中考数学一模试卷(解析版)
- 格式:doc
- 大小:284.50 KB
- 文档页数:21
2024年吕梁市中考模拟考试题(卷)数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答案全部在答题卡上完成,答在本试卷上无效.3.考试结束后,只收回答题卡.第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1. 计算的结果是()A. B. C. D. 1【答案】B【解析】【分析】本题考查了有理数的减法,根据减法法则计算即可,熟练掌握其运算法则是解题的关键.解:原式,,故选:.2. 国际数学家大会是由国际数学联盟()主办的国际数学界规模最大也是最重要的会议,它是全球性数学科学学术会议,被誉为数学界的奥林匹克盛会.如图所示是第24届国际数学家大会会标,该会标取自于我国数学家赵爽注解《周髀算经》中的弦图.与该弦图有着密切关系的数学文化是()A. 无理数的发现B. 圆周率的估算C. 勾股定理的证明D. 黄金分割比【答案】C【解析】【分析】本题考查了勾股定理的证明,熟练掌握勾股定理是解题的关键.根据“弦图”,说明了直角三角形的三边之间的关系,解决的问题是:勾股定理的证明.解:“弦图”说明了直角三角形三边之间的关系,它解决的数学问题是勾股定理的证明,的23--6-5-1-()23=-+-=5-B IMU故选:C .3. 下列计算正确的是()A. B. C. D. 【答案】A【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.解:A 、,原式计算正确,符合题意;B 、,原式计算错误,不符合题意;C 、,原式计算错误,不符合题意;D 、,原式计算错误,不符合题意;故选;A .4. 下面几何体都是由6个大小相同的小正方体组成的,其中主视图和左视图相同的几何体是()A. B.C. D.【答案】D【解析】【分析】此题考查了简单组合体的三视图,分别画出四个选项中简单组合体的三视图即可.A 、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B 、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;C 、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;235a a a ⋅=()326a a -=2242a a a +=321a a ÷=235a a a ⋅=()326a a -=-2222a a a +=32a a a ÷=D 、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;故选D .5.化简分式的正确结果是()A. B. C. D. 【答案】B【解析】【分析】本题考查了分式的除法运算,将除法转化为乘法,再根据分式的性质化简即可求解.解:故选:B .6. 不等式组的解集为()A. B. C. D. 【答案】D【解析】【分析】此题主要考查了解一元一次不等式组,分别求出不等式组中两个不等式的解集,再求出其公共部分即可.解:解不等式①得:解不等式②得:∴不等式组的解集为:故选:D .7. 2024年3月21日是第12个“世界森林日”,今年的主题是“森林与创新”.据统计,截止2023年12月22369224x x x x x x--+÷--3xx -23xx -23x -2x22369224x x x x x x--+÷--()()222323x x x x x --=⨯--23xx =-122321x x ->-⎧⎨+≥⎩13x ≥-23x <1233x -≤<1332x -≤<122321x x ->-⎧⎨+≥⎩①②32x <13x ≥-1332x -≤<底,我省森林面积超过5542万亩,森林蓄积量达亿立方米,碳汇能力明显提升.数据亿立方米用科学记数法表示为()A. 立方米B. 立方米C. 立方米D. 立方米【答案】A【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.解:亿立方米,故选:A .8. 将抛物线先向左平移3个单位,再向下平移2个单位,得到的抛物线的函数关系表达式为()A. B. C. D. 【答案】C【解析】【分析】本题考查了二次函数图象的平移,根据平移规律,“上加下减,左加右减”即可求解.解:将抛物线先向左平移3个单位,再向下平移2个单位,得到的抛物线的函数关系表达式为即,故选:C .9. 已知反比例函数,下列描述不正确的是()A.图象位于第二、四象限1.59 1.5981.5910⨯91.5910⨯90.15910⨯715.910⨯10n a ⨯110a ≤<1.598159000000 1.5910==⨯2(2)3y x =--+2(5)1y x =--+2(5)5y x =--+2(1)1y x =-++2(1)5y x =-++2(2)3y x =--+2(23)32y x =--++-2(1)1y x =-++3y x=-B. 若点,是该函数图象上两点,且,则C. 图象必经过点D. 当时,x 的取值范围是【答案】B【解析】【分析】本题考查了反比例数的性质,根据解析式得出其图象在第二、四象限,进而逐项分析判断,即可求解.解:A 、反比例函数,图象位于第二、四象限,故该选项正确,不符合题意;B 、不明确是否在同一个象限,无法比较的大小,故该选项不正确,符合题意;C 、∵,当时,,则图象必经过点,故该选项正确,不符合题意;D 、当时,,当时,x 的取值范围是,故该选项正确,不符合题意;故选:B .10. 如图,为的直径,C ,D 是上两点,且,若,则的度数可以表示为()A. B. C. D. 【答案】C【解析】【分析】由圆周角定理得,由平行线的性质得到,再根据三角形的外角定理以及等腰三角形的等边对等角即可求解.解:∵为的直径,∴,11(,)P x y 22(,)Q x y 12x x <12y y <16,2⎛⎫- ⎪⎝⎭3y >10x -<<3y x=-,P Q 12,y y 3y x =-6x =3162y =-=-16,2⎛⎫- ⎪⎝⎭3y ==1x -3y >10x -<<AB O O OD BC ∥BAC α∠=BAD ∠2α90α︒-452α︒-452α︒+90ACB ∠=︒90DOB ABC α∠=∠=︒-AB O 90ACB ∠=︒∴,∵,∴,∵,∴,∵,∴,故选:C .【点睛】本题考查了圆周角定理,平行线的性质,三角形外角定理,以及等腰三角形的性质,熟练掌握知识点是解题的关键.第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共15分)11. 计算的结果是______.【答案】##【解析】【分析】本题考查了二次根式的混合运算,根据二次根式的运算法则进行计算,即可求解.解:故答案为:.12. 某农科所为了解A ,B 两种小麦产量的稳定情况,在A,B 两个品种中各随机抽取了8个样本进行了统计分析,统计结果(千粒质量:)如下表所示:样本12345678A 品种44.645.345.344.244.445.744.745.8B 品种42.545.245.543.145.446.844.646.9根据统计表,A ,B 两个品种中,产量较为稳定是______品种.90ABC α∠=︒-OD BC ∥90DOB ABC α∠=∠=︒-OA OD =DAO ADO ∠=∠DOB DAO ADO ∠=∠+∠()11904522BAD αα∠=︒-=︒-++=++g【答案】A【解析】【分析】本题主要考查了方差与稳定性之间的关系,先求出二者的平均数,再求出二者的方差,根据方差越小越稳定即可得到答案.解:A产品的平均数为,B 产品的平均数为,A 产品的方差为:;B 产品的方差为:;∵,∴产量较为稳定是A 品种,故答案为:A .13. 图1所示是第十九届亚洲运动会会徽,名为“潮涌”,其主体图形由扇面、钱塘江、钱江潮头、赛道、互联网符号及象征亚奥理事会的太阳图形六个元素组成.现将本届亚运会会徽扇面抽象为图2所示扇形的一部分(阴影部分),若其半径,,圆心角,则图中阴影部分的面积等于______.【答案】【解析】【分析】本题考查扇形面积的计算,掌握扇形面积的计算方法是正确解答的关键.由扇形面积的计算方法,44.645.345.344.244.445.744.745.8458+++++++=42.545.245.543.145.446.844.646.9458+++++++=()()()()()()()222222244.645245.34544.24544.44545.74544.74545.8458-+⨯-+-+-+-+-+-0.32=()()()()()()()()2222222242.54545.24545.54543.14545.44546.84544.64546.9458-+-+-+-+-+-+-+-2.165=0.32 2.165<5cm OA =3cm AC =120AOB ∠=︒2cm 7π根据进行计算即可.解:∵,∴由题意可知,故答案为:.14. 窗格是中国传统建筑装饰的重要构成因素,是中国传统建筑文化的重要组成部分.图1就是由大小相等的圆弧型“青瓦”组成的一个窗格图案.图2是部分窗格截面示意图,将其放置在平面直角坐标系中,点,,均为弧的端点,若点的坐标为,点的坐标为,则点的坐标为______.【答案】【解析】【分析】本题主要考查了坐标与图形变化,平移的性质,先求得,进而根据平移的性质,即可求解.解:如图所示,∵点的坐标为,∴S S S =-阴影部分大扇形小扇形53OA cm AC cm ==,2OC OA AC cm=-=S S S =-阴影部分大扇形小扇形22120π5120π2360360⨯⨯=-()27cm π=7πA B CA (-B ()3,0-C (1-,()1,0D -B ()3,0-3OB =∴∴∵点的坐标为,则圆弧型“青瓦”根据平移可得的纵坐标为∴,故答案为:.15. 如图,将直角三角形纸片()折叠,使点C 的对应点与斜边的中点O 重合,折痕为.若,,则折痕的长度为______.【答案】【解析】【分析】本题主要考查了勾股定理与折叠问题,三角形中位线定理,取中点H ,连接,则,由三角形中位线定理得到,则,由折叠的性质可得,设,则,由勾股定理得,解方程得到同理可得,则.解:如图所示,取中点H ,连接,则∵点O 为的中点,∴是的中位线,∴,∵,∴,由折叠的性质可得,,22BD DO ==1CE DO ==A (-C -C (1-,(1-,ABC 90C ∠=︒C 'AB EF 6BC =8AC =EF 12524AC OH 142CH AH AC ===132OH BC OH BC ==,∥90OHE ∠=︒CE OE =CE OE x ==4HE x =-()22243x x -+=258CE =256CF =12524EF ==AC OH 142CH AH AC ===AB OH ABC 132OH BC OH BC ==,∥90C ∠=︒90OHE ∠=︒CE OE =CF OF =设,则,在中,由勾股定理得,∴,解得,∴;如图所示,取中点G ,连接,则,同理可得,设,则,在中,由勾股定理得,∴,解得,,∴.