当前位置:文档之家› 第十二讲 利用正弦、余弦定理解三角形

第十二讲 利用正弦、余弦定理解三角形

第十二讲 利用正弦、余弦定理解三角形
第十二讲 利用正弦、余弦定理解三角形

第十二讲 利用正、余弦定理解三角形

一、 基础知识点:

考向3 利用正、余弦定理求有关三角形的面积

三角形的面积公式(扩充一下面积公式的若干形式)

设△ABC 的三边为a ,b ,c ,对应的三个角分别为A ,B ,C ,其面积为S . (1)S =1

2ah (h 为BC 边上的高); (2)S =12ab sin C =12bc sin A =1

2ac sin B ;

(3)S =2R 2sin A sin B sin C (R 为△ABC 外接圆半径); (4)S =abc 4R ;

(5)S =p (p -a )(p -b )(p -c )? ????

p =12(a +b +c );

(6)S =pr (p 同(5),r 为△ABC 内切圆的半径).

与三角形面积有关问题的常见类型及解题策略

(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =1

2bc sin A ,一般是已知哪一个角就使用含哪个角的公式.

(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.

考向4 解三角形在实际问题中的应用

1.常见的几种题型

测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等. 2.实际应用中的常用术语

南偏西n°

i,则i=

h

l

1.解三角形应用题的常见情况及方法

(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.

(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.

2.解三角形应用题的一般步骤

二、典型例题:

1、如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.

现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行

的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=12

13,cos C=

3

5.

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?

2、如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.

已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)

3、在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b =6cos C ,则tan C tan A +tan C

tan B 的值是________.

4、已知O 是锐角三角形ABC 的外接圆圆心,tan A =22,若cos B sin C AB →+cos C sin B AC →=2mAO →,则m =________.

5、在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量q =(2a ,1),p =(2b -c ,cos C ),且p ∥q .

(1)求sin A 的值;

(2)求三角函数式-2cos 2C

1+tan C +1的取值范围.

6、ABC ?

中,sin

23ABC ∠=

,AB=2,D 点在线段AC 上,且AD=2DC

,3

BD =。 (1) 求BC 之长;(2)求DBC ?的面积。

7、 ABC ?中,A 、B 、C 满足222100710092016A B C +=,则ABC ?为( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 以上均有可能

8、已知直线l

:4y +,动圆O :222(12)x y r r +=<<,菱形ABC D 的一个内角为60o ,顶点A 、B 在直线l 上,顶点C 、D 在圆O 上,当r 变化时,求菱形ABC D 面积S 的范围?

9、 设x ,y 均为非零实数,且满足

sin

cos

95

5tan 20cos sin 55

x y x y π

π

πππ+=-。

(1)求y x 之值;(2)ABC ?中,若tan y C x

=,求sin2A+2cosB 的最大值。

10、 设x 为锐角,求y=sinxsin2x 的最大值。

11、 已知P 是正方形ABCD 内切圆上一点,记,APC BPD αβ∠=∠=,求22tan tan αβ+的值。

12、 在ABC ?中,a 、b 、c 分别是角A 、B 、C 的对边,b=1,且cosC+(2a+c)cosB=0. (1) 求B ;(2)求ABC ?面积的最大值。

13、 给定平面上四点O 、A 、B 、C ,满足:OA=4,OB=3,OC=2,3OB OC ?=

,求ABC ?的面积的最大值。

14、 若ABC ?的内角A 、B 、C 所对的边a 、b 、c 成比例,求sin cot cos sin cot cos A C A

B C B

++的范围?

15、 已知2

sin 3(sin )sin x

f x x

=

。 (1) 求f(x)的解析式及定义域;

