当前位置:文档之家› 公交车调度

公交车调度

公交车调度
公交车调度

公交车调度

关于公交车调度的数学模型

摘要:本文根据典型的一个工作日两个运行方向各站上下车的乘客数量统计,首先探讨了如何利用平滑法来确定一个有价值并且效率高的车辆运行时刻表,使其满足乘客的舒适性和公交公司低成本的服务;接着,又利用最优化的基本思想,对此问题进行了进一步的讨论,得到了最小配车辆的数量,然后针对满意度的评价水平问题,建立了几个良好刻画公司以及乘客满意度的满意度函数并求出了乘客与公交公司双方的满意度。最后,我们对新提出的模型进行了模型的评价和模型改进方向的讨论,并对如何采集公交车客运量的数据,提出了几个中肯的建议,完成了对关于公交车调度问题的较为详细而合理的讨论。

(一)问题重述

公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

(二)定义与符号说明

1、T( I )------ 第I个时段( I=1、2……18 )

2、A( J )------ 第J个公交车站(J=1、2……15 )

3、P( I )------ 在第I个时段内的配车量

4、L( I )------ 在第I个时段内的客流量

5、G( I )------ 在第I个时段内的满载率

6、S( I )------ 在第I个时段内的乘客候车时间期望值

7、V--------- 客车在该线路上运行的平均速度

8、ΔL(J)---第J-1个公交车站到第J个公交车站之间的距离

9、ΔT(I)------第I个时段内相邻两辆车发车间隔时间

10、L----- 收、发车站之间的距离

(三)模型的假设

基本假设:1、乘客在各个时段内到达公交车站的时间均服从均匀分布

2、乘客上车的时间可以忽略不计。

3、公共汽车在每个时段内发车的时间间隔相同

4、公共汽车始终以大小为V的速率匀速前进

5、公交车和乘客的到来都是随机现象。被调查的线路上的客流量不

会受到其它线路上客流量的影响。

6、如果产生拥挤现象,那么仅可能是在车站发生。

(四)模型的分析

1、数据的特征分析

为了加深对数据变化情况的了解,我们对数据进行了插值,并绘出“公交车上行客流量数据总图”(图一),由图中我们可以直观地看到:

1)对于不同的车站A( J ) (J=1、2…14),在T(3)时段(7:00~8:00)处,均达到客流量的最高峰。

2)对于不同的车站A( J) (J=1、2…14),在T(13)时段(17:00~18:00)处,均达到客流量的次高峰

3)在其余时段内,客流量分布较为平缓。

图一

2.模型的初步分析

由于编制车辆运行时刻表的复杂性,传统的时刻表一般是采用经验法。即参考路线的客流量情况和路线计划配车数,确定运行时间,周转时间及间隔。以下是应用于计算的理论公式:运行时间=(运行线路长度/车速)*60*2

周转时间=运行时间+规定站停站时间(=0)

行车时间=小时/小时通过的车次

配车数= 一次周转时间/行车间隔

发车间隔=周转时间/配车数

通过以上的计算公式计算出各个参数,然后考虑早晚高峰,首末班车的发车时间,路上行车的实际情况等若干因素,并结合以往丰富的经验确定行之有效的运行时刻表

(五)模型的建立与求解

模型1:平滑法模型

采用确定公交调动中发车间隔的方法来寻求最优的发车间隔时间,进而求得整条线路的最小配车数,编制出一套较为实用的车辆运行时刻表。

(1)发车间隔的具体计算方法讨论

确定发车间隔的原则是:

正确处理好车辆的供给和乘客的需求关系:既要保证有足够的服务质量,又要保证配车数最小。

应用于计算的具体公式:

Pi=Di/(ki*C)=Di/Ni (*1)

Pi=Hi/(ki*C)=Hi/Ni (*2)

Pi=max{Qi/(E(G(i)*C*L),Hi/C)=max{Qi/(Ni*L),Hi/C} (*3)

其中:Pi::i时段内的配车数(车次)

Di::i时段内的日最高流通量

Hi::i时段内的小时最高流通量

C:车的最大容量

E(G(i)):i时段内的期望满载率

Ni:i时段内的期望占用量(人)

Qi:i时段内的乘客周转量(人km )

步骤1:我们从题目所给的典型工作日两个运行方向各站上下车的乘客数量统计表转化为便利于我们计算的基础数据表。(我们取定几个时间段作为分析样本,结果见下表)

注:表1中的断面客流量Li算公式:

(上行)Li=max{Ri,0} (下行)Li=max(Ri,0)

Ri=R(i-1)+ui-di ;Ri=R(i+1)+ui-di

Ri—第i个站的断面客流量

R(i-1)—第i-1个站的断面客流量

Ui--第I个站点的上客量

di—第i个站点的下客量

基础客流量数据表(下行)

步骤2:确定时段配车数Pi(车次), 间隔Hd(min) (上行数据)

表3

步骤3:确定相邻时间段的间隔

从表面观察数据可知,两个相邻时间段之间有一定的联系,我们的目标就是要找出相邻时间段(如5:00~6:00与6:00~7:00)之间的转换段内的发车时间。

基本思路:

对于相邻的两个时间段来说,前一时间段内发的车是有可能运载后一时间段内的乘客,这是因为一个时间段为一个小时,在这么长的时间里,如果发车时间跟时间段的上限值接近(如5:00~6:00中6:00就是上限值,发车时间若为5:50则它就很接近6:00)则该趟车还未走完上行或下行的路线就已经进入下一个时间段。

基本原理:

确定两相邻时间段的发车数和发车时间的相互影响,平均间隔法是一种最简单但又粗略的方法,它计算出来的结果有可能导致在一条运行路线上出现过分拥挤或者车辆利用率不足的现象。下面采用的是平滑法。使用平滑法将运用到步骤2中的计算结果。根据步骤2计算的时段配车数,先确定在前一时段内第一辆车的发车时间,而在相邻时段之间的转换段内综合考虑前后两种配车数,设置平均期望占用量而不是平均间隔。