三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16. (1)计算:(2)解方程:【答案】(1);(2)【解析】【分析】本题主要考查了解一元二次方程,负整数指数幂,有理数的混合计算:CEOE x ==4HEx =-Rt OHE △222OH HE OE +=()22243x x -+=258x =258CE =BC OG 3BG CG ==142OG AC ==CF OF y ==3GF y =-Rt OGF △222OG GF OF +=()22234y y -+=256y =256CF =12524EF ==()21625833-⎛⎫-⨯+---+⨯ ⎪⎝⎭()5315x x x -=+13-1244x x =+=-(1)先计算负整数指数幂,再根据有理数的四则运算法则求解即可;(2)先去括号,然后移项,再利用配方法解方程即可.解:(1);(2)∵,∴,∴,∴,解得17. 如图,已知四边形是平行四边形.(1)实践与操作:利用尺规作的平分线,交边于E .(要求:尺规作图并保留作图痕迹,不写作法,标明字母);(2)猜想与证明:试猜想线段,和的数量关系,并加以证明.【答案】(1)见解析(2),证明见解析【解析】【分析】本题考查了平行四边形的性质,等腰三角形的性质与判定,作角平分线;(1)根据题意作的平分线,交边于E ;(2)根据平行四边形的性质可得,,,进而根据平行线的性质,角平分线的定义,得出,根据等角对等边得出,即可得证.【小问1】()21625833-⎛⎫-⨯+---+⨯ ⎪⎝⎭22233-=-+-⨯12239=-+-⨯13=-()5315x x x -=+25315x x x --=281631x x -+=()2431x -=1244x x ==-ABCD ABC ∠AD CD DE BC CD DE BC +=ABC ∠AD AB CD =BC AD =AD BC ∥ABE AEB ∠=∠AB AE =解:如图所示,射线即为所求作图形,【小问2】,证明如下四边形是平行四边形,,,∵平分,,,,,.18. 为培养学生的民族自豪感,传播正能量,形成知我国家版图,爱我美丽中国的良好氛围,某校举办了“美丽中国·国家版图知识竞赛”活动.为了解此次竞赛中学生成绩的分布情况,抽取了部分学生的成绩绘制成了如图所示的频数分布直方图和扇形统计图(不完整):(1)请将频数分布直方图和扇形统计图补充完整;(2)在抽取的样本中,学生成绩的中位数落在______范围之内.(填出下面选项中的数字代号);①;②;③;④;⑤(3)在这次竞赛活动中,全体学生竞赛成绩的平均数是分,小宇的测试成绩是分,由此小宇认为自己的成绩高于一半学生的成绩.你觉得小宇的认识正确吗?请说明理由.BE CD DE BC += ABCD AB CD ∴=BC AD =AD BC∥AEB EBC ∴∠=∠BE ABC ∠ABE EBC ∴∠=∠ABE AEB ∴∠=∠AB AE ∴=CD DE AB DE AE DE AD ∴+=+=+=CD DE BC ∴+=5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤73.674(4)下图显示的是此次竞赛中的一道试题,小宇在解答此题时,若在四幅地图中,随机选择其中的两幅地图,请用画树状图或列表法,求出小宇选择的两幅地图对应的省份都与我省相邻的概率.(提示:与我省相邻的省份有内蒙古、陕西、河南、河北)【答案】(1)见解析(2)③(3)不正确,理由见解析(4)【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,平均数与中位数的意义,画树状图法求概率;(1)根据的人数除以占比得出总人数,进而求得的占比为,的人数人,补全统计图,即可求解;(2)根据中位数的定义,即可求解;(3)根据平均数受极端值的影响,即可求解;(4)根据画树状图法求概率,即可求解.【小问1】解:总人数为:人的占比为:,的人数为人,补全统计图,如图所示,125060x ≤<8090x ≤<32%7080x ≤<12714%50÷=8090x ≤<16100%32%50⨯=7080x ≤<5024%12⨯=【小问2】解:,∴在抽取的样本中,学生成绩的中位数落在范围内,故答案为:③.【小问3】小宇的认识不正确;因为平均数受到极端值的影响较大,虽然小宇的竞赛成绩高于全体学生的竞赛成绩的平均数,但小宇的成绩不一定高于一半学生的成绩【小问4】根据题意,画出树状图如图所示,根据树状图可知,所有可能出现的结果有12种,并且每种结果出现的可能性都相等,其中选出的两个字母对应的省份都与我省都相邻的结果出现了6种:,,,,,所以小宇选择两幅地图对应的省份都与我省相邻的概率.19. 阅读下面科普小材料,解决提出的问题:的791625+=<79122825++=>7080x ≤<(),B C (),B D (),C B (),C D (),D B (),D C 61122=二氧化碳捕集与封存技术( ,简称),是指通过碳捕捉技术,将工业和有关能源产业所生产的二氧化碳分离出来,再通过碳储存手段将二氧化碳储存起来.利用碳捕集与封存技术,可以有效减少二氧化碳的排放.以利用化石能源生产氢气为例,每生产1吨氢气,使用碳捕集与封存技术所排放的二氧化碳的质量,仅仅是使用传统技术排放二氧化碳质量的.若排放吨二氧化碳,使用碳捕集与封存技术,可比使用传统技术多生产氢气吨.任务:请根据上述材料信息,求出在使用化石能源生产氢气时,利用碳捕集与封存技术生产1吨氢气所排放的二氧化碳的质量.【答案】在使用化石能源生产氢气时,利用碳捕集与封存技术生产1吨氢气所排放的二氧化碳的质量为吨.【解析】【分析】本题考查了分式方程应用,设使用传统技术生产1吨氢气所排放的二氧化碳的质量为吨,依题意,列出分式方程,解方程并检验,即可求解.解:设使用传统技术生产1吨氢气所排放的二氧化碳的质量为吨,依题意,解得:经检验,是分式方程的解,的Carbon Capture and Storage CCS 10%12090 1.2x x 120120900.1x x=-12x =12x =当时,答:在使用化石能源生产氢气时,利用碳捕集与封存技术生产1吨氢气所排放的二氧化碳的质量为吨.20. 项目化学习项目主题:为学校图书馆设计无障碍通道.项目背景:2023年6月28日,我国颁布《中华人民共和国无障碍环境建设法》.某校“综合与实践”小组以“为学校图书馆设计无障碍通道”为主题展开项目学习.研究步骤:(1)查阅资料得知,无障碍通道有三种类型:直线形、直角形、折返形;(2)实地测量图书馆门口场地的大小;(3)为了方便师生出入图书馆,并尽量减少通道对师生其它通行的影响,研讨认为设计折返形无障碍通道比较合适.设计方案:“综合与实践”小组为该校图书馆设计的无障碍通道如图2所示,其中为地面所在水平线,和是无障碍通道,并且,立柱,均垂直于地面,米,米.解决问题:若原台阶坡道的长度(线段的长度)为5米,坡角的度数为,,求出无障碍通道的总长(线段和的和)为多少米?(结果保留根号.参考数据:,,)【答案】米【解析】【分析】延长,,交于点H ,过点B 作于点K ,证明四边形为矩形,得出,解直角三角形求出(米),得出,根据等腰三角形的性质得出米,根据勾股定理求出,得出结果即可.解:延长,,交于点H ,过点B 作于点K ,如图所示:12x =0.1 1.2x = 1.2MN CD DF 2CDF DFE ∠=∠CG DE 6GE =4FE =AB α23︒BC MN ∥CD DF sin 230.40︒≈cos 230.92︒≈tan 230.42︒≈MN CD BK MN ⊥BCGK BK CG =5232sin sin BK AB a =⨯=⨯︒≈DF DH =4EH EF ==CH ===MN CD BK MN ⊥则,∵,∴,∵,∴,∴,∴四边形为矩形,∴,∵米,,∴(米),∴米,∵,,∴,∴,∵,∴米,∴(米),在中,根据勾股定理得:,∴米.【点睛】本题主要考查了矩形的判定和性质,解直角三角形,勾股定理,等腰三角形的判定和性质,平行线的性质,解题的关键是作出辅助线,熟练掌握相关的判定和性质.21. 阅读与思考:请阅读下面小论文,并完成相应学习任务.关于同一种正多边形的平面密铺平面密铺是指用一些形状大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地把平面的一部分完全覆盖.一般来说,构成一个平面密铺图形的基本图形是多边形或类似的一些常规形状,例如我们铺地板时经常使用正方形地砖.90BKG BKA ==︒∠∠∥BC MN 18090KBC BKG =︒-=︒∠∠CG MN ⊥90CGK CGH ==︒∠∠90BKG CGK CBK ===︒∠∠∠BCGK BK CG =5AB =23α=︒5232sin sin BK AB a =⨯=⨯︒≈2CG =2CDF DFE ∠=∠CDF DFE DHE =+∠∠∠DFE DHE ∠=∠DF DH =DE FH ⊥4EH EF ==6410GH GE EH =+=+=Rt CGH △CH ===CD DF CD DH CH +=+==对于正n 边形,从一个顶点出发作对角线,它们将n 边形分成个三角形,得到其内角和是,则一个内角的度数就是,若一个内角度数能整除,那么这样的正n 边形就可以进行平面密铺.图1和图2就是分别利用正三角形和正方形得到的两组密铺图案.如图3,按照平面密铺的条件,正五边形就不能进行平面密铺.对于一些不规则的多边形,全等三角形或全等四边形也可以进行平面密铺.图4就是利用全等的四边形设计出的平面密铺图案.对于不规则的凸五边形,迄今为止发现了15种能用于平面密铺的五边形.德国数学家莱因哈特(1895—1941)凭借其出色的平面几何功底与直觉,从1918年开始,陆续发现了前5种五边形密铺方式.2015年,美国华盛顿大学数学教授卡西·曼夫妇发现了第15种能用于平面密铺的五边形.图5就是利用不规则的凸五边形得到的一种密铺图案.学习任务:(1)填空:上面小论文中提到“对于正n 边形,从一个顶点出发作对角线,它们将n 边形分成个三角形,得到其内角和是”,其中体现的数学思想主要是______.(填出字母代号即可)A .数形结合思想;B .转化思想;C .方程思想(2)图3中角1的度数是______.(3)除“正三角形”“正四边形”外,请再写出一种可以进行密铺的正多边形:______.(4)图6是图5中的一个基本图形,其中,,并且.求证.【答案】(1)B (2)(3)正六边形(4)见解析【解析】【分析】题主要考查了平面镶嵌,正多边形的内角和与外角;全等三角形的性质与判定;(1)根据题意将多边形转化为三角形解决问题,体现的是转化思想,据此,即可求解;(2)根据正五边形的三个内角的和与周角的差即可求解;(3)根据平面镶嵌的正多边形的内角能被整除,即可求解;()2n -()2180n -⨯︒()2180n n ⎡⎤-⨯︒÷⎣⎦360︒()2n -()2180n -⨯︒60A ∠=︒120B E C D ∠=∠=∠=∠=︒AB AE =BC DE =36︒360︒(4)先证明是等边三角形,进而证明,根据平行线间的距离相等可得,进而根据证明,根据全等三角形的性质,即可得证.【小问1】根据题意,对于正n 边形,从一个顶点出发作对角线,它们将n 边形分成个三角形,得到其内角和是,可得体现的数学思想主要是转化思想,故选:B .