(2) 若方程f(x)=m 有两个不等实根,求m 的取值范围。

16、已知ABC ?的周长为20BC=7,求tanA 的值

解三角形(1)---正弦定理

解三角形(1)---正弦定理 【定理推导】 如图1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。思考: (1)∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? (2)显然,边AB 的长度随着其对角∠C 的大小的增大而增大,能否用一个 等式把这种关系精确地表示出来? 如图1-2,在Rt ?ABC 中,设BC=a 、AC=b 、AB=c ,根据锐角三角函数 中正弦函数的定义,有a sinA c =,sin b B c =,又sin 1c C c ==, 则a b c c sinA sinB sinC ===,从而在直角三角形ABC 中, sin sin sin a b c A B C ==。 思考:那么对于任意的三角形,以上关系式是否仍然成立?(分为锐角三角形和钝角三角形两种情况) 如图1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则:sin sin a b A B = , 同理可得 sin sin c b C B = ,从而 sin sin a b A B = sin c C = 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。 证法二:(向量法)过点A 作j AC ⊥ ,由向量的加法可得AB AC CB =+ 则 ()j AB j AC CB ?=?+ ∴j AB j AC j CB ?=?+? ()()0 0cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即 sin sin = a c A C 证明三:(外接圆法)如图所示,∠A =∠D ,∴ 2sin sin a a CD R A D ===, 同理:sin b B =2R ,sin c C =2R 同理,过点C 作⊥ j BC ,可得sin sin =b c B C ,从而a b c sinA sinB sinC == 类推:当?ABC 是钝角三角形时,以上关系式仍然成立。 从上面的探究过程,可得以下定理: c b a C B A (图1-2) c b a C B A (图1-3) c b a C B A j C B A (图1-1) a b c O B C A D

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

必修五解三角形正弦定理和余弦定理

学案正弦定理和余弦定理 导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 自主梳理 1.三角形的有关性质 (1)在△ABC中,A+B+C=________; (2)a+b____c,a-bb?sin A____sin B?A____B; (4)三角形面积公式:S△ABC=1 2ah= 1 2ab sin C= 1 2ac sin B=_________________; (5)在三角形中有:sin 2A=sin 2B?A=B或________________?三角形为等腰或直角三角形; sin(A+B)=sin C,sin A+B 2=cos C 2. 自我检测 1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于() A.30°B.60°C.120°D.150° 3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为() A.27 B.21 C.13 D.3

4.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________. 5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3 ,则a =________. 探究点一 正弦定理的应用 例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c . 变式迁移1 (1)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用 例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2- b 2=a c . (1)求角B 的大小; (2)若c =3a ,求tan A 的值. 变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3 ,b =13,a +c =4,求a . 探究点三 正、余弦定理的综合应用 例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C . (1)证明:B =C ; (2)若cos A =-13 ,求sin ????4B +π3的值. 1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它 是对正、余弦定理,三角形面积公式等的综合应用. 2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

正弦定理余弦定理解三角形

第一篇 正弦定理和余弦定理 【知识清单】 一、三角形有关性质 (1)在△ABC 中,A +B +C =π;a +b >c ,a -b b ?sin A >sin B ?A >B ; (2)三角形面积公式:S △ABC =12ah =12ab sin C =1 2ac sin B =1sin 2 bc A ; (3)在三角形中有:sin 2A =sin 2B ?A =B 或2 A B π += ?三角形为等腰或直角三角形; sin(A +B )=sin C ,()cos cos A B C +=-,sin A + B 2=cos C 2 . 定理 正弦定理 余弦定理 内容 2sin sin sin a b c R A B C === 2222sin a b c bc A =+- 2222sin b a c ac B =+- 222 2sin c a b ab C =+- 变形 形式 ①2sin a R A =,2sin b R B =,2sin c R C =; ②sin 2a A R =,sin 2b B R =,sin 2c C R =; ③::c sin :sin :sin a b A B C =; ④sin sin +sin sin a b c a A B C A ++=+. 222cos 2b c a A bc +-=; 222cos 2a c b B ac +-= ; 222cos 2a b c C ab +-= 解决 的问题 ①已知两角和任一边,求另一角和其他两条边. ②已知两边和其中一边的对角,求另一边和其他两角. ①已知三边,求各角; ②已知两边和它们的夹角,求第三 边和其他两个角. 三、解斜三角形的类型 (1)已知两角一边,用正弦定理,有解时,只有一解; (2)已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ?中, A 为锐角 A 为钝角或直角 图 形 关系式 sin a b A < sin a b A = sin b A a b << a b ≥ a b > 解个数 无解 一解 两解 一解 一解 上表中,为锐角,时,无解;为钝角或直角时,或均无解.