例如,在7:00~8:00,8:00~9:00两个时间段内(假设:第一辆车为7:00发车),根据表3,两个时段内的配车数和发车间隔分别为23.92车次,2..5 min;42车次,1.43 min.前一段时间所须要的配车数的0.92车次被留在7:57之后,与下一时段的0.08车次结合。因此,0.92车次的期望占用量为116.8人,0.08车次的期望占用量为120.35,后一时间每分钟需求的配车数(斜率为42/60),相应的0.08车次要运行0.08 /(42/60)=1.15 min。所以,求得后一时间段内第一辆车发车时间为

8:02 。

几种不同的间隔确定方法:

方法1:采用公式(*2):

Pi=Hi/(ki*C)=Hi/Ni

方法2:采用公式(*3),同时增加了限制时间段内通过量大于Pi*C的线路长度:Pi=max {Qi/(E(G(i)*C*L),Hi/C) = max {Qi/(Ni*L),Hi/C}

方法3:综合运用法:

该方法的特点是将不同的方法运用于不同的时间段以确定时段配车数。它最大的好处就是能够根据实际情况作灵活的动态调度。比如可以根据高峰期和平峰期到来的时间段及流动数量的多少来选择不同的方法确定理想的配车数。

模型2:

根据基本假设1~4,我们着手建立关于总配车量A=∑(Pi+ Pi) (I=1~18) 的优化模型

1)确定决策变量

易见,Pi 可作为模型的决策变量,但注意到:

Pi= 60 / ΔT( i ) (*5) Pi= 60 / ΔT( i ) (*6)

其中,ΔT( i )为上行线路i 时段内的发车间隔时间(单位:分钟)

ΔT( i )为下行线路i 时段内的发车间隔时间(单位:分钟)

所以:可以等价地将ΔT( i )作为决策变量。

2) 确定目标函数

问题(1)的目的是为了寻找在满足乘客和公交公司双方的一定利益的情况下,总配车量A=∑(Pi+ Pi)的最小值,将(*5)、(*6)式代入,可得总配车量A为:

A=∑{[60 / ΔT( i )]+[60 / ΔT( i )] } (i=1~18)

3) 确定约束条件

[1] 首先,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。由假设条件4,乘客的到来满足均匀分布,则在第I个时段内的流通的乘客候车时间期望值E[S(i)]满足:E[S(i)]= [(t-(k-1)ΔT(i) )dt]/ΔT(i) (i=1~18)

=

ΔT( i )/2

所以我们有:

ΔT( i )/2≦10 (i∈U)

ΔT( i )/2≦10 (i∈U)

ΔT( i )/2≦5 (i∈V)

ΔT( i )/2≦5 (i∈V)

其中,集合U为上行早高峰期的时段集合、U为下行早高峰期的时段集合

V为上行非早高峰期的时段集合、V为下行非早高峰期的时段集合

为了获得对早高峰期的明确时间范围,我们将客流量的数据进行了线性插值处理,并将14个车站作为14个样本,利用聚类分析的方法可以得出如下早高峰期定义:

上行早高峰期为6:00~9:00

下行早高峰期为7:00~10:00

[2 ] 其次,车辆满载率G( i )不应超过120%,一般也不要低于50%,

即:G( i ) ≦ 1.2 (*7)

E(G( i ))≧0.5 (*8)又因为在每个时段内都应该尽量满足乘客的最大客流量,所以

G( i )*C*[ 60/ ΔT( i )] = Hi (*9)

我们将(*9)代入(*8)、(*7)再区分上下行可以得出相应的约束条件如下:Hi/{C*[60 / (ΔT( i ))]≦1.2 (i=1~18)

Hi/{C*[60 / (ΔT( i ))]≦1.2 (i=1~18)

E( Hi/{C*[60/ (ΔT( i ))]} )≧0.5 (i=1~18)

E( Hi/{C*[60/ (ΔT( i ))]} )≧0.5 (i=1~18)

4)优化模型的建立

通过1)~3)的分析,我们建立优化模型(*)如下式:

min A=∑{[60 / ΔT( i )]+[60 / ΔT( i )] } (i=1~18)

st ΔT( i )/2≦10 (i∈U)

ΔT( i )/2≦10 (i∈U)

ΔT( i )/2≦5 (i∈V)

ΔT( i )/2≦5 (i∈V)

Hi/{C*[60 / (ΔT( i ))]≦1.2 (i=1~18)

Hi/{C*[60 / (ΔT( i ))]≦1.2 (i=1~18)

E( Hi/{C*[60/ (ΔT( i ))]} )≧0.5 (i=1~18)

E( Hi/{C*[60/ (ΔT( i ))]} )≧0.5 (i=1~18)

4)优化模型的求解

方法1:由于(1)中含有决策变量以及其期望值,属于非线性概率规划范畴,不利于显式求解,可以利用时间步长法进行模拟,进而获得最优值

方法2:将(*)中的约束条件

E( Hi/{C*[60/ (ΔT( i ))]} )≧0.5 (i=1~18)

E( Hi/{C*[60/ (ΔT( i ))]} )≧0.5 (i=1~18)修改为:

Hi/{C*[60/ (ΔT( i ))]} ≧0.5 (i=1~18)

Hi/{C*[60/ (ΔT( i ))]} ≧0.5 (i=1~18)

并且令B( i )=1 /ΔT ( i )

则原规划(*)可以化为如下线性规划(**):

min A=∑{[60 * B( i )]+[60 *B( i )] } (i=1~18)

st B( i )≧1/20 (i∈U)

B( i )≧1/20 (i∈U)

B( i )≧1/10 (i∈V)

B( i )≧1/10 (i∈V)

1/0.5≦{C*[60*B( i )]}/ Hi≦1/1.2 (i=1~18)

1/0.5≦{C*[60 *B( i )]}/ Hi≦1/1.2 (i=1~18)

