录 摘要 (1) 1.绪论 (2) 2贪心算法的基本知识概述 (3) 2.1 贪心算法定义 (3) 2.2 贪心算法的基本思路及实现过程 (3) 2.3贪心算法的核心 (3) 2.4贪心算法的基本要素 (4) 2.5 贪心算法的理论基础 (6) 2.6 贪心算法存在的问题 (7) 3贪心算法经典应用举例 (8) 3.1删数问题 (8) 3.2 汽车加油问题 (10) 3.3会场安排问题 (12) 4.总结 (16) 5.参考文献 (17)

摘要 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。 关键词:贪心算法最小生成树多处最优服务次序问题删数问题

贪心算法的应用

从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。 我们看看下面的例子 例1 均分纸牌(NOIP2002tg) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如 N=4,4 堆纸牌数分别为: ①9 ②8 ③17 ④6 移动3次可达到目的: 从③取 4 张牌放到④(9 8 13 10) -> 从③取 3 张牌放到②(9 11 10 10)-> 从②取 1 张牌放到①(10 10 10 10)。 [输入]:键盘输入文件名。 文件格式:N(N 堆纸牌,1 <= N <= 100) A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000) [输出]:输出至屏幕。格式为:所有堆均达到相等时的最少移动次数。 [输入输出样例] : 4 9 8 17 6 屏慕显示:3 算法分析:设a[i]为第i堆纸牌的张数(0<=i<=n),v为均分后每堆纸牌的张数,s为最小移到次数。 我们用贪心法,按照从左到右的顺序移动纸牌。如第i堆(0v,则将a[i]-v张纸牌从第I堆移动到第I+1堆; (2)若a[i]

浅谈我国动态规划算法研究与应用

动态规划算法研究与应用 1.引言 动态规划被认为是组成运筹学其中的一部分,也被当成为进行运算决定时最好的一种数学方式。在1950年左右,美国相关方面的几位数学家,对阶段决策期间关于优化的问题做了大量的研究,并发布著名的最优化理论,将众多的阶段变成了一个一个单一的问题,并分别进行解答,最后,发明了能够处理这种相关优化方面事情新的解决措施——动态规划。到了1957年,创造出了Dynamic Programming这一名著,被称为该领域创作第一人[1]。 在数学和计算机科学领域,动态规划算法对于求解最优解的问题方便快捷。动态规划方法经常用来解决生活中的实际问题,这些问题往往可以分解为很多个子问题,每个子问题都有一个对应解,其中的临界值就是我们所要求得的最优解。动态规划并非一种数学算法,而是用于最优化解题的一种技巧和方法。它非但不具有一个标准的数学方程式,不能够推导出清晰明确的解题步骤,更不具备万能性。对于要解决的若干问题,一定要建立在正确理解的基础上具体问题具体分析,用我们现有的数学知识和丰富的想象力创建模型,结合日常的技巧分析求解。客观人为的介入时间和空间因素,只要可以分为若干子问题的多状态过程,就可以用此方法快速求解。 2.动态规划算法简介 动态规划诞生之后,很快就在在工业生产、金融管理、工程技术、和资源最大化利用等领域得到了好评。在处理路线规划、物品进出库管理、资源最优化利用、更换设备、顺序、装载等问题,动态规划算法相比于其他算法更有优势而且更加便捷。 2.1基本原理 其主要的理论可以被理解成是将求解的划分成若干个子问题,并将其称作为N,然后这些子问题又有N个解的情况,其中这些可行解之中一定会有一个最优解,研究动态规划也就是希望能够找到最优解[2]。 如何能够合理的推导出基本的最优化方程式和找出唯一的临界值是研究动