《正弦定理和余弦定理》典型例题

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A =,30C =,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =, ∴sin 10sin 45102sin sin 30c A a C ?= == ∴ 180()105B A C =-+=, 又sin sin b c B C =, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ?= ===?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60 o o a =,∴56a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ?= ==中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

解三角形之正弦定理

1.1.1 解三角形之正弦定理2 2015.03.17 命题人——王峰 班级 姓名 学号 一、选择题 1.在△ABC 中,若∠B =135°,AC =2,则BC sin A = ( ) A .2 B .1 C . 2 D .2 2 2.在△ABC 中,∠B =45°,c =22,b =433 ,则∠A 的大小为 ( ) A .15° B .75° C .105° D .75°或15° 3.已知△ABC 的面积为3 2,且b =2,c =3,则sin A = ( ) A .32 B .12 C .34 D . 3 4.在△ABC 中,a =1,A =30°,C =45°,则△ABC 的面积为 ( ) A .22 B .24 C .32 D .3+14 5.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为 ( ) A .45° B .60° C .75° D .90° 6.在△ABC 中,(b +c )∶(a +c )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C = ( ) A .4∶5∶6 B .6∶5∶4 C .7∶5∶3 D .7∶5∶6 7.在△ABC 中,a =2b cos C ,则这个三角形一定是 ( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形 *8.[2013·辽宁理,6]在△ABC 中,若a sin B cos C +c sin B cos A =1 2b ,且a >b ,则B = ( ) A .π6 B .π3 C .2π3 D .5π 6 二、填空题 9.在△ABC 中,若b =5,∠B =π 4,cos A =5 5,则sin A =________;a =________. 10.(1)在△ABC 中,若a =32,cos C =1 3,S △ABC =43,则b =________; (2)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________. 11.(1)在△ABC 中,若b =a cos C ,则△ABC 是___________三角形; (2)在△ABC 中,若a cos A =b cos B ,则△ABC 是______________三角形;

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

正弦定理解三角形

利用正弦定理解三角形 利用正弦定理可以解决以下两类有关三角形问题: 1、已知三角形的两角和任意一边,求三角形其他两边与角。 2、已知三角形的两边和其中一边的对角,求三角形其他边与角。 例题设计一: 已知△ABC,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1)。 (1)∠A=60°∠B=45° a=10 (2)∠A=45°∠B=105° c=10 (1)属于已知三角形的两角和其中一角的对边,先由三角形内角和定理知∠C=180°-∠A-∠B=75°,然后由正弦定理直接得:b===≈8.2,c==≈11.2 (2)为已知两角和另一角的对边,这时先利用∠A+∠B+∠C=π,求出另一角∠C=30°,然后由正弦定理得:a=== b=== 这两道例题均选自教材,使学生明确在三角形中已知两角和任意一边时,这样的三角形是唯一确定的。学会用方程思想分析正弦定理解决问题。 习题设计一: 设计意图:巩固当堂内容 已知在△ABC中,c=10, ∠A=45°,∠C=30°,求a、b和∠B.

解:∵,∴a=,∠B=180°- (∠A+∠C)=180°-(45°+30°)=105°,∵,∴ b ==20sin75°=20×=5+5. 例题设计二: 已知△ABC中,根据下列条件,求相应的三角形中其他边和角的大小(保留根号或精确到0.1) (1) a=3 b=4 ∠A=30° (2) a=b=6 ∠A=120° (3) a=2 b=3 ∠A=45° (1)由正弦定理得sinB===,再由三角形内角和定理 知∠B的范围为:0°<B<150°,∴∠B≈41.8°或∠B≈138.2°,再根据“三角形中大边对大角”知 b=4>a=3,∴∠B>∠A, ∴∠B≈41.8°或∠B≈138.2°; 当∠B≈41.8°时,∠C≈180°-30°-41.8°=108.2°, c==≈5.7; 当∠B≈138.2°时,∠C≈180°-30°-138.2°≈11.8°,

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

三角函数与解三角形:正弦定理和余弦定理

正弦定理和余弦定理【考点梳理】 1.正弦定理和余弦定理 (1)S=1 2a·h a(h a表示边a上的高); (2)S=1 2ab sin C= 1 2ac sin B= 1 2bc sin A. (3)S=1 2r(a+b+c)(r为内切圆半径). 【考点突破】 考点一、利用正、余弦定理解三角形 【例1】在△ABC中,∠BAC=3π 4,AB=6,AC=32,点D在BC边上, AD=BD,求AD的长. [解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC

=(32)2+62-2×32×6×cos 3π4 =18+36-(-36)=90,所以a=310. 又由正弦定理得sin B=b sin∠BAC a= 3 310 = 10 10, 由题设知0<B<π 4, 所以cos B=1-sin 2B=1-1 10= 310 10. 在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得 AD=AB·sin B sin(π-2B)= 6sin B 2sin B cos B= 3 cos B=10. 【类题通法】 1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的. 2.(1)运用余弦定理时,要注意整体思想的运用. (2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用. 【对点训练】 1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为() A.30°B.45° C.60°D.120° [答案]A

正弦定理余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理 教学目标 掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式. 教学重难点 掌握正弦定理和余弦定理的推导,并能用它们解三角形. 知识点清单 一. 正弦定理: 1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即a b c2R( 其中R 是三角形外接圆的半 径) sin A sinB sinC 2. 变 形:1) a b c a b c sin sin sinC sin sin sinC 2)化边为 角: a:b:c sin A:sin B: sinC ; a sin A; b sin B a sin A b sinB c sinC c sin C 3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC 4)化角为边:sin A a;sin B b ; sin A a sin B b sinC c sinC c 5)化角为边:sin A a sinB b,sinC c 2R2R2R 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a , 解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A ; 求出 b 与c c sinC ②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边 a,b,A, 解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边 c sinC 4. △ABC中,已知锐角A,边b,则 ① a bsin A 时,B 无解; ② a bsin A 或 a b 时, B 有一个解;

正弦定理经典练习题

《正弦定理、余弦定理、解斜三角形》 一、复习要求 : 1. 掌握正弦、余弦定理,能运用知识解斜三角形。 2. 用正弦、余弦定理判断三角形的形状。 二、知识点回顾 (1) 正弦定理:,22sin sin sin ? ====S abc R C c B b A a (2R 为三角形外接圆直径), (?S 为三角形面积),其他形式: a :b :c = sinA :sinB :sinC a=2RsinA, b=2RsinB , c=2RsinC (2) 余弦定理:a 2=b 2+c 2-2bccosA,(可按a,b,c,a 轮换得另二式) 余弦定理变式:bc a c b A 2cos 2 22-+= , (轮换得另二式) 余弦定理向量式:如图 a=b+ c , c= a – b c 2=|c|2=|a-b |2=(a-b)2=a 2+b 2 - 2﹒a ﹒b =a 2+b 2 - 2abcosC (其中|a|=a,|b|=b,|c|=c) 三、典型例题分析: 例1:在三角形ABC 中,若C=3B ,求b c 的范围 分析:角边比转化,可用正弦定理 解:1cos 4cos 22cos sin ) 2sin(sin 3sin sin sin 2-=+=+===B B B B B B B B B C b c A+B+C=1800 ,C=3B , ∴4B<1800,00<B<450, 1cos 22 <C ,且b 2+c 2 =a 2+bc, 求A ,B ,C 。 解:21 22cosA 2 22==-+=bc bc bc a c b , ∴ A=600 又 4sinBsinC=1 ∴4sinBsin(1200-B)=11 sin 22sin 31)sin 21 cos 23 (sin 42=+?=+?B B B B B B con B 22sin 3=? ∴33 2t a n =B ∴2B=300 或2100 B>C , ∴2B=2100 即 B=1050 ∴A=600 B=1050 C=150 练习2:在?ABC 中,2B=A+C 且tanAtanC=2+3 求(1)A 、B 、C 的大小 (2) 若AB 边上的高CD=43,求三边a 、b 、c 例3:如图,已知P为?ABC 内一点,且满足∠PAB =∠PBC= ∠PCA=θ 求证cot θ=cotA+cotB+cotC C A B a c b θ A B C P θ θ

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

正弦定理练习题典型题(含答案)

正弦定理一 1、在ABC ?中,060A ∠=,6a =,3b =,则ABC ?解的情况( ) A .无解 B .有一解 C .有两解 D .不能确定 2、在△ABC 中,若b=2,A=120°,三角形的面积S= ,则三角形外接圆的半径为( ) A . B .2 C .2 D .4 3、在ABC △中,,,a b c 分别是角A,B,C 的对边,已知1,2a b ==,3cos 2 A =,求角C . 4、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知acosC +ccosA =2bcosA . (1)求角A 的值; (2)求sinB +sinC 的取值范围. 5、在锐角△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=2csinA . (1)求角C 的值; (2)若c=,且S △ABC =,求a+b 的值.