利用数学规划软件Lindo可以获得其解

模型3

1}我们在这一小节将讨论:我们的方案以怎样的程度照顾到了乘客和公交公司双方的利益。

为了评价不同方案对乘客和公交公司双方的利益的照顾水平,我们将着手建立乘客和

公交营运调度系统解决方案设计

公交营运调度系统 解决方案 上海澳马信息技术服务有限公司 2013年11月

目录 1. 前言 (3) 2. 解决方案 (5) 2.1 系统架构 (5) 2.2 主要设备组成 (6) 2.2.1 智能车载调度终端 (6) 2.2.2 司机显示屏 (7) 2.2.3 车载键盘 (8) 2.2.4 电子站牌 (8) 2.2.5 客流统计 (9) 2.3 功能说明 (10) 2.3.1 定位 (10) 2.3.2 安全 (10) 2.3.3 监控录像 (10) 2.3.4 设备扩展 (11) 2.3.5 营运调度 (11) 2.3.6 报表统计 (11) 2.3.7 数据分析 (12) 2.3.8 服务用语功能 (12) 2.3.9 功能图示 (13) 3. 系统特色 (15) 3.1 提高数据精度 (15) 3.2 提高通信链路稳定 (15) 3.3 整合车载信息 (15) 3.4 一体化显示屏 (16) 3.5 大容量处理与存储 (16) 4. 核心优势 (18) 5. 客户案例 (19)

1.前言 随着社会高速发展,交通已成为经济发展的关键要素。其中城市公共交通如血脉一般连接着城市的各个部分,为城市的发展提供着营养。而在我国,地铁普及率较低,城市公交的主要方式还是地面公交。公交行业具有乘客流动性大、密度差异大、素质参差不齐等特点,难以对其进行有效的监控管理,一旦发生安全问题,又往往后果严重。公交行业除了面对驾车安全、防盗防抢、司乘纠纷等传统问题还要特别关注新形势下针对公共交通的恐怖事件,这对公交行业提出了严峻挑战。如何解决面临的难题,给广大市民提供一个安全、稳定的出行环境,已成为公交行业关注的主要课题。 上海澳马公司作为专业的智慧交通解决方案提供商,多年来先后参与了香港回归、50周年国庆、APEC会议、北京奥运、60周年国庆阅兵、上海世博、深圳大运会等多项国家及各大城市的重点项目建设,以骄人的业绩赢得用户、专家、业界乃至政府机构的首肯。 其中由上海澳马自主开发智能公交营运调度系统已在上海、北京、深圳等大型城市有序运作,该类城市的市场份额50%以上。该系统建立在全球定位技术、无线通信技术、地理信息系统、网络技术、计算机技术、自动控制技术、软件技术综合运用的基础上,实现了车辆运营企业调度的信息化、自动化、智能化的高科技管理,实现了车辆调度智能化、实时化、无纸化,同时实现了为乘客提供完善的信息化服务。 中国经济的发展凸现公交行业在运营管理上四个方面的需求: 1)安全 对安全防控范围内的情况进行实时监控录像,并可通过3G无线网络进行远程视频监看以及监控图片的抓拍。 2)运营管理 对车辆进行智能化调度,配车排班、调度日志,电子路单管理、路单日报管理,实时调度发车管理,用来解决运力配备、提高车辆利用率、合理分布线路网点等问题。 3)乘客服务

智能公交车管理系统功能需求1

1系统功能设计 1.1GIS功能 GIS功能模块包括地图服务、地图管理、检索、车辆实时显示、车辆跟踪功能、轨迹绘制、距离计算功能。 GIS模块数据流序列图 1.1.1地图服务子功能 支持shpfile和BingMap两种地图格式,shpfile地图实现放大、缩小、移动、距离测量、面积测量、矩形查询、点选取、全视图、鹰眼地图。BingMap实现放大、缩小、移动功能。如图3.3。

图3.3 1.1.2地图管理子功能 地图控制管理分为图层控制、注记设置、符号设置三方面功能,以便用户对于地图数据进行个性化配置. 3.1.2.1 图层控制 图层控制功能又可细化为三方面功能: (1)图层位置控制:包括图层上移、图层下移、图层置顶、图层置底。 (2)图层显示控制:图层图例、图层比例尺、图层显示、鹰眼显示。 (3)图层配置:加载图层、删除图层。

3.1.2.2 注记设置 注记设置功能,用户可设置注记显示、注记比例尺、注记字段、注记颜色和注记字体,并可预览注记样式。 3.1.2.3 符号设置 车辆显示设置,包括符号设置、名称属性设置两部分。可以根据车辆运行方向设定不同车辆符号。车辆名称可设置名称显示位置、显示字号、一般车辆、激活车辆等设置。

1.1.3检索子功能 实现车辆检索、线路检索、地名检索。 (1)车辆检索:关键字模糊匹配线路列表中所有车辆,地图上闪烁显示所选择的在线车辆,掉线车辆显示最近有效位置。 (2)线路检索:画出线路,并通过线路关键字模糊匹配该线路中所有车辆,显示在列表中;地图上闪烁显示所选择的在线车辆,掉线车辆显示最近有效位置。 (3)地名检索:关键字模糊匹配所有地物,在地图上闪烁显示所选择的地物。

公交车调度系统建设方案书

智能公交GPS调度系统 规 划 建 设 书 光电通技术

目录 1、公司简介 (2) 2、成功案例 (3) 3、光电通GPS智能公交调度系统介绍 (4) 4、调度系统详细介绍 (5) 4.1公交车辆运营计划管理 (6) 4.2公交营运调度功能 (11) 4.3安全监控系统 (15) 4.4营运数据统计分析功能 (16) 4.5绩效核算 (17) 4.6公交智能电子站牌系统 (17) 4.7 手机电子站牌 (18) 4.8远程广告发布 (25) 4.9扩展应用 (25) 5、GPS公交智能终端 (25) 5.1终端概述 (26) 5.2终端功能介绍 (27) 5.3终端与外部扩展功能 (29) 6、智能指挥中心 (36) 6.1拼接屏参数介绍 (36) 6.2案例实图 (38) 7、公交车系统建设方案 (39) 7.1、公交车车载WiFi (40) 7.2、项目调试、测试 (40)