贪婪算法

答:贪婪算法(Greedy algorithm)是一种对某些求最优解问题的更简单、更迅速的设计技术。用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。 贪婪算法是一种改进了的分级处理方法。其核心是根据题意选取一种量度标准。然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。 对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。 一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。最优解可以通过一系列局部最优的选择即贪婪选择来达到,根据当前状态做出在当前看来是最好的选择,即局部最优解选择,然后再去解做出这个选择后产生的相应的子问题。每做一次贪婪选择就将所求问题简化为一个规模更小的子问题,最终可得到问题的一个整体最优解。其有以下特性: ⑴ 有一个以最优方式来解决的问题。为了构造问题的解决方案,有一个候选的对象的集合:比如不同面值的硬币。 ⑵ 随着算法的进行,将积累起其它两个集合:一个包含已经被考虑过并被选出的候选对象,另一个包含已经被考虑过但被丢弃的候选对象。 ⑶ 有一个函数来检查一个候选对象的集合是否提供了问题的解答。该函数不考虑此时的解决方法是否最优。 ⑷ 还有一个函数检查是否一个候选对象的集合是可行的,也即是否可能往该集合上添加更多的候选对象以获得一个解。和上一个函数一样,此时不考虑解决方法的最优性。 ⑸ 选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解。 ⑹ 最后,目标函数给出解的值。

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

贪心算法设计与应用

实验报告 课程算法设计与分析实验实验名称贪心算法设计与应用第 1 页一、实验目的 理解贪心算法的基本原理,掌握贪心算法设计的基本方法及其应用; 二、实验内容 (一)Huffman编码和译码问题: 1.问题描述 给定n个字符在文件中的出现频率,利用Huffman树进行Huffman编码和译码。设计一个程序实现: 1.输入含n(n<=10)个字符的字符集S以及S中各个字符在文件中的出现频 率,建立相应的Huffman树,求出S中各个字符的Huffman编码。 2.输入一个由S中的字符组成的序列L,求L的Huffman 编码。 3. 输入一个二进制位串B,对B进行Huffman译码,输出对应的字符序列; 若不能译码,则输出无解信息。 提示:对应10 个字符的Huffman树的节点个数<211。 2.测试数据 Input n=5 字符集合S={a, b, c, d, e}, 对应的频率分别为 a: 20 b: 7 c: 10 d: 4 e: 18 字符序列L=ebcca 二进制位串B=01100111010010 Output S中各个字符的Huffman编码:(设Huffman树中左孩子的权<=右孩子的权)a: 11 b: 010 c: 00 d: 011 e: 10 L的Huffman 编码:10010000011 B对应的字符序列: dcaeeb 若输入的B=01111101001,则无解 (二) 加油问题(Problem Set 1702): 1.问题描述 一个旅行家想驾驶汽车从城市A到城市B(设出发时油箱是空的)。给定两个

城市之间的距离dis、汽车油箱的容量c、每升汽油能行驶的距离d、沿途油站数n、油站i离出发点的距离d[i]以及该站每升汽油的价格p[i],i=1,2,…,n。设d[1]=0=xw和yb>=yw。 若黑点b支配白点w,则黑点b和白点w可匹配(可形成一个匹配对)。在一

贪心算法的应用实例

贪心算法的应用实例 例2.排队问题 【题目描述】 在一个医院B 超室,有n个人要做不同身体部位的B超,已知每个人需要处理的时间为ti,(00,从而新的序列比原最优序列好,这与假设矛盾,故s1为最小时间,同理可证s2…sn依次最小。 例3.:数列极差问题 【题目描述】 在黑板上写了N个正整数做成的一个数列,进行如下操作:每一次擦去其中的两个数a 和b,然后在数列中加入一个数a×b+1,如此下去直至黑板上剩下一个数,在所有按这种操作方式最后得到的数中,最大的max,最小的为min,则该数列的极差定义为M=max-min。 编程任务:对于给定的数列,编程计算出极差M。 输入输出样例: 输入: 4 2 1 4 3 输出: 13 【算法分析】 当看到此题时,我们会发现求max与求min是两个相似的过程。若我们把求解max与min的过程分开,着重探讨求max的问题。 下面我们以求max为例来讨论此题用贪心策略求解的合理性。 讨论:假设经(N-3)次变换后得到3个数:a ,b , max'(max'≥a≥b),其中max'是(N-2)个数经(N-3)次f变换后所得的最大值,此时有两种求值方式,设其所求值分别为 z1,z2,则有:z1=(a×b+1)×max'+1,z2=(a×max'+1)×b+1所以z1-z2=max'-b≥0若经(N-2)次变换后所得的3个数为:m,a,