【小问2】解:,故答案为:.【小问3】解:∵正六边形的每个内角为,依题意,一种可以进行密铺的正多边形:正六边形,故答案为:正六边形.【小问4】如图所示,连接,分别过点作垂足分别为,,是等边三角形,,,,,,AEB △BE CD ∥CN DM =AAS CBN DEM ≌()2n -()2180n -⨯︒()5218013603365-⨯︒∠=︒-⨯=︒36︒()62180120,36012036-⨯︒=︒︒÷︒=BE ,C D ,CN BE DM BE ⊥⊥,N M 60A ∠=︒ AB AF=ABE ∴ 60ABE AEB ∴∠=∠=︒120ABC AED ∠=∠=︒ 60CBN DEM ∴∠=∠=︒180CBN BCD ∴∠+∠=︒∴BE CD ∥,,,.22. 综合与实践问题情境:数学活动课上,老师提出如下数学问题:如图1,将矩形纸片以点C 为中心顺时针方向旋转,当点A 的对应点E 落在的延长线上时,求证.数学思考:(1)请你解决老师提出的问题.深入探究:(2)“智慧小组”在解决老师提出的问题后,在图1的基础上又提出新的问题:如图2,过点F 作,垂足为M .过点G 作,垂足为N .试猜想线段,,的数量关系,并说明理由.请你解决该问题.(3)“创新小组”受到“智慧小组”的启发,在图2的基础上连接,得到图3.并且提出:若,.求的长.请你思考该问题,并直接写出结果.【答案】(1)见解析;(2);(3)【解析】【分析】本题考查了旋转的性质,矩形的性质与判定,勾股定理,全等三角形的性质与判定;(1)连接,根据矩形是由矩形旋转得到的,得出,进而证明, 根据全等三角形的性质可得,等量代换即可得证;(2)过点作于点,证明,四边形是矩形,得出,进而即可得证;(3)根据(2)可得,设,则,勾股定理得出,过点作CN DM ∴=90CNB DME ∠=∠=︒ ()AAS CBN DEM ∴ ≌BC ED ∴=ABCD AD DE AD =FM CD ⊥⊥GN CD FM CF NGBF CM =16NG =BF CF FM NG +=EC CFEG CBAD ,CG CD EG AD ==()Rt HL Rt CDE CGE ≌GE DE =E EH NG ⊥H CFM EGH ≌DNHE DE NH =CF FM NG +=FM a =16CF a =-4a =F于点,则四边形是矩形,进而求得,,在中,勾股定理,即可求解.(1)证明:如图所示,连接,∵四边形是矩形,∴∴,∵矩形是由矩形旋转得到的,∴∵∴∴∴(2)理由如下:过点作于点∵四边形是矩形,∴,∴,∵,FT BC ⊥T FTCM 8BT=FT MC ==Rt BFT EC ABCD 90CDA ∠=︒18090CDE ADC ∠=︒-∠=︒CFEG CBAD ,CG CD EG AD==,90CE CE CGE CDE =∠=∠=︒()Rt HL Rt CDE CGE ≌GE DE=AD DE=CF FM NG+=E EH NG ⊥HCFEG 90,EGC GCF EG FC ∠=∠=︒=90EGH CGN ︒∠+∠=90HEG EGH ︒∠+∠=∴,∵,∴,又∵,∴,∴,∵,∴四边形是矩形,∴,由(1),∴,∴,∴,(3)∵,设,则,∵∴解得:,∴,又∴如图所示,过点作于点,则四边形是矩形,∴,HEG CGN ∠=∠90,90FCM GCN GCN CGN ∠+∠=︒∠+∠=︒FCM GEH ∠=∠90CMF EHG ︒∠=∠=CFM EGH ≌FM HC =90CDE DNH EHN ∠===∠∠︒DNHE DE NH =AD DE =CF EG DE ==CF NH =CF FM NG +=CF FM NG +=16NG =FM a =16CF a =-CM ==()(22216a a --=4a =4FM =12CF =BC CF=12BC CF ==F FT BC ⊥T FTCM 4TC FM ==FT MC ==∴在中,23. 综合与探究:如图,二次函数的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点是第一象限内二次函数图象上的动点,过点P 作x 轴的平行线,与直线交于点M ,与直线交于点E .过点P 作直线的平行线,与直线交于点N .直线与直线交于点D .(1)请直接写出点A ,B ,C 的坐标及直线的函数关系表达式;(2)当时,求出m 的值;(3)在点P 运动的过程中,线段是否存在最大值?若存在,求出线段的最大值;若不存在,请说明理由.【答案】(1),,,直线的解析式为(2)当时,m(3)当时,的最大值为【解析】【分析】(1)分别令,求得点的坐标,进而待定系数法求直线的解析式;(2)根据题意,结合相似三角形的性质得出,设点,则点,点的纵坐标都为,进而表示出,的横坐标,得出,根据建立方程,解方程即可求解;(3)根据的坐标,先求得的解析式,进而得出,得出,根据相似三1248BT BC TC =-=-=Rt BFT BF ===248433y x x =-++(),P m n 43y x =-AC AC 43y x =-43y x =-AC AC 3MDE DNPE S S =四边形△MN MN ()1,0A -()3,0B ()0,4C AC 44y x =+3MDE DNPE S S =四边形△32m =MN 10516,x y =0,,A B C AC 3MDE DNPE S S =四边形△ME EP =248,433P m m m ⎛⎫-++ ⎪⎝⎭M E 248433m m -++M E ME ME EP =,B C BC BC MN ∥MPN BAC ∽角形的性质建立的关系式,根据二次函数的性质,即可求解.【小问1】解:∵二次函数的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,当时,,则当时,,解得:∴,设直线的解析式为,代入,∴解得:∴直线的解析式为【小问2】∵∴∵∴∴,即,设点,则点,点纵坐标都为,代入,得∴将代入得,的MN 248433y x x =-++0x =4y =()0,4C 0y =2484033x x -++=121,3x x =-=()1,0A -()3,0B AC y kx b =+()1,0A -()0,4C 04k b b =-+⎧⎨=⎩44k b =⎧⎨=⎩AC 44y x =+CD PN∥MED MPN∽3MDEDNPE S S =四边形△214MED MPN S ME S MP ⎛⎫== ⎪⎝⎭12ME MP =ME EP =248,433P m m m ⎛⎫-++ ⎪⎝⎭M E 248433m m -++248433y m m =-++44y x =+21233x m m =-+221248,43333E m m m m ⎛⎫-+-++ ⎪⎝⎭248433y m m =-++43y x =-223x m m =--∴∴∴∵∴解得:(舍去)∴当时,m【小问3】如图所示,连接,∵,,∴∴设直线解析式为,将,,代入的224823,433M m m m m ⎛⎫---++ ⎪⎝⎭()22212482333333ME m m m m m m ⎛⎫=-+---=-++ ⎪⎝⎭2212113333EP m m m m m ⎛⎫=--+=+ ⎪⎝⎭ME EP=22114833333m m m m +=-++12m m ==3MDE DNPE S S =四边形△BC ()3,0B ()0,4C 3,4OB OC ==5BC =BC y k x b ''=+()3,0B ()0,4C 430b k b ''=⎧⎨+=⎩解得:∴直线的解析式为∴直线∵∴,∴∴∴∴∵∵,二次函数的图象开口向下,∴当时,的最大值为.【点睛】本题考查了二次函数的性质,待定系数法求解析式,相似三角形的性质与判定,面积问题,熟练掌握二次函数的性质是解题的关键.443b k =⎧⎪⎨=-''⎪⎩BC 443y x =-+BC MN∥PN AC∥PMN ABC ∠=∠MNP ACB∠=∠MPN BAC∽MN MP BC AB=()22354m m m MN ---=251515444MN m m =-++2531054216MN m ⎛⎫=--+ ⎪⎝⎭504-<32m =MN 10516。
2024年中考第一次模拟考试(苏州卷)数学·全解全析第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2 的绝对值是()A .2B .2C .12D .12 【答案】A【分析】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.【详解】解:2 的绝对值是2,即22 .故选:A .2.若分式1x x 有意义,则x 的取值范围是()A .0x B .1x C .1x D .1x 且0x 【答案】B 【分析】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.根据分式的分母不能为0求解即可得.【详解】解:∵分式1x x 有意义,10x ,解得1x ,故选:B .3.下列计算正确的是()A .342a a a B . 339a a C .33()ab a b D .824a a a 【答案】B【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法是解题的关键.根据同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法可进行排除选项.【详解】A .34a a a ,原计算错误,故不符合题意;B . 339a a ,原计算正确,故符合题意;C .333()ab a b ,原计算错误,故不符合题意;D .826a a a ,原计算错误,故不符合题意;故选:B .4.某轮滑队所有队员的年龄只有12,13,14,15,16(岁)五种情况,其中部分数据如图所示,若队员年龄的唯一的众数与中位数相等,则这个轮滑队队员人数最少是()A .10B .11C .12D .13【答案】C 【分析】本题考查了条形统计图,中位数,众数,熟悉条形统计图,掌握中位数,众数的相关概念是解答本题的关键.根据题目,利用众数和中位数的定义,得到这组数据的中位数为:14,众数是14,由此得到答案.【详解】解:由题图中数据可知:小于14的人有4人,大于14的人也有4人,这组数据的中位数为:14,∵队员年龄的唯一的众数与中位数相等,众数是14,即年龄为14的人最多,14岁的队员最少有4人,故选:C .5.如图,在ABC 中,以顶点B 为圆心,适当长为半径画弧,交BA 于点M ,交BC 于点N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧在ABC 内部交于点P ,过点P 作射线BP 交AC 于点D ,过点D 作DE BC ∥,交AB 于点E ,若65A ,195 ,则ADE ()A .85°B .75°C .60°D .55°【答案】D 【分析】本题考查作图-基本作图、平行线的性质,㠇练掌握平行线的性质是解答本题的关键.由题意可得BP 为ABC 的角平分线,DE BC ∥,则,,,ABD CBD AED ABC EDB EBD 可得,ABD CBD EDB 根据三角形外角性质可得2AED EDB ,平角性质可得18095,ADE EDB 再结合三角形内角和定理可列出方程,进而可得出答案.