7.3、技术培训 (41) 8、我公司的系统优势............................................................................................................. .. 42 1、公司简介 光电通技术是一家实力雄厚,集数据通信设备研制、生产、销售和服务于一体的高新科技企业。技术、市场、机制、资本的充分结合,使得企业确立了在通信领域的竞争优势,公司从创业到治业,始终坚持科技创新,走出了一条“科技兴企”的成功道路,使自己迅速发展成为信息产业界的著名企业。在公司发展上,光电通公司结合自身优势,紧跟中国经济持续快速增长和通信市场的快速发展,不断推出适合市场需求的新的技术与产品。 在产品开发上,光电通公司聚集着众多博士、硕士研究生、高级工程师等优秀人才,这些人才在通信、综合接入、数据传输、光通信、接口转换等技术方面有着丰富的开发经验和开发实力,从芯片到整机都有若独立的知识产权。在产品种类上,光电通基本上是以光传输产品、接口转换设备、PCM复用设备、交叉连接设备、视频监控设备、工控以太网GPS智能调度系统、智能公交电子路牌、4G、4G无线视频监控系统、车载视频录像机、MP3报站器、视频报站器、车载LCD 显示屏、车载LED显示屏、投币机、监视摄像头产品等为主要产品,每种产品都有着丰富的产品系列和强大的网管功能。 在产品特点上,光电通公司强调产品的多样性和特色性,使产品满足用户不同的业务需求和特殊需求,同时也在提高着同行业的竞争力。在产品质量上,光电通公司有着大量的质检人员和整套、完善的检测程序。在产品价格上,光电通公司研制、生产、销售为一体减少了中间成本,为用户提供着品质优良且价格台理的产品。在产品服务上,光电通公司有一支技术强,服务迅速的队伍,同时在全国不断建立着办事机构或合作伙伴,使服务本地化,加快现场的服务时间。 光电通公司将以其强大的开发实力、高性能的产品、优秀的产品质量、良好的售后服务,并不断坚持以技术为本、面向市场、用户第一、信誉至上、服务用户的

数学建模 的公交车调度问题

第三篇公交车调度方案的优化模型 2001年 B题公交车调度 公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(,)根据双方满意度范围和程度,找出同时达到双方最优日满意度,,且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 §1 问题的重述 一、问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 二、运营及调度要求 1.公交线路上行方向共14站,下行方向共13站; 2.公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; 3.乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。

有关公交车调度问题的探讨

关于公交车调度问题的探讨 摘要:本文主要讨论了公交车调度的最优策略问题. 本文建立以公交公司获利最大为目标的优化模型.设计某一线路全天(工作日)的公交车调度方案,在这里需要考虑乘客和公交公司两方面的利益.在本文建立的模型中,以公交公司拥有的车辆数目最少为目标函数,以公交车的载客率以及乘客的等车时间(乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟)为约束条件,建立最优解的优化模型. 运用分类讨论的数学思想,将原始表格数据分成三部分,运用Matlab软件分别对三组数据进行拟合,求得三个间断的拟合函数,而后利用lingo软件,对所求数据进行计算和处理,求出各间段的最佳发车时间,以及公交公司在该线路上应拥有的车辆数目.其中,在分析处理原始表格时,由于要使载客率尽量大,所以只需分析上车人数大于下车人数的站点(见表一,表二),其他站点忽略无需考虑.最终,运用lingo软件求得该线路最少需要配置50辆公交车以及在不同时段的发车间隔(见表4). 本模型还可推广到应用于其他行业的运输问题或者其他运输方式的发车安排,例如火车和轮船的最优发车问题,飞机最优起飞问题等等,从而最终达到资源的最优配置. 关键词:公交车调度;优化模型;载客率

一.问题重述 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义.下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料. 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计.公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时.根据运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过 120%,一般也不要低于50%. 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等. 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据. 二.问题分析 本题目要求设计某一线路全天(工作日)的公交车调度方案,在这里需要考虑乘客和公交公司两方面的利益,是一个优化问题.在本文建立的模型中,以公交公司拥有的车辆数目尽量少为目标函数,以公交车的载客率以及乘客的等车时间(乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟)为约束条件,建立最优解的优化模型. 公交车的标准载客量为100人,且车辆满载率不应超过 120%,一般也不要低于50%.当公交车的载客量太少时,公交公司的利益就会受损;在每趟车的载客率不大于最大载客量的前提下,公交车的载客率越大,公交公司的盈利就越多.早高峰以及晚高峰时间,由于候车人数剧增,要使等待乘车人的等待时间不超过5分钟,就要增加发车次数,减少发车间隔;非高峰时段,等待乘车人数较高峰时段明显减少,且此时只需保证等待乘车人的等待时间不超过10分钟,此时较高峰期是不同的发车间隔和发车次数.故如何合理安排该路线在不同时间段的发车间隔以及该路线拥有总的车辆数,使得公交公司的获利最大. 运用分类讨论的数学思想,将原始表格数据分成三部分,运用Matlab软件分别对三组数据进行分析和讨论,而后运用拟合的数学方法,对所求数据进行处理,求出最佳发车时刻表以及公交公司在该线路上拥有的总车辆数目.其中,在分析处理原始表格时,由于要使载客率尽量大,即只需分析上车人数大于下车人数的站点(见表一,表二),其他站点忽略无需考虑. 在求解模型的过程中,将模型分为上行方向和下行方向分别进行分析和计算,最后再将两组数据进行比较,得出该线路上拥有的最小总车辆数以及该线路公交车的最优发车间隔.

智能公交车系统设计建设方案

智能公交车系统设计建设方案 智能公交车系统设计建设方案(此文档为word格式,下载后您可任意修改编辑!)