参考答案 1、【答案】A 2、【答案】B 3、【答案】解:在ABC △中,3cos 2A = ,得6A π=, 又1,2a b ==,由正弦定理得sin sin a b A B =, ∴sin 2sin 2 b A B a ==, 又b a >,得4B π= 或4 B 3π=, 当4B π=时,6412 C ππ7π=π--=; 当4B 3π=时,6412 C π3ππ=π--=, ∴角C 为127π或12π. 4、【答案】(1)A =;(2)(,]. 试题分析:(1)要求解,已知条件中有角有边,一般情况下我们可以利用正弦定理把边化为角的关系,本题acosC +ccosA =2bcosA ,由正弦定理可化为sin cos sin cos 2sin cos A C C A B A +=,于是有 sin()2sin cos A C B A +=,即sin 2sin cos B B A =,而sin 0B ≠,于是1cos 2A =,3 A π=;(2)由(1)23C B π=-,且203B π<<,2sin sin sin sin()3 B C B B π+=+-,由两角和与差的正弦公式可转化为3sin()6 B π+,再由正弦函数的性质可得取值范围. 试题解析: (1)因为acosC +ccosA =2bcosA ,所以sinAcosC +sinCcosA =2sinBcosA , 即sin(A +C)=2sinBcosA . 因为A +B +C =π,所以sin(A +C)=sinB . 从而sinB =2sinBcosA . 因为sinB ≠0,所以cosA =. 因为0<A <π,所以A =. (2)sinB +sinC =sinB +sin(-B)=sinB +sin cosB -cos sinB =sinB +cosB =sin(B +). 因为0<B <,所以<B + <.

正弦定理、解三角形

解三角形 [前言 ] 1.三角形的构成要素是三条边与三个角,所谓的解 ②该性质对所有三角形均适用,却只关注边且为不 三角形,即根据已知条件求边的长短与角的大小; 等关系,没有体现角;多数情况中,该性质作为判 求解的方法,不再是传统意义上的尺规测量,而是 段三角形构成的条件; 借助三角形本身所固有的性质来求角的大小、边的 ③该性质对所有的三角形均适用,尽管同时涉及角 长度,正是“解铃还须系铃人”; 与边,但体现的是不等关系; ④⑤⑥这几条性质不能推广,针对某一类具体的三 2.对于三角形的性质,常见的可概括为以下几条: 角形适用; ①内角和定理:三个内角相加之和为180°; ⑦⑧这些性质反映了三角形的外延问题,往往不在 ②两边之和大于第三边,两边之差小于第三边; 解三角形的范畴 ③大角对大边,小边对小角; 综括上述性质的特征: ④勾股定理:a 2+b 2=c 2; 解三角形所采用的性质必须满足四点要求:(1)对 ⑤在直角三角形中,30°所对的直角边为斜边的一半 所有的三角形均适用;(2)必须为等式;(3)必须有 ⑥等腰三角形两腰相等,两底角相等;等边三角形 角的参与;(4)必须有边的参与.满足四点要求的性 三条边相等,三个角相等; 质有正弦定理与余弦定理,即解三角形的主要方法. ⑦直角三角形外接圆的圆心为斜边的中点,斜边长 为外接圆的直径; 3.所谓角已知,不见得已知角的度数,凡是角的正 ⑧三角形的外角等于与它不相邻的两个内角相加之 弦值、余弦值、正切值已知,即为角已知;在解三 和等等; 角形中,求角的大小,也不见的求角的度数,可以 比较上述性质: 是角的某一个三角函数值,原因在于角已为任意角 ①内角和定理对所有三角形均适用,但只体现了角 不囿于锐角或者特殊角. 的关系,不能解决有关边的问题; [正弦定理] 1.正弦定理:在一个三角形中,各边和它所对角的 正弦的比相等,即 a sinA = b sinB = c sinC 其中,a ,b ,c 分别为内角A ,B ,C 的对边. 对于直角三角形、钝角三角形,同理可证. 2.几何意义:对任意一个?ABC 中,均有:

相关主题
文本预览
相关文档 最新文档