【详解】由题意可得BP 为ABC 的角平分线,DE BC ∥,,,,ABD CBD AED ABC EDB BDC ,ABD CBD EDB 2AED ABC EDB ,65A ∵,195 ,18095,ADE EDB 65218095180A AED ADE EDB EDB30,EDB 180953055ADE ,故选:D .6.一个圆锥的底面半径为3,侧面展开图是半圆,则圆锥的侧面积是()A .9B .18C .27D .36【答案】B【分析】本题考查了求圆锥侧面积;利用圆锥侧面展开图的弧长 底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积 底面周长 母线长2 .【详解】解:底面半径为3,则底面周长6 ,侧面展开图是半圆,则母线长6226 ,圆锥的侧面积是16π618π2故选:B .7.如图在平面直角坐标系中,OA AB ,且90OAB , 13A ,则点B 的坐标是()A .(14),B .(24),C .(34),D .(44),【答案】B【分析】本题主要考查了全等三角形的判定和性质.过点B 作BC y 轴于点C ,过点A 作AD x 轴于点D ,AD 、BC 相交于点E ,证明 AAS ODA AEB ≌,据此求解即可.【详解】解:过点B 作BC y 轴于点C ,过点A 作AD x 轴于点D ,AD 、BC 相交于点E.∵ 13A ,,∴13OD AD ,,∵90BAO ,∴19023 ,在ODA V 和AEB △中,9031OA AB ODA E,∴ AAS ODA AEB ≌,∴31BE AD OD AE ,,∴134312DE BC ,,∴点B 的坐标是 24,,故选:B .8.如图,四边形ABCD 是菱形,边长为45A .点P 从点A 出发,沿A D C 个单位长度的速度运动,同时点Q 沿射线BA 的方向以每秒1个单位长度的速度运动,当点P 运动到达点C 时,点Q 也立刻停止运动,连接PQ .APQ △的面积为y ,点P 运动的时间为()08x x 秒,则能大致反映y 与x 之间的函数关系的图像是()A .B .C .D .【答案】B【分析】本题考查函数的图象与解析之间的联系,解决问题的关键在于弄清图形的变化情况,结合勾股定理,给出面积的表达式,即可解题.【详解】解:①当P 在AD 上时,作PE AQ ,如图所示:由题知AP ,AQ x ,45A ∵,45APE A ,PE AE ,则222222AE PE PE x ,解得PE x ,故 2122APQ x xS x 04x ,②当P 在D 上时,即4x 时,14482APQ S △,③当P 在CD 上不与D 重合,且Q 在AB 上时,作DF AQ ,如图所示:45A ∵,AD 4DF ,AP x ∵则 1422APQ S x x 4x ,④当Q 在AB 延长线上时,1422APQ S x x △8x .故选:B .第Ⅱ卷二、填空题(本大题共8个小题,每小题3分,共24分)9.稀土是制造国防、军工等工业品不可或缺的原料.据有关数据表明,我国已探明稀土储量约4400万吨,居世界第一位,将数4400万用科学记数法可表示为.【答案】74.410 【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ,其中110a ,n 的值为整数位数少1.【详解】解:4400万即44000000大于1,用科学记数法表示为10n a ,其中 4.4a ,7n ,∴4400万用科学记数法表示为74.410 ,故答案为:74.410 .10.比较大小:7227 (填“ ”“ ”或“ ”)【答案】【分析】此题主要考查了有理数大小,有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:77||22 ,22||77,∵7227,2772 .故答案为: .11.分解因式321025x x x.【答案】 25x x 【分析】题目主要考查因式分解,熟练掌握提取公因式及完全平方公式分解因式是解题关键.【详解】解: 32225.1025(1025)x x x x x x x x 故答案为: 25x x .12.如图,一次函数y ax b 与y mx n 的图象交于点(1,2)P ,则关于x 的方程ax b mx n 的解是.【答案】1x = 【分析】本题考查了一次函数与一元一次方程,根据图象的交点的横坐标就是方程ax b mx n 的解即可求解,熟练掌握基础知识是解题的关键.【详解】解:由图象得:方程ax b mx n 的解是1x = ,故答案为:1x = .13.中国邮政集团公司曾发行《二十四节气》特殊版式小全张(图1),其中的24枚邮票大小相同,上面绘制了代表二十四节气风貌的图案,这24枚邮票组成了一个圆环,传达了四季周而复始、气韵流动的理念和中国传统文化中圆满、圆融的概念,以“大雪”节气单枚邮票为例(图2),该邮票的“上圆弧”的长为l ,“直边长”为d ,“下圆弧”的长为x ,则x (用含l ,d 的式子表示).【答案】π12l d 【分析】本题考查弧长公式,根据题意,作出图形,数形结合,利用弧长公式表示出l ,d ,找到两者之间的关系即可得到答案,熟记弧长公式是解决问题的关键.【详解】解:根据题意,作出图形,如图所示:3601524BOC,15π2π36012l OC OC ; 15π2π36012x OC d OC d , πππ121212x OC d l d ,故答案为:π12l d.14.如图,已知3AB AC DC DE ,180A D ,ABC 与CDE 的面积和为10,则BE 的长为.【答案】【分析】本题考查三角形的面积,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.如图,过点A 作AH BC 于点H ,过点D 作DK CE 于点K .证明 AAS AHC AKD ≌,推出,AH CK CH DK ,设AH CK x ,CH DK y ,构建方程组求出x y ,可得结论.【详解】解:如图,过点A 作AH BC 于点H ,过点D 作DK CE 于点K .3AB AC DC DE ∵,,AH BC DK CE ,1122BH CH BC CK KE CE ,,12BAH CAH BAC ,12CDK EDK CDE ,180BAC CDE ∵,90CAH CDK ,90CAH ACH ∵,ACH CDK ,又,90AC CD AHC CKD ∵,AAS AHC CKD ≌,,AH CK CH DK ,设,AH CK x CH DK y ,22BC y,CE xABC ∵ 与CDE 的面积和为10,即1111·····2··2·102222BC AH CE DK y x x y ,5xy ,在Rt CDK △中,222CK DK CD ,即229x y ,则有2259xy x y ,x y ,22BE BC CE CH CK x y .故答案为:15.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点M ,则cos BMD 的值为.【分析】本题考查了求余弦,连接,CE DE ,根据勾股定理和勾股定理逆定理,推出45DCE ,再证明四边形ACEB 是平行四边形,则45BMD DCE ,即可求解.【详解】解:连接,CE DE ,∵CD DE CE ,∴222CD DE CD DE CE ,,∴90CDE ,∴45DCE ,∵1,AC BE AC BE ∥,∴四边形ACEB 是平行四边形,∴AB CE ∥,∴45BMD DCE ,∴cos cos 452BMD,故答案为:22.16.如图,已知二次函数223y x x 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,P 点为该图象在第一象限内的一点,过点P 作直线BC 的平行线,交x 轴于点M .若点P 从点C 出发,沿着抛物线运动到点B ,则点M 经过的路程为.【答案】92【分析】根据题意,可以先求出点、、A B C 的坐标,从而可以得到直线BC 的解析式,再根据PM BC ∥,点P 在抛物线上,可以写出点P 的坐标和对应的直线PM 的解析式,再根据题意,可以得到点M 横坐标的最大值,从而可以得到点M 经过的路程.【详解】解:∵二次函数 22331y x x x x ,∴当0y 时1213x x ,,,当0x 时,3y ,∴点A 的坐标为 10 ,,点B 的坐标为 3,0,点C 的坐标为 0,3,设直线BC 的函数解析式为y kx b ,31303b k k b b ,解得,即直线BC 的函数解析式为3y x ,∵PM BC ∥,点P 在抛物线上且在第一象限,∴设点P 的坐标为223m m m (,),设直线PM 的解析式为y x c ,223m m m c ,解得233c m m ,∴直线PM 的解析式为233y x m m ,令223323x m m x x 且Δ0 ,解得32m ,此时直线PM 的解析式为214y x,当0y 时214x ,∴点M 横坐标最大值是214,∴点M 经过的路程为:2193242 ,故答案为:92.三、解答题(本大题共11个小题,共82分.解答应写出文字说明,证明过程或演算步骤)(4分)17.计算:036(20231)|2| .【详解】原式18123212421(4分)18.解方程:31122x x .【详解】解:31122x x,去分母,化为整式方程得: 321x ,即321x ,解得6x ,经检验,6x 是原分式方程的解.(8分)19.解方程组和不等式组,并把不等式组的解集在数轴上表示出来:(1)321022x y x y (2)解不等式组 2142115x x x【详解】(1)解:321022x y x y①②,2 ②得:424x y ③,①+③得:714x ,解得:2x ,把2x 代入②得:42y ,解得:=2y ,∴原方程组的解为:22x y ;(2)解: 2142115x x x①②解不等式①,得,3x 解不等式②,得2x把不等式①和②的解集在数轴上表示出来:所以原不等式组解集为23x .(8分)20.某校为了解本校七年级学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图,根据图中信息,解答下列问题:(1)此次调查中样本容量为_______;在扇形统计图中,“非常重视”所占的圆心角的度数为_______;(2)补全条形统计图;(3)该校七年级共有学生400人,请估计该校七年级学生对视力保护“比较重视”的学生人数.【详解】(1)解:由题知,1620%80 (人),48036018,故答案为:80,18 .(2)解:804361624 (人),(3)解:3640018080(人),答:七年级学生对视力保护“比较重视”的学生人数约为180人.(8分)21.北京时间2023年12月27日14时50分,我国在酒泉卫星发射中心使用快舟一号甲运载火箭,成功将天目一号气象星座19-22星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功.