目录 第1章某某简介 (6) 第2章项目概述 (8) 2.1项目背景 (8) 2.2项目智能化需求 (8) 2.3功能目标 (10) 2.4基于中国移动4G(TD-LTE)系统设计的优势 (11) 2.4.1TD-LTE的基本概念 (11) 2.4.24G(TD-LTE)的技术特征 (12) 2.4.3基于4G(TD-LTE)系统设计的优势 (12) 第3章系统总体设计 (14) 3.1系统采用的关键技术 (14) 3.1.1B/S架构 (14) 3.1.2嵌入式实时操作系统技术 (14) 3.1.3GPRS通讯技术 (14) 3.1.44G通讯技术 (15) 3.1.5J2EE (15) 3.1.6智能移动终端技术 (16) 3.1.7Android技术 (16) 3.1.8IOS技术 (16) 3.2系统设计原则 (16) 3.3设计遵循的细则 (17) 3.3.1准确、完整、实时地采集数据,是重中之重 (17) 3.3.2安全、可靠、稳定的原则,是系统设计的第一准则 (17) 3.3.3实用性、可操作性原则,是系统顺利实施的关键准则 (17) 3.3.4针对公交业务特点进行设计的原则 (18) 3.3.5系统可扩展性设计 (18) 3.3.6充分利用已有投资设计原则,是保护投资的有效补充 (18) 3.4系统整体功能规划图 (19) 3.5系统部署与网络拓扑图 (20) 3.6软件系统框架设计 (20) 3.6.2基础技术设施层 (21) 3.6.3业务平台层 (22) 3.6.4业务应用层 (22) 3.6.5信息门户层 (22) 3.7应用系统设计 (22) 3.8系统接口设计 (23) 3.9系统性能设计 (23) 3.9.1应用程序设计 (23) 3.9.2查询优化 (24) 3.9.3服务器优化 (24) 3.10存储容量总体设计 (24)

关于公交车调度的数学模型

关于公交车调度的数学模型

公交车调度 关于公交车调度的数学模型 摘要:本文根据典型的一个工作日两个运行方向各站上下车的乘客数量统计,首先探讨了如何利用平滑法来确定一个有价值并且效率高的车辆运行时刻表,使其满足乘客的舒适性和公交公司低成本的服务;接着,又利用最优化的基本思想,对此问题进行了进一步的讨论,得到了最小配车辆的数量,然后针对满意度的评价水平问题,建立了几个良好刻画公司以及乘客满意度的满意度函数并求出了乘客与公交公司双方的满意度。最后,我们对新提出的模型进行了模型的评价和模型改进方向的讨论,并对如何采集公交车客运量的数据,提出了几个中肯的建议,完成了对关于公交车调度问题的较为详细而合理的讨论。 (一)问题重述 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司

配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 (二)定义与符号说明 1、T( I )------ 第I个时段 ( I=1、2……18 ) 2、A( J )------ 第J个公交车站 (J=1、2……15 ) 3、P( I )------ 在第I个时段内的配车量 4、L( I )------ 在第I个时段内的客流量 5、G( I )------ 在第I个时段内的满载率 6、S( I )------ 在第I个时段内的乘客候车时间期望值 7、V--------- 客车在该线路上运行的平均速度 8、ΔL(J)---第J-1个公交车站到第J个公交车站之间的距离

公交车调度问题数学建模论文

2011年数学建模论文 ——对公交车调度问题的研究 摘要:本文根据所给的客流量及运营情况排出公交车调度时刻表,以及反映客运公司和乘客的利益有多个指标,建立了乘客的利益及公司利益两个目标函数的多目标规划数学模型。基于多目标规划分析法,进行数值计算,从而得到原问题的一个明确、完整的数学模型,并在模型扩展中运用已建的计算机模拟系统对所得的结果和我们对于调度方案的想法进行分析和评价。 首先通过数据的分析,并考虑到方案的可操作性,将一天划为;引入乘客的利益、公司利益作为两个目标函数,建立了两目标优化模型。通过运客能力与运输需求(实际客运量) 达到最优匹配、满载率高低体现乘客利益;通过总车辆数较少、发车次数最少表示公司利益建立两个目标函数。应用matlab中的 fgoalattain进行多目标规划求出发车数,以及时间步长法估计发车间隔和车辆数。 关键字:公交车调度;多目标规划;数据分析;数学模型;时间步长法,matlab 一问题的重述: 1、路公交线路上下行方向各24站,总共有L 辆汽车在运行,开始时段线路两端的停车场中各停放汽车m辆,每两车可乘坐S人。这些汽车将按照发车时刻表及到达次序次发车,循环往返地运行来完成运送乘客的任务。建立数学模型,根据乘客人数大小,配多少辆车、多长时间发一班车使得公交公司的盈利最高,乘客的抱怨程度最小。假设公交车在运行过程中是匀速的速度为v。 1路公交车站点客流量见下表

1 已知数据及问题的提出 我们要考虑的是莆田市的一路公交线路上的车辆调度问题。现已知该线路上行的车站总数N1 ( = 24 ),下行的车站总数N2 ( = 24 ),并且给出每一个站点上下车的人数。公交线路总路程L(=L);公交行驶的速度V=20km/ h;运营调度要求,车辆满载率不应超过r= 120 % ,一般也不要底于r= 50 %。 现要我们根据以上资料和要求,为该线路设计一个公交公司发车时间的调度方案、一共需要多少辆车、公交车道路行驶过程中的速度以及公交车车型的选择的方案。并给出刻划乘客和公交公司双方利益、满意程度的指标,进行评估等。

公交车调度的方案优化设计

公交公交车调度方案优化设计 摘要 本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。 在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。 主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。 在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。 1.问题的提出

公交调度管理系统方案

公共车辆调度系统 本系统提供的功能包括: 一、公交管理中心通过大屏幕电子地图,实时查看所有公交车辆的运行情况; 二、公交管理中心根据车辆的运行状态,在车辆阻塞,车辆故障的情况下,通过LCD 屏幕文字,实时调度车辆; 三、公交管理中心给司机发送通知信息、注意事项等文字、图片信息; 四、司机向公交管理中心发送报警信息、求助信息等; 五、自动语音报站,不需要司机手动按键报站,报站的同时在LED大屏幕上显示同步站名; 六、报站语音清晰,可以随时修改,可以添加语音广告信息; 七、公交管理中心随时通过无线的方式,远程集中修改公交车上LED大屏幕的显示信息内容,这些内容可以是市政通告,公交提示、公安提示、广告信息、天气预报、交通状况等; 八、一卡通交通卡及时计费统计,及时自动统计公交卡刷卡费用,不需要人工读取数据; 九、随时对所有公交车辆或部分公交车辆的电子广告进行调度控制,以达到广告投放的最大效果。