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

贪心算法浅析

贪心算法浅析 摘要:本文讲述了贪心算法的基本思路及实现过程,贪心算法的特点、存在的问题以及应用。并通过贪心算法的特点举例列出了几个经典问题,通过对问题的探讨和研究,对贪心算法有了更加深入的了解。 关键词:贪心算法;最优解;最优子结构问题;删数问题;活动安排问题 贪心算法的基本思路及实现过程 1贪心的基本思想 用局部解构造全局解,即从问题的某一个初始解逐步逼近给定的目标,以尽可能快地求得更好的解。当某个算法中的某一步不能再继续前进时,算法停止。贪心算法思想的本质就是分治,或者说:分治是贪心的基础。每次都形成局部最优解,换一种方法说,就是每次都处理出一个最好的方案。 利用贪心策略解题,需要解决两个问题: (1)该题是否适合于用贪心策略求解; (2)如何选择贪心标准,以得到问题的最优/较优解。 2贪心算法的实现过程 (1)应用同一规则F,将原问题变为一个相似的、但规模更小的子问题; (2)从问题的某一初始解出发: While(能朝给定目标前进一步) 求出可行解的一个解元素; (3)由所有解元素组合成问题的一个可行解。 贪心算法的特点 贪心算法的最大特点就是快,通常是线性二次式,不需要多少额外的内存。一般二次方级的存储要浪费额外的空间,而且那些空间经常得不出正解。但是,使用贪心算法时,这些空间可以帮助算法更容易实现且更快执行。如果有正确贪心性质存在,那么一定要采用。因为它容易编写,容易调试,速度极快,并且节约空间。几乎可以说,此时它是所有算法中最好的。但是应该注意,贪心算法有两大难点:

(1)如何贪心 怎样用一个小规模的解构造更大规模的解呢?总体上,这与问题本身有关。但是大部分都是有规律的。正因为贪心有如此性质,它才能比其他算法快。 具有应当采用贪心算法的问题,当“贪心序列”中的每项互异且当问题没有重叠性时,看起来总能通过贪心算法取得(近似)最优解的。或者,总有一种直觉在引导我们对一些问题采用贪心算法。其中“找零钱”这个问题就是一个例子。题中给出的硬币面值事实上具有特殊性,如果面值发生变化,可能贪心算法就不能返回最优解了。但是,值得指出的是,当一个问题具有多个最优解时,贪心算法并不能求出所有最优解。另外,我们经过实践发现,单纯的贪心算法是顺序处理问题的;而且每个结果是可以在处理完一个数据后即时输出的。 (2)贪心的正确性 要证明贪心性质的正确性,才是贪心算法的真正挑战,因为并不是每次局部最优解都会与整体最优解之间有联系,往往靠贪心算法生成的解不是最优解。这样,贪心性质的证明就成了贪心算法正确的关键。对某些问题贪心性质也许是错的,即使它在大部分数据中都是可行的,但还必须考虑到所有可能出现的特殊情况,并证明该贪心性质在这些特殊情况中仍然正确。而这样容易陷入证明不正确贪心性质的泥塘中无法自拔,因为贪心算法的适用范围并不大,而且有一部分极难证明,若是没有把握,最好不要冒险,还有其他算法会比它要保险。 贪心算法存在的问题 (1)不能保证求得的最后解是最佳的。由于贪心策略总是采用从局部看来是最优的选择,因此并不从整体上加以考虑; (2)贪心算法只能用来求某些最大或最小解的问题; (3)贪心算法只能确定某些问题的可行性范围 贪心算法的应用 1哈夫曼编码 2 0-1背包问题 3磁盘文件的存储 4生产调度问题 5信息查询

相关主题
文本预览
相关文档 最新文档