小明和小亮对航天知识都非常感兴趣,他们在中国载人航天网站上了解到,航天知识分为“梦圆天路”“飞天英雄”“探秘太空”“巡天飞船”等模块.他们决定从“梦圆天路”“飞天英雄”“探秘太空”“巡天飞船”四个模块中各自随机选择一个进行学习,设这四个模块依次为A 、B 、C 、D .(1)小明选择学习“梦圆天路”模块的概率为_____;(2)请用画树状图或列表的方法,求小明和小亮选择不同模块的概率.【详解】(1)解:小明选择学习“梦圆天路”模块的概率为14P ,故答案为:14;(2)树状图如下:共有16种等可能的结果,其中小明和小亮选择不同模块的结果有12种,小明和小亮选择不同模块的概率123164.(8分)22.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形ABCD的对角线BD 上.(1)求证:BG DE ;(2)若E 为AD 中点,=2AB ,求FH 的长.【详解】(1)∵四边形EFGH 是矩形,EH FG ,EH FG ∥,GFH EHF .180BFG GFH ∵,180DHE EHF ,BFG DHE .∵四边形ABCD 是菱形,AD BC ∥,GBF EDH ,(AAS)BGF DEH △△,BG DE ;(2)连接EG ,∵四边形ABCD 是菱形,AD BC ,AD BC ∥.E ∵为AD 中点,AE ED .BG DE ∵,AE BG ,AE BG ∥,四边形ABGE 是平行四边形,AB EG .∵四边形EFGH 是矩形,EG FH ,2AB ,2FH .(8分)23.如图,反比例函数2y x的图象与一次函数y kx b 的图象交于点A 、B ,点A 、B 的横坐标分别为1,2 ,一次函数图象与y 轴的交于点C ,与x 轴交于点D .(1)求一次函数的解析式;(2)对于反比例函数2y x,当1y 时,写出x 的取值范围;(3)点P 是第三象限内反比例图象上的一点,若点P 满足S △BDP =12S △ODA ,请求出点P 的坐标.【详解】(1)解:∵反比例函数2y x的图象与一次函数y kx b 的图象交于点A 、B ,点A 、B 的横坐标分别为1,﹣2;∴A 1,2,B 2,1 ;把A 、B 的坐标代入y kx b 得221k b k b;解得11k b;∴一次函数的解析式为1y x .(2)∵ 2,1B ;由图象可知,当20x 时,1y .(3)∵一次函数为1y x ;∴D 1,0 ;∵A 1,2,∴1212ODA S V ;∴1122BDP ODA S S V V ,设点P 的坐标为:2,x x,0x ;∴ON x ,2PN x;当P 在直线下方时,如图1,则;121211=1212112222BDP BDM PDNBMNP S S S S x x x x 梯形;解得x ∴点P .当P 在直线AB 的上方时,如图2,则;1211112211122222BDF BDM PDNBMNP S S S S x x x x 梯形;解得1x ;∴点P 1 ;综上可得:点P的坐标为:或 1.(8分)24.如图,AB 是O 的直径,点C 在O 上,点M 在O 外,连接MC ,若MCA B;(1)求证:CM 是O 的切线;(2)已知,点D 是OA 的中点,过点D 作DE AB ,交CM 于点E ,若O 的半径为10,3tan 4A,求CE 的长.【详解】()证明:连接OC ,∵AB 是O 的直径,∴90BCA ,∴90BAC ABC ,∵OC OA ,∴OCA OAC ,∵MCA B ,∴90OCA MCA ,即90OCM ,∵OC 是半径,∴CM 是O 的切线;(2)解:设AC 与DE 相交于点F ,过点E 作EG AC 于点G ,如图所示:∵DE AB ,10OA ,点D 是OA 的中点,∴90,5,20ADE OD DA AB ,∴90A DFA A B GFE GEF ,∵,GFE AFD MCA B ,∴,GEF A GFE MCA B ,∴CE EF ,由3tan 4A 可设3,4BC x AC x ,根据勾股定理可知5AB x ,∴520x ,即4x ,∴12,16BC AC ,∴3sin sin 5AC A GEF AB ,∴15tan 4DF AD A,∴25sin 4DF AF A ,∴394CF AC AF,∵,CE EF EG AC ,∴13928CG GF CF,∴65sin 8GF EF CE GEF .(8分)25.杭州亚运会于2023年9月23日至10月8日举行,作为今年我国举办的最为盛大的赛事,是向世界展示中国形象、传播中国文化的重要窗口.宁夏枸杞作为几千年来备受推崇、药食同源的滋补上品,小小的红果凝聚和传承着宁夏这片土地上,珍贵的历史记忆和宝贵的精神财富,已然成为宁夏独特的地域符号、主导产业和文化象征,不但为宁夏社会经济发展作出了积极贡献,也为助力“健康中国”跑出了“加速度”.在宁夏一特产专卖店销售某种枸杞,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种枸杞要想平均每天获利2240元,请回答:(1)为尽可能让利于顾客,赢得市场,每千克枸杞应降价多少元?(2)根据市场需求,该店将售价定为多少出售,每天可获取最大利润,最大利润是多少?【详解】(1)解:设每千克枸杞应降价x 元,根据题意,得 60401002022402x x,化简,得210240x x ,解得1246x x ,.∵为尽可能让利于顾客,赢得市场,6x ,答:每千克枸杞应降价6元;(2)设每千克枸杞应降价x 元,每天获得利润为y 元,根据题意得:2260401002010100200010522502()()()x y x x x x ,100∵ ,当5x 时,y 有最大值,最大值为2250,此时售价为60555( 元),该店将售价定为55元出售,每天可获取最大利润,最大利润是2250元.(8分)26.已知抛物线212y x bx c与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,直线6y x 经过点A 与点C .(1)求抛物线的表达式;(2)点P 在线段AC 下方的抛物线上,过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .①如果C F 、两点关于抛物线的对称轴对称,联结DF ,当DF CF 时,求PDF 的正切值;②如果:3:5PD DE ,求点P 的坐标.【详解】(1)解:∵直线6y x 经过点A 与点C则当06x y ,;06y x ,∴ 6060A C ,,,∴60186c b c ,,解得62c b 21262y x x ;(2)解:①如图:∵ 6060A C ,,,,且C F 、两点关于抛物线21262y x x 的对称轴对称,∴6F c y y ,221222b x a 则4F x ∵DF CF∴DF y ∥轴则FDC OCA∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E .∴PE BC PDF ACB,则PDF OCB∵21262y x xx 轴交于A B 、两点(点A 在点B 的左侧),∴210262x x ∴6x ,2x ∴ 20B ,∵PDF OCB则PDF 的正切值等于21tan 63OB OCB OC ;②设21262P p p p,,BC 的解析式为y mx n ∴把 0620C B ,,,代入y mx n 得602n m n解得63n m ∵过点P 作BC 的平行线交线段AC 于点D ,交y 轴于点E ∴设PE 的解析式为3y x b把21262P p p p,代入3y x b 得2162p p b ∴21623y x p p 令0x ,2162p p y即21062E p p,当261362y x y x p p 解得21184x p p 则把21184x p p 代入21623y x p p 得211684y p p ∴22111168484D p p p p,∵过点P 作PM y 轴,过点D 作DN y轴,∴EDN EPM∽∴EN DE EM EP∵:3:5PD DE ∴58EN EM ∶∶∵21062E p p ,,22111168484D p p p p ,,21262P p p p ,∴222111336628484EN p p p p p p,2211626322EM p p p p p ∴23358348p p p ∶∶解得1103p p ,∵点P 在线段AC 下方的抛物线上,∴10p (舍去)∴3p .把3p 代入21262y p p∴19241592362222y ∴点P 的坐标1532,(10分)27.【问题初探】(1)在数学活动课上,李老师给出如下问题:如图1,在ABC 中,60BAC ,D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的右侧,连接AE ,你能得到哪些结论呢?①小明说:“在点D 的运动过程中,只要保证BE 在边AB 的右侧,BAE 的度数是固定的,我能求出BAE 的度数”;小强说:“在点D 的运动过程中,只要保证BE 在边AB 的右侧,我能得到从点A 发出的三条线段,,AB AE AD 的数量关系”.②小涛说:“我利用60BAC ,如图2,在AD 上截取AF AB ,连接BF ,再利用旋转的性质,就可以得到小明和小强的结论”.请你根据小涛的思路,求BAE 的度数,并探究线段,,AB AE AD 的数量关系.【类比分析】(2)李老师发现同学们都利用了转化的思想,转化角,转化线段,为了帮助同学们更好地感悟转化思想,李老师将图1进行变换,并提出下面问题,请你解答.如图3,在ABC 中,60,BAC D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的左侧,连接AE ,过B 作BG AD 于点G ,求证:2AD AE AG .【学以致用】(3)如图4,在ABC 中,60,BAC D 为AC 上的动点,当AD AB 时,连接BD ,将线段BD 绕点B 逆时针旋转60 得到线段BE ,且BE 在边AB 的右侧,连接,AE DE ,过B 作BM AD 于M ,线段DE 的中点为N ,连接MN ,若4,AB MN ABDE 的面积.【详解】解:(1)在AD 上截取AF AB ,连接BF .如图1,60,BAC AB AF ∵.ABF 是等边三角形,,60AB BF ABF AFB .∵线段BD 绕点B 逆时针旋转60 得到线段BE ,60,B BD E BD E ,ABF EBD ,ABE EBF FBD EBF ,即ABE FBD .在ABE 和FBD 中,AB BF ABE FBD BE BD,(SAS)ABE FBD △≌△.,BAE BFD AE FD ,60AFB∵120BFD .120BAE .=AD AF FD ∵,AD AB AE .(2)证明:在AC 上截取AH AB ,连接BH .如图2,60,BAC AB AH ∵.ABH 是等边三角形,,60AB BH ABH .∵线段BD 绕点B 逆时针旋转60 得到线段BE ,,60BD BE DBE .ABE ABD ABD HBD ,即ABE HBD在ABE 和HBD △中,,,,AB HB ABE HBD BE BDSAS ABE HBD △≌△,AE HD .又ABH ∵△为等边三角形BG AH ,2AH AG .AH AD DH AD AE ∵,2AG AD AE .(3)解:连接BN ,如图3.∵线段BD 绕点B 逆时针旋转60 得到线段BE .,60BD BE DBE ,BDE 是等边三角形.60BEN ,N Q 为DE 中点,1,302BN DE EBN EBD .在Rt BNE 中,sin sin602BN BEN BE ,60BAC ∵,BM AC 于M .sin sin 60BM BAM AB,BN BM BE AB.又906030ABM ∵,ABM EBNABE EBM EBM MBN ,即ABE MBN ,ABE MBN △∽△,MN BM AE AB MN ∵2AE .在AD 上截取AH AB ,由(1)得ABH 是等边三角形,ABE HBD △≌△.4,2,120AH AB AE DH BAE BHD ,6AD AH DH .过E 作EQ AD 于Q ,120,60BAE BAC∵60EAQ .sin 602EQ AE2BM AB ∵,4AB ,BM四边形ABDE 的面积1111662222ADE ADB S S AD EQ AD BM △△。