一. 系统组成 公交调度系统 A 系统功能 GPS定位系统具有下列功能和特点: 1) 车辆、船只的实时定位和跟踪 可以定时、定距回传车辆船只的位置信息,最快可以1秒一个位置信息,便于调度人员实时跟踪车辆、预计车辆到达时间、合理调配车辆; 2) 车辆防盗报警功能 无线,远程,不限时间、地域的车辆防盗报警监控; 3) 车辆紧急求助功能 司机在紧急情况下通过隐蔽的按钮发送求助,控制中心可以自动跟踪该车辆并及时进行处理,救助; 4) 车辆超速报警功能 限制危险品运输车辆,限制公交车辆在某些路段的行驶速度; 5) 车辆越界报警 限制出租车、物流车、公司车辆和快递车的活动区域; 6) 免提通话功能 提供无线车载电话的功能; 7) 监听喊话功能; 8) 接收广播信息功能; 发送给司机的广播信息,如:天气预报、道路状况、会议通知、临时事项等; 9) 发送广播信息功能; 请求控制中心的天气预报,事项通知等; 10) 接收和应答中心调度功能; 11) 远程参数设置功能; 在控制中心对所有车辆更改系统的参数、公司参数、功能设置等; 12) 轨迹回放功能; 可以回放车辆的行驶路线,防止公车私用、绕行、跑私活等不规范用车行为的发生; 13) 轨迹存储功能; 14) 实时跟踪功能; 15) 分级的车辆管理和监控功能; 16) 车辆动态显示 通过大屏幕和电子地图方式动态显示任何一量公交车辆所处的位置,以便给调度人员及各级指挥人员提供直观判断信息。 17) 重要通知下发 通过系统,可方便地有选择地针对所有公交车辆或部分公交车辆下发一些重要通知。

关于公交车的调度问题

关于公交车的调度问题 作者:黄楚佳08214307 李伟明08214314 文海燕08214329 单位:数教083班 摘要:本文主要是研究公交车调度的最优策略问题。我们建立了一个以公交车 的利益为目标函数的优化模型,同时保证等车时间超过10分钟(或者超过5分钟)的乘客人数在总的等车乘客数所占的比重小于一个事先给定的较小值 。首先,利用最小二乘法拟合出各站上(下)车人数的非参数分布函数,求解时先用一种简单方法估算出最小配车数43 辆。然后依此为参照值,利用Maple优化工具得到一个整体最优解:最小配车数为48 辆,并给出了在公交车载客量不同条件下的最优车辆调度方案,使得公司的收益得到最大,并且乘客等车的时间不宜过长,最后对整个模型进行了推广和评价,指出了有效改进方向。 关键词:公交车调度;优化模型;最小二乘法 问题的重述:公共交通是城市交通的重要组成部分,作好公交车的调度对于完 善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自揭阳市市区5路车的客流调查和运营资料。 该条公交线路上行方向共19站,下行方向共18站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同小型号的客车,每辆标准载客30 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 基本假设 1)该公交路线不存在堵塞现象,且公共汽车之间依次行进,不存在超车现象。2)公共汽车满载后,乘客不能再上,只得等待下一辆车的到来。 3)上行、下行方向的头班车同时从起始站出发。 4)该公交路线上行方向共19站,下行方向共18站。

公交车调度方案的优化设计

公交车调度 公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化设计 摘要 本文利用某一特大城市某条公交路线上的客流调查运营资料,以乘客的平均抱怨度、公司运营所需的总车辆数、公司每天所发的总车次数以及平均每车次的载客率为目标函数,建立了的分时段等间隔发车的综合优化调度模型。在模型求解过程中,采用了时间步长法、等效法以及二者的结合的等效时间步长法三种求解方法,尤其是第三种求解方法既提高了速度又改善了精度。结合模型的求解结果,我们最终推荐的模型是分时段等间隔发车的优化调度方案。 在建立模型时,我们首先进行了一些必要假设和分析,尤其是针对乘客的抱怨程度这一模糊性的指标,进行了合理的定义。既考虑了乘客抱怨度和等待时间长短的关系,也照顾了不同时间段内抱怨度对等待时间的敏感性不同,即乘客在不同时段等待相同时间抱怨度可能不一样。 主要思想是通过逐步改变发车时间间隔用计算机模拟各个时间段期间的系统运行状态,确定最优的发车时间间隔,但计算量过大,对初值依赖性强。等效法是基于先来先上总候车时间和后来先上的总候车时间相等的原理,通过把问题等价为后来先上的情况,巧妙地利用“滞留人数”的概念,把原来数据大大简化了。很快而且很方便地就可求出给定发车间隔时的平均等待时间,和在给定平均等待时间的情况下的发车间隔,但该方法只能对不同时段分别处理。结合前两种方法的优点提出等效时间步长法,即从全天时段内考虑整体目标,使用等效法为时间步长法提供初值,通过逐步求精,把整个一天联合在一起进行优化。通过对模型计算结果的分析,我们发现由于高峰期乘车人数在所有站点都突然大量增加,而车辆调度有滞后效应,从而建议调度方案根据实际情况前移一段适当的时间。在模型的进一步讨论和推广中,我们还对采集运营数据方法的优化、公共汽车线路的通行能力以及上下行方向发车的均衡性等进行了讨论。 在求具体发车时刻表时,利用等效时间步长法,较快地根据题中所给出的数据设计了一个较好的照顾到了乘客和公交公司双方利益的公交车调度方案,给出了两个起点站的发车时刻表(见表二),得出了总共需要49辆车,共发440辆次,早高峰期间等待时间超过5分钟的人数占早高峰期间总人数的0.93%,非早高峰期间等待时间超过10分钟的人数占非早高峰期间总人数的3.12%。引入随机干扰因子,使各单位时间内等车人数发生随机改变。在不同随机干扰水平下,对推荐的调度方案进行仿真计算,发现平均抱怨度对10%的随机干扰水平相对改变只有0.53%,因此该方案对随机变化有很好的适应性,能满足实际调度的需要。