2023年陕西省西安市长安区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题13.如图,在ABC 中,5AB AC ==,BD 是它的一条中线,过点D 作直线EF ,交边AB 于点E ,交BC 的延长线于点F ,当DF DB =时,则AE 的长度为______.三、解答题(1)随后进来的E 车停车恰好与A 车相邻的概率是______;(2)求B 车和E 车都与A 车相邻的概率(用树状图或列表的方法解答).21.学校数学兴趣小组开展课外实践活动,如图是兴趣小组测量某建筑物高度的示意图,已知兴趣小组在建筑物前平台的坡道两端点A 、B 处,分别测得建筑物的仰角45DAC ∠=︒,60DBE ∠=︒,坡道25AB =米,坡道AB 的坡度7:24i =.求建筑物DC 的高度.22.经政府部门和村委会同意,老王在自家门前建了一个简易温泉水供给站.某日老王刚刚给自家的存储罐注满温泉水,拉温泉水的车队就来到了他们家门前.当拉水的车辆(每辆车的型号都相同)依次停好后,他打开出水阀为拉水车注入温泉水,经过2.5分钟第一辆拉水车装满温泉水并离开(每辆拉水车之间的间隙时间不计),当他给第二辆拉水车注满温泉水时,入水阀门自动打开为存储罐匀速注入温泉水,并在给第八辆车注满水时,存储罐恰好加满且入水戈门自动关闭.已知存储罐内温泉水量y (吨)与时间x (分钟)之间的部分函数图像如图所示:请根据图像回答下面的问题:(1)图中的=a ______,b =______,m =______.(2)求他给第6辆拉水车注满温泉水时,存储罐内剩余的温泉水量.23.我们知道,十四届全国人大一次会议于2023年3月13日上午闭幕,在今年的人代会上有很多新提法、新思路、新设想,为我国的发展做出了新规划.某大学马克思主义学院为了了解学生关注两会的情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:(1)如图1,在ABC 中,90BAC ∠=︒,AO 是它的一条中线,则COA ∠与B ∠的数量关系式是:COA ∠=______B ∠;(2)如图2,在ABC 中,60A ∠=︒,6BC =,CG AB ⊥于点G ,BH AC ⊥于点H ,O 为BC 边上一点,且OG OB =,连接GH ,求GH 的长;问题解决(3)如图3,某次施工中,工人师傅需要画一个20°的角,但他手里只有一把带刻度的直角尺,工程监理给出了下面简易的作图方法:①画线段15cm OB =,再过它的中点C 作m OB ⊥;②利用刻度尺在m 上寻找点A 使得15cm OA =,再过点A 作l OB ∥;③利用刻度尺过点O 作射线,将射线与AC 和l 的交点分别记为点F 、E ,调节刻度尺使FE =□cm 时(“□”内的数字被汗渍侵蚀无法看清),则20EOB ∠=︒.你认为监理给的方法可行吗?如果可行,请写出“□”内的数字,并说明理由;如果不可行,请给出可行的方案.参考答案:【分析】根据邻补角的定义得出365∠=︒,再利用三角形的外角的性质即可得出答案.【详解】解:如图,∵2115∠=︒,∴3180218011565∠=︒-∠=︒-︒=︒,根据题意,490∠=︒,∴1346590155∠=∠+∠=︒+︒=︒.故选:A .【点睛】本题考查三角形外角的性质和邻补角的定义.掌握三角形外角的性质是解题的关键.5.C【分析】根据点()3,P n 是两直线的交点,将点P 的坐标代入两直线的解析式得出n 和k 的值,再解方程组即可得出答案.【详解】解:∵直线4y x =-+与直线5y kx =-相交于点()3,P n ,∴341n =-+=,∴()3,1P ,∴135k =⨯-,∴2k =,∴524y x y x =-+⎧⎨=-⎩,解得:32x y =⎧⎨=⎩.故选:C .【点睛】本题考查两直线的交点坐标,直线上点的坐标特征,解二元一次方程组.掌握交点坐标适合每条直线的解析式是解题的关键.6.B【分析】由菱形的性质可得,,AC BD OA OC OB OD ⊥==,再结合3BE =、5DE =可得)。
镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。
2024年浙江省宁波市部分学校中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )A.B. C. D. 【答案】A【解析】 【分析】直接利用相反数的定义:两数只有符号不同,即可得出答案.的相反数是故选:A .【点睛】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2. 下列计算正确的是( )A. -3+2=-5B. (-3)×(-5)=-15C. -(-22)=-4D. -(-3)2=-9【答案】D【解析】【分析】根据有理数的加减运算与乘方运算及乘法的运算法则逐一计算可得.【详解】A. -3+2=-1,故错误;B. (-3)×(-5)=15,故错误;C. -(-22)=4,故错误;D. -(-3)2=-9,正确,故选D.【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的加减运算与乘方运算及乘法的运算法则.3. 第19届亚运会将于2023年9月23日在杭州举行,其体育场及田径比赛场地——杭州奥体中心体育场,俗称“大莲花”,总建筑面积约216000平方米,将数据216000用科学记数法表示为( )A. 321610×B. 421.610×C. 52.1610×D. 60.21610× 【答案】C【分析】根据科学记数法定义处理:把一个绝对值大于1的数表示成10n a ×,其中110a ≤<,n 等于原数整数位数减1.【详解】解:根据科学记数法定义,5216000 2.1610=×;故选:C .【点睛】本题考查科学记数法,掌握科学记数法的定义是解题的关键.4. 如图,矩形ABCD 中,对角线AC BD 、交于点O ,若608AOB BD ∠=°=,,则AB =( )A. B. 4 C. 3 D. 5【答案】B【解析】 【分析】本题考查了矩形对角线相等且互相平分的性质及等边三角形的判定方法,先由矩形的性质得出OA OB =,结合题意证明AO B 是等边三角形即可.【详解】解:由矩形对角线相等且互相平分可得132AOBO BD ===, 即OAB 为等腰三角形,又60AOB ∠=°,∴OAB 为等边三角形.故4AB BO ==, ∴4DC AB ==.故选:B .5. 为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元)510 15 20 25人数 2 5 8 9 6 则这30名同学每天使用的零花钱的众数和中位数分别是( )A. 20、15B. 20、17.5C. 20、20D. 15、15【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【详解】20出现了9次,出现的次数最多,所以这30名同学每天使用的零花钱的众数为20元;30个数据中,第15个和第16个数分别为15、20,它们的平均数为17.5,所以这30名同学每天使用的零花钱的中位数为17.5元.故选B.【点睛】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错6. 如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A. 3B. 4C. D.【答案】C【解析】 【分析】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长.【详解】解:连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM =DN =4,由垂径定理,勾股定理得:OM =ON =3,∵AB ,CD 是互相垂直的两条弦,∴∠DPB =90°∵OM AB ⊥,ON CD ⊥,∴∠OMP =∠ONP =90°∴四边形MONP 是正方形,∴OP =故选C .【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.7. 已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作 PQ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交 PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D【解析】 【分析】由作图知CM=CD=DN ,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN ,∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B 选项正确; ∵∠MOA=∠AOB=∠BON ,∴∠OCD=∠OCM=180-COD 2°∠ , ∴∠MCD=180-COD °∠,又∠CMN=12∠AON=∠COD , ∴∠MCD+∠CMN=180°,∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.8. 设a ,b ,m 均为实数,( )A. 若a b >,则a m b m +>−B. 若a b =,则ma mb =C. 若a m b m +>−,则a b >D. 若ma mb =,则a b =【答案】B【解析】【分析】根据等式的性质和不等式的性质可直接进行排除选项.【详解】解:A 、若a b >,则a m +不一定大于b m −,故错误;B 、若a b =,则ma mb =,故正确;C 、若a m b m +>−,则a 不一定大于b ,故错误;D 、若ma mb =,0m ≠,则a b =;若ma mb =,0m =,则a b 或a b =,故错误;故选:B .【点睛】本题考查了等式的性质和不等式的性质.解题的关键是掌握等式的性质和不等式的性质,注意等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9. 