基于自动寻迹的智能公交车系统(C题)

基于自动寻迹的智能公交车系统(C题) 【本科组】 一、任务 设计并制作一套用电池供电的智能公交车系统,包括一台能沿着黑色引导线自主行驶的公交车和两个电子公交站,公交车行驶线路如下图所示。公交道路宽为60cm,公交道路用光滑平整的白纸制作,黑色小车引导线和状态标识线(可用电工胶带)宽度为1.8±0.1cm,站台停靠标识线长为20cm。起点与终点之间公交车道总长约25m,公交站点B、C、D的位置在示意图位置附近任意放置。 公交车站台 二、要求 1.基本要求 (1)电子公交站具有数据输入和显示功能,能在电子公交站上输入站台号以及本站与起始站间的距离。 (2)公交车从起始站点A出发,沿着黑色引导线,经站点前下车提示、停靠动作后,自动驶到终点站C,行驶过程中不允许驶出公交车道,要求在1分钟

内完成全程行驶; (3)公交车行驶到离站点100cm±10cm处时(以公交站台标识线为基准),应提前发出下车提示声5s; (4)公交车驶入站台停靠时,其车身中心标识线与站台停靠标识线间误差应不超过10cm,站台停靠时间为5s; 2.发挥部分 (1)把5s下车提示声改为下车语音提示(如:“B站到了,旅客请下车”,播报的站名必须是B站或C站); (2)撤消C站(将站台移动到D点),要求公交车能在2分钟内从起始点A 出发自动驶到D点(需要经过环行车道,不允许直接在十字路口右转弯),经过B站点时仍应有下车语音提示及停靠动作(公交车下车语音提示的距离及站台停靠的位置要求仍同基本部分的相关要求); (3)通过无线传输,公交站台上能实时显示驶向本站公交车的当前车速(单位米/秒)、到站时间(单位秒)及两者的距离(单位米),误差要求不超过5%; (4)其它。 三、说明 1.站台可设置在公交线路上的任意位置; 2.公交车可用各类小车改装,其尺寸不限,但公交车必须标出中心标识线。四、评分标准 蔽障+巡线+CCD识别物体

公交车调度问题

公交车调度问题 关于公交车的调度问题 摘要:本文主要是研究公交车调度的最优策略问题。我们建立了一个以公交车 的利益为目标函数的优化模型,同时保证等车时间超过10 分钟(或者超过 5 分 钟)的乘客人数在总的等车乘客数所占的比重小于一个事先给定的较小值。首先,利用最小二乘法拟合出各站上(下)车人数的非参数分布函数,求解时 先用一种简单方法估算出最小配车数43 辆。然后依此为参照值,利用Maple 优化工具得到一个整体最优解:最小配车数为48 辆,并给出了在公交车载客量不同条件下的最优车辆调度方案,使得公司的收益得到最大,并且乘客等车的时间不宜过长,最后对整个模型进行了推广和评价,指出了有效改进方向。 关键词:公交车调度;优化模型;最小二乘法 问题的重述:公共交通是城市交通的重要组成部分,作好公交车的调度对于完 善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。 该条公交线路上行方向共14 站,下行方向共13 站,第3-4 页给出的是典型 的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均

速度为20 公里/小时。运营调度要求,乘客候车时间一般不要超过10 分钟,早 高峰时一般不要超过5分钟,车辆满载率不应超过120%, 一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型, 指出求解模型的方 法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。 基本假设 1)该公交路线不存在堵塞现象,且公共汽车之间依次行进,不存在超车现象。 2)公共汽车满载后,乘客不能再上,只得等待下一辆车的到来。 3)上行、下行方向的头班车同时从起始站出发。 4)该公交路线上行方向共14站,下行方向共13站。 5)公交车均为同一型号,每辆标准载客100 名,车辆满载率不应超过120%, 一般也不要低于50% 。 6)客车在该路线上运行的平均速度为20 公里/小时,不考虑乘客上下车时间。 7)乘客侯车时间一般不超过10 分钟,早高峰时一般不超过 5 分钟。 8)一开始从 A 13出发的车辆,与一开始从A 0出发的车辆不发生交替,两循环 独立。 9)题目所给的数据具有一定的代表性,可以做为各种计算的依据。 符号说明 N a:从总站A13 始发出的公交车的总次数(上行方向) N b :从总站 A 0 始发出的公交车的总次数(下行方向) T1 :上行方向早高峰发车间隔时间 T 2 :上行方向平时发车间隔时间 T 3 :上行方向晚高峰发车间隔时间

公交车辆管理调度系统

公交视频监控智能调度系统 项目概述 1.1应用背景 随着城市经济的迅速发展,城市规模不断扩大,机动车拥有量及道路交通流量急剧增加,特别是大城市,公交车辆增加、线路延长、车次增多,公交运行不畅的状况日益突出,给市民带来了极大的生活不便。 公交车内属于人员密集且空间封闭的场所,其治安状况比较复杂,全国各地公交客运除受不断的乘运纠纷和运营管理困扰外,公交车上时有发生盗窃等案件,另外乘客逃票和司乘人员窃取票款的行为也时有发生,这一直困扰着公交管理人员和公共安全部门,严重干扰了社会安定团结。 传统公交行业没有采用视频监控系统,不能有效解决公交车内治安监控以及乘客逃票和司乘人员窃取票款行为的取证,且中心调度人员不能实时掌握前端运行情况。传统公交调度采用纸质路单人工调度管理,存在众多弊端。公交车辆调度处于“看不见、听不着”落后现状。 目前各大城市都在推广“低碳出行、公交优先”的发展战略,如何确保公交车辆运营安全、高效调度有限的公交车辆资源已成为困扰公交系统管理人员的一大难题。 1.2现状分析 目前公交调度基本上还是按照固定的时刻表来进行的,采用"定点发车、两头卡点"的手工作业的调度方式,对车辆在运营路线上的状态无法实时了解,仅依靠经验

调度车辆,具有一定的盲目性和滞后性,难以及时有效地采取调度措施。导致时常出现“串车”、“大间隔”现象,乘客滞留和空车的情况经常出现,严重影响了公交客运的服务质量和效率。 除了公交调度效率低外,由于大部分公交调度系统未集成视频监控系统,容易造成如下问题:公交营运中经常出现司机与乘客之间发生纠纷,司机利用职务之便盗取票款,车辆行驶过程中出现扒窃等事件;调度中心不能实时了解公交车运营情况。 总结目前的公交运营,当前各公交公司的运营管理大多存在如下问题归纳如下: 1、不能准确地记录车厢内发生的所有事情,以便为公安机关提供有效的影像 资料,方便调查偷盗、伤人等案件的取证,帮助维护乘客的合法权益; 2、乘客投诉缺少事实证据,对司乘人员缺少有效监督。由于缺少事实根据, 乘客投诉查无对证,难以更好提高客户满意度; 3、车辆出了场站,权限在司机,对车辆无法有效监控,给管理造成了很多的 漏洞; 4、堵车晚点误点现象时有发生,前站多车拥挤不动,后站等车的乘客焦急不 安,线路上的公交车无法保持相对稳定的间隔,调度中心又难以知情无法 有效调度; 5、由于每天使用路单、报表、票务单等,一线工作人员需要输入大量运营基 础数据,而造成大量人力成本及纸张的浪费,并造成城市公交人员的工作 困难; 6、信息提示需驾驶员人工操作,增加驾驶员的工作强度,并且经常出错或者 根本就不提示;此外目前有效管理数量众多的仪器设备等也相对复杂,不

6公交车调度的数学模型讲解--实用.doc

公交车调度的数学模型 摘要 随着人口的增加以及现代化建设的加快,城市人口迅猛增长,城市公共交通面临着巨大的挑战。为缓解城市交通的拥堵,除了提倡错峰出行、减少私家车出行之外,对公共交通设施进行合理的调度也特别重要。本文正是通过已知的某条公交线路的客流调查和运营资料,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,以解决该条公交线路上公交车的调度问题。 公交车的运营可以产生经济效益和社会效益,两种效益的关系是对立统一 的,当乘客人数一定的情况下,产生的经济效益越高,即同一时段公交车的数量越少、发车次数越少,社会效益就越低;同理,产生的社会效益越高,经济效益就越低。故在制定公交车调度方案时,我们要综合考虑经济效益与社会效益。 公交车产生的经济效益由公交车的满载率、运营所需的公交车总数、运营时间内总发车次数所决定,而社会效益则由乘客的等待抱怨度以及拥挤抱怨度所决定。通过分析,我们发现要使公交车的运营产生最大的效益,既要使公交车的满载率最大、所需公交车总数和发车次数越小、乘客等待抱怨度和拥挤抱怨度最低,同时,我们发现在某段时间内乘客人数一定的条件下,这些决定因素本质上都是由某段时间内的发车次数所决定的。因此,我们可通过建立多目标的优化模型、 采用遗传算法、用Lingo 软件编程进行求解。最后,我们得出要使乘客与公交公司的利益最大化,全天需要公交 52 辆,共需发车 445 次,并绘制出上、下行起始点发车时刻表。 关键词:公交车调度多目标优化模型遗传算法Lingo编程

1、问题重述 众所周知,公共交通是城市交通的重要组成部分,一个好的公交车调度方案 对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。 本文需要研究的是某一大城市一条公交线路上公交车的调度问题,附录一给出了一个工作日两个运行方向各站上下车的乘客数量统计表。 该条公交线路上行方向共 14 站,下行方向共 13 站。公交公司配给该线路同 一型号的大客车,每辆标准载客 100 人,据统计客车在该线路上运行的平均速度 为 20 公里 / 小时。 为了同时考虑乘客和公交的双重利益,运营调度要求,乘客候车时间一般不要超过 10 分钟,早高峰时一般不要超过 5 分钟,车辆满载率不应超过 120%,一般也不要低于 50%。 本文需要解决的问题有: 问题一:为该线路设计一个便于操作的全天(工作日)的公交车调度方案, 包括两个起点站的发车时刻表。 问题二:制定的调度方案中总共需要多少辆公交车。 问题三:这个方案以怎样的程度照顾到了乘客和公交公司双方的利益。 2、问题分析 本文研究的是某公交线路上公交车的调度问题。 要对公交车进行合理的安排,就要有合理的安排规则。题目要求我们最终得到的安排方案要照顾到乘客和公交公司双方的利益,那么我们必须先找到影响乘客和公交公司利益的因素。 不难发现,影响公交公司利益的因素为平均载客率、公交车的总数量以及发 车次数;影响乘客利益的因素为乘客等车时长和公交车拥挤程度。 对这四个因素进行分析,我们可以得出一些结论: 1、同一时段公交车的数量越多,乘客等车时间越短、平均满载率和公车拥挤程度越低;相反,公交车的 数量越少,乘客等车时间越长、平均满载率和公交车拥挤程度越高。2、所需公交车的总数量取决于每个时段内所需公交车数量的最大值。因此,这四个影响因素可以总结为每个时段内的公交车数量。 针对问题一:为了简化模型,我们将全天公交车的运行时间以一小时为单位进行分割,将上、下行线分成十八段进行计算,为了同时照顾乘客和公交公司的利益,使公交公司经济效益最大化,乘客等待时间最短和乘车舒适度最高。我们可以用平均满载率来衡量公交公司的利益,用乘客等待抱怨度和拥挤抱怨度来衡量乘客的利益。 根据上述分析,我们可建立多目标的优化模型,进行求解。但是在求解过程中发现多目标模型求解比较困难,所以我们加入优先因子,采用遗传算法利用lingo 软件进行求解。又因为相邻两辆车发车时间间隔相等,所以可以得到全天的公交车调度方案,包括两个起点站的发车时刻表。 针对问题二、三:问题一求解出来后,问题二、三便迎刃而解。

相关主题
文本预览
相关文档 最新文档