已知(),2024A m ,(),2024B m n +是抛物线()22040y x h =−−+上的两点,则正数n =( ) A. 2B. 4C. 8D. 16【答案】C【解析】 【分析】本题考查二次函数的性质,根据函数图像上的点满足函数解析式列式求解即可得到答案;【详解】解:∵(),2024A m ,(),2024B m n +是抛物线()22040y x h =−−+上的两点, ∴2()20402024m h −−+=,2()20402024m n h −+−+=,∴2()16m h −=,2()16m n h +−=,∴4m h −=±,4m n h +−=±,即:44m h m n h −= +−=− 或44m h m n h −=− +−=, 解得:8n =或8n =−,∵n 取正数,故:8n =,故选:C .10. 如图,已知ABC ,O 为AC 上一点,以OB 为半径的圆经过点A ,且与BC 、OC 交于点E 、D ,设C α∠=,A β∠=,则(( )A. 若70αβ+=°,则弧DE 的度数为20°B. 若70αβ+=°,则弧DE 的度数为40°C. 若70αβ−=°,则弧DE 的度数为20°D. 若70αβ−=°,则弧DE 的度数为40°【答案】B【解析】【分析】本题考查了圆周角定理和三角形的外角性质,能灵活运用定理进行推理和计算是解此题的关键.连接BD ,根据圆周角定理求出90ABD ,求出90ADBβ∠=°−,再根据三角形外角性质得出1902x βα°−=+,求出 DE 的度数是1802()αβ°−+,再逐个判断即可. 详解】解:连接BD ,设 DE的度数是x , 则12DBC x ∠=, AC 过O ,90ABD ∴∠=°,A β∠= ,90ADB β∴∠=°−,C α∠= ,ADB C DBC ∠=∠+∠,1902x βα∴°−=+, 解得:1802()x αβ=°−+, 即 DE的度数是1802()αβ°−+, A .当70αβ+=°时, DE 度数是18014040°−°=°,故本选项不符合题意;B .当70αβ+=°时, DE 的度数是18014040°−°=°,故本选项符合题意;C .当70αβ−=°,即70αβ=°+时, DE的度数是1802(70)404βββ°−°++=°−或【的180(70)2502ααα°−+−°=°−,故本选项不符合题意;D .当70αβ−=°时, DE的度数是404β°−或2502α°−,故本选项不符合题意; 故选:B二、填空题:本大题有6个小题,每小题3分,共18分.11. 不等式30x −>的解集是______.【答案】3x >##3x <【解析】【分析】本题考查了一元一次不等式得解法,熟练掌握一元一次不等式的解法是解题的关键;根据一元一次不等式的解法直接解答即可.【详解】移项,得: 3x >.所以,不等式30x −>的解集是:3x >.故答案为:3x >.12. 在平面直角坐标系中,将点()23A −,向右平移3个单位长度后,那么平移后对应的点A ′的坐标是__________.【答案】()13,【解析】【分析】此题考查了点的坐标变化和平移之间的联系,根据平移时,点的坐标变化规律“左减右加”进行计算即可.【详解】根据题意,从点A 平移到点A ′,横坐标是231−+=,故点A ′的坐标是()13, 故答案为:()13,. 13. 为了弘扬中华传统文化,营造书香校园文化氛围,某学校举行中华传统文化知识大赛活动,该学校从三名女生和两名男生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是_________. 【答案】35【解析】【分析】画出树状图,再根据概率公式列式进行计算即可得解.【详解】解:画树状图如下,统计可得,共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是:123205= ;故答案为35. 【点睛】本题考查了应用列表法与树状图法求概率,准确分析是解题的关键.14. 如图,直线y x m =−+与()40y nx n n =+≠的交点的横坐标为2−,则关于x 的不等式4x m nx n −+>+的解集是_________.【答案】<2x −【解析】【分析】本题考查了一次函数的图象和性质以及与一元一次不等式的关系.满足关于x 的不等式4x m nx n −+>+就是直线4y nx n =+位于直线y x m =−+的下方的图象,据此求得自变量的取值范围,进而求解即可.【详解】解:∵直线y x m =−+与4y nx n =+的交点的横坐标为2−, ∴关于x 的不等式4x m nx n −+>+的解集为<2x −,故答案为:<2x −.15. 若关于x 的方程2230x kx k −+−=的一个实数根13x ≥,另一个实数根20x ≤,则关于x 的二次函数223y x kx k =−+−图象的顶点到x 轴距离h 的取值范围是______. 【答案】81925h ≤≤ 【解析】【分析】本题考查的是二次函数的图象与性质,由题意得:3x =时,0y ≤,0x =时,0y ≤,可以确定k 的取值范围;二次函数顶点的纵坐标为23k k −+−,在k 的取值范围内计算出23k k −+−的取值范围,即可得到顶点到x 轴距离h 的取值范围.【详解】解:由题意得:3x =时,0y ≤,0x =时,0y ≤,即:963030k k k −+−≤ −≤ , 解得:635k ≤≤, 二次函数()222233y x kx k x k k k =−+−=−−+−,顶点的纵坐标为:23k k −+−, 22111324k k k −+−=−−− , 又10−<, 当635k ≤≤时,在65k =时,23k k −+−取得最大值,即:当65k =时,2668135525 −+−=− , 在3k =时,取得最小值,即:当3k =时,23339−+−=−,即:图象的顶点到x 轴的距离h 的最小值是81812525−=,图象的顶点到x 轴的距离h 的最大值是99−=,∴h 的取值范围是81925h ≤≤, 故答案:81925h ≤≤. 16. 如图,在正方形ABCD 中,4AB =,32EC =,以点E 为直角顶点作等腰直角三角形DEF (D E F ,,为顺时针排列),连接AF ,则BF 的长为 ____________________,AF 的最大值为 ____________________.【答案】 ①.②. 4+##4+ 【解析】 【分析】本题主要考查了一点到圆上一点的最值问题,相似三角形的性质与判定,勾股定理,等腰直角三角形的性质,正方形的性质等等,正确作出辅助线构造相似三角形从而确定点F 的运动轨迹是解题的关键.为如图所示,连接BD ,先证明BDF CDE =∠∠,DFBD DE CD ==,进而证明BDF CDE ∽得到BF =,则点F 在以点B 故当A B F 、、三等共线,AF 最大,据此可得答案.【详解】解:如图所示,连接BD ,∵四边形ABCD 是正方形,∴45CDB ∠=°,BD =,∵DEF 是以点E 为直角顶点的等腰直角三角形,∴45EDF CDB ∠∠°==,DF =,∴45BDF CDE BDE ∠=∠=°−∠,∴DFBD DE CD ==,∴BDF CDE ∽,∴BFBD CE CD==∴BF =,∴点F 在以点B 为半径的圆上运动, ∴当A B F 、、三等共线时,AF 最大,∴AF 的最大值为4+;4+三、解答题:本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. 先化简,再求值: 21424a a ++−,其中2a =+.小明解答过程如下,请指出其中错误步骤的序号,并写出正确的解答过程.原式=()()222114424a a a a ⋅−+⋅−+−……① 24a =−+……②2a =+……③当2a =+时,原式=【答案】小明的解答中步骤①开始出现错误,正确解答见解析【解析】【分析】此题考查了分式的化简求值,先利用分式的加法法则计算,得到化简结果,再把字母的值代入计算即可.【详解】小明的解答中步骤①开始出现错误,正确解答如下:21424a a ++− ()()()()242222a a a a a −++−+− ()()222a a a +=+− 12a =−当2a =+时,原式==18. 已知二次函数2y ax c =+,当0x =时,3y =,=1x −时,5y =.(1)求a ,c 的值.(2)当3x =−时,求函数y 的值.【答案】(1)2,3a c == (2)21【解析】分析】本题考查求二次函数解析式,求函数值;(1)待定系数法求函数解析式即可;(2)将3x =−代入解析式,求出函数y 的值即可.【小问1详解】解:由题意,得:35c a c = += ,解得:32c a = =, ∴2,3a c ==; 【小问2详解】由(1)知:2,3a c ==, ∴223y x =+, ∴当3x =−时,()223329321y =×−+=×+=.19. 某学校计划组织学生开展课外活动,活动备选地点分别为美术馆A 、纪念馆B 、科技馆C 、博物馆D .为了解全校学生最喜欢的活动地点,随机调查了部分学生(每人仅选一个)请根据以上信息,解答下列问题:(1)在本次抽样调查中,共调查了多少名学生?(2)求出m 的值,并将条形统计图补充完整.(3)若该校有1200名学生,估计该校学生最喜欢的活动地点为B 的人数.【答案】(1)50 (2)108°;图见解析(3)240名【解析】【分析】本题考查了条形统计图、扇形统计图以及利用样本估计总体等知识,属于常考题型,从统计图中得出解题所需要的信息是解题的关键.(1)用选择A 的人数除以其所占比例即可求出调查的人数;(2)用360°乘以选择D 的占比即可求出m 的值;先求出选择C 的人数,进而可补全统计图;【(3)利用样本估计总体的思想求解.【小问1详解】解:本次共调查的学生有2040%50÷=(名); 故答案为:50;【小问2详解】解:D 类活动对应扇形的圆心角为1536010850°×=°, 故108m =.C 对应人数为()502010155−++=(名),补全条形图如下:【小问3详解】 解:10120024050×=(名), 答:估计该校最喜欢的活动地点为“B ”的学生人数大约为240名.20. 如图,在ABC 中,90BAC ∠=°,点D 是BC 中点,,AE BC CE AD ∥∥.(1)求证:四边形ADCE 是菱形;(2)若606B AB ∠=°=,,求四边形ADCE 的面积.【答案】(1)见解析 (2)【解析】【分析】(1)先证四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得12AD BC CD ==,即可得出结论; (2)由已知得212BC AB ==,再由勾股定理得AC 的长,然后由菱形的性质和三角形面积关系得2ACD ABC ADCES S S == 菱形,即可求解.【小问1详解】证明:∵,AE BC CE AD ∥∥,∴四边形ADCE 是平行四边形,∵90BAC ∠=°,点D 是BC 的中点, ∴12AD BC CD ==, ∴平行四边形ADCE 是菱形;【小问2详解】解:∵9060BAC B ∠=°∠=°,,∴30BCA ∠=°,∴212BC AB ==,∴AC =,∵四边形ADCE 是菱形,点D 是BC 的中点,∴112622ACD ABC ADCE S S S AB AC ===×=××= 菱形 【点睛】本题考查了菱形的判定与性质、含30度直角三角形的性质、直角三角形斜边上的中线性质、勾股定理等知识,熟练掌握含30度直角三角形的性质、直角三角形斜边上的中线性质,证明四边形ADCE 为菱形是解题的关键.21. 设函数11k y x=,函数22y k x b =+(12,k k ,b 是常数,1200k k ≠≠,). (1)若函数1y 和函数2y 的图像交于点()2,6A ,点()4,2B n −,①求b ,n 的值.②当12y y >时,直接写出x 的取值范围.(2)若点()8,C m 在函数1y 的图像上,点C 先向下平移1个单位,再向左平移3个单位,得点D ,点D 恰好落在函数1y 的图像上,求m 的值.【答案】(1)①9,5b n == ②02x <<或>4x (2)53m =−【解析】 【分析】(1)①采用待定系数法即可求出.②采用数形结合的方法,求出两个解析式的交点,结合图像即可求出.(2)结合题意,表示出点D 的坐标,然后将C ,D 两点代入到1y 中即可求出.【小问1详解】①把点()2,6A 代入到11k y x=中,得 162k = 112k =112y x∴= 把()4,2B n −代入到112y x=中,得 1224n −=5n ∴= ()4,3B ∴再把()2,6A 和()4,3B 代入到22y k x b =+中,得 222643k b k b += += 解得:2329k b =− =2392y x ∴=−+ 综上:9,5b n ==.②如图所示:12392y x y x = =−+解得:121224,63x x y y == == (2,6),(4,3)A B ∴结合图像,当12y y >时,x 的取值范围是:02x <<或>4x .【小问2详解】根据题意,()8, C m(5,1)D m ∴−把点C ,D 代入到1y 中,得11815k m k m = =− 解得:140353k m =− =−综上:53m =−. 【点睛】本题主要考查了待定系数法,坐标的平移,反比例函数和一次函数的图像和性质,巧妙的运用数形结合的方法是解题的关键.22. 某河流的一段如图1所示,现要估算河的宽度(即河两岸相对的两点A ,B 间的距离),可以按如下步骤操作:①先在河的对岸选定一个目标作为点A ,使AB BC ⊥;②再在河的这一边选定点B 和点C ,使AB BC ⊥;③再选定点E ,然后用视线确定BC 和AE 的交点D .(1)用皮尺测得174m BC =,60m DC =,50m EC =,求河的宽度AB ;(精确到0.1米) (2)请用所学过的知识设计一种测量旗杆高度AB 的方案.要求:①画出示意图,所测长度用a ,b ,c 等表示;②不要求写操作步骤;③结合所测数据直接用含a ,b , c 等字母的式子表示出旗杆高度AB .【答案】(1)95m (2)方案见解析,ac AB b =【解析】【分析】本题主要考查了相似三角形的应用——测量河宽和旗杆高.熟练掌握相似三角形的判断和性质,是解决问题的关键.(1)证明AB CE ,得到ABD ECD ∽△△,得到=AB BD CE CD,即得95AB =; (2)将标杆竖立在地面适当的位置,使点C 、D 、A 三点共线,测出CE b =,CB c =.根据AB ,DE 都垂直BC ,得到DE AB ∥,得到CDE CAB △≌△,得到AB CB DE CE =,旗杆的高ac AB b =. 小问1详解】∵AB BC ⊥,CE BC ⊥,∴AB CE ,∴ABD ECD ∽△△, ∴=AB BD CE CD, 即17460=5060AB −, ∴95AB =,答:河宽AB 为95m ;【小问2详解】(方法不唯一)如图.①将标杆DE a =竖立在一个适当的位置,使点C 和标杆的顶点D ,旗杆的顶点A 三点在一条直线上; ②测出CE b =,CB c =;【③计算旗杆的高度:∵DE BC ⊥,AB BC ⊥,∴DE AB ∥,∴CDE CAB △≌△, ∴AB CB DE CE=, 即ac AB b =, 故旗杆的高ac AB b=.23. 已知二次函数2y x bx c =++的图象经过点()2,c . (1)若该二次函数图象与x 轴的一个交点是()10−,. ①求二次函数的表达式:②当2t x t ≤≤−时,函数最大值为M ,最小值为N .若3M N −=,求t 的值; (2)对于该二次函数图象上的两点()()1123A x y B y ,,,,当11m x m +≤≤时,始终有12y y ≥.求m 的取值范围.【答案】(1)①2=23y x x −−;②t 的值为1− (2)2m ≤−或3m ≥.【解析】【分析】(1)①利用待定系数法求二次函数解析式;②利用配方法得到()214y x =−−,则抛物线的对称轴为直线1x =,顶点坐标为()14−,,再利用2t x t ≤≤−得1t ≤,所以21t −≥,根据二次函数的性质,当2t x t ≤≤−时,1x =时,函数有最小值4−,当x t =或2t t =−时,函数有最大值,即223M t t =−−,则()22343t t −−−−=,然后解方程即可; (2)先利用二次函数2y x bx c =++的图象经过点()2c ,得到2b =−,则可求出抛物线的对称轴为直线1x =,根据二次函数的性质,点A 到对称轴的距离大于或等于B 点到对称轴的距离,即1131x −≥−,解得11x ≤−或13x ≥,然后利用11m x m +≤≤得到11m +≤−或3m ≥,从而得到m 的范围.【小问1详解】解:①把()()210c −,,,分别代入2y x bx c =++ 得4210b c c b c ++= −+=, 解得23b c =− =− , ∴抛物线解析式为2=23y x x −−; ②∵()222314y x x x =−−=−−,∴抛物线的对称轴为直线1x =,顶点坐标为()14−,, ∵2t x t ≤≤−, ∴2t t ≤−, 解得1t ≤,∴21t −≥, ∴当2t x t ≤≤−时,1x =时,函数有最小值-4,即N =-4, 当x t =或2t t =−时,函数有最大值,即223M t t =−−, ∵3M N −=,∴()22343t t −−−−= t 2-2t -3-(-4)=3,解得11t =+,21t =−∴t 的值为1【小问2详解】 ∵二次函数2y x bx c =++的图象经过点(()2c ,, ∴42b c c ++=, 解得2b =−, ∴22y x x c =−+,抛物线的对称轴为直线1x =, ∵()()1123A x y B y ,,,在抛物线上,且12y y ≥, ∴点A 到对称轴的距离大于或等于B 点到对称轴的距离,∴1131x −≥−,∴11x ≤−或13x ≥,∵11m x m +≤≤,∴11m +≤−或3m ≥,解得2m ≤−或3m ≥.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数的最值,一元二次方程和不等式组解法,熟练掌握二次函数的图象及性质是解题的关键.24. 如图,△ABC 是圆O 的内接三角形,连结BO 并延长交AC 于点D ,设∠ACB =α,∠BAC =m α.(1)若α=30°,求∠ABD 的度数;(2)若∠ADB =n α+90°,求证m +n =1;(3)若弧AB 长是⊙O 周长的14,2∠ADB =5∠CBD ,求ABD BCDS S . 【答案】(1)60° (2)见解析(3【解析】【分析】(1)连接OA ,由∠ACB =α=30°,得∠AOB =2∠ACB =60°,根据OA =OB ,即得△AOB 是等边三角形,故∠ABD =60°;(2)延长BD 交⊙O 于E ,连接CE ,用两种方法表示∠ACE ,列方程变形即可得证明;(3)过D 作DM ⊥BC 于M ,作DN ⊥AB 于N ,由弧AB 长是⊙O 周长的14,可得∠AOB =90°,从而可证△AOB 、△DCM 、△BDN2∠ADB =5∠CBD ,可得∠CBD =30°,∠BAC =60°,设MD =MC =t ,在Rt △DCM中,CD = ,在Rt △BDM 中,BD =2DM =2t ,在Rt △BDN 中,DN =,在Rt △ADN中,AD =,即可得ABDBCDS AD S CD == . 【小问1详解】连接OA ,如图:∵∠ACB =α=30°,∴∠AOB =2∠ACB =60°,∵OA =OB ,∴△AOB 是等边三角形,∴∠ABD =60°;【小问2详解】延长BD 交⊙O 于E ,连接CE ,如图:∵BE 为⊙O 直径,∴∠BCE =90°,即∠ACE =90°﹣α,△CDE 中,∠E =∠A =m α,∠EDC =∠ADB =n α+90°,∴∠DCE =180°﹣∠E ﹣∠EDC =90°﹣m α﹣n α,即∠ACE =90°﹣m α﹣n α,∴90°﹣α=90°﹣m α﹣n α,∴m +n =1;【小问3详解】过D 作DM ⊥BC 于M ,作DN ⊥AB 于N ,如图:∵弧AB 长是⊙O 周长的14, ∴∠AOB =90°, ∴△AOB 是等腰直角三角形,∠ABO =45°,∠ACB =12∠AOB =45°,∴△DCM 、△BDN 是等腰直角三角形,∵2∠ADB =5∠CBD ,∴2(∠CBD +∠ACB )=5∠CBD ,∴2∠ACB =3∠CBD ,∴∠CBD =30°,∴∠BAC =180°﹣∠ACB ﹣∠CBD ﹣∠ABO =60°,设MD =MC =t ,在Rt △DCM 中,CDMD=t ,在Rt △BDM 中,BD =2DM =2t ,在Rt △BDN 中,DNt , 在Rt △ADN 中,AD =sin DN BAC ∠=sin 60DN °t , ∴ABD BCD S S =AD CD. 【点睛】本题考查圆的性质及综合应用,涉及等边三角形的判定及性质、等腰直角三角形的判定与性质、解直角三角形、勾股定理等知识,解题的关键是用含t 的代数式表示CD 和AD 的长度.。
2024年广东省珠海市香洲区九洲中学中考数学一模试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 的倒数是( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了求一个数的倒数,根据乘积为1的两个数互为倒数进行求解即可.【详解】解:∵,∴的倒数是,故选:D .2.有意义,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】根据被开方数为非负数求解即可.【详解】解:∵有意义,∴,解得:.故选A .【点睛】本题考查二次根式有意义的条件.掌握被开方数为非负数是解题关键.3. 今年哈尔滨旅游火出圈了,截止元旦假日第3天,哈尔滨市累计接待游客3047900人次,其中3047900这个数字用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了科学记数法,将原数写成(,n 为整数)的形式,确定a 和n 20242024-202412024-120241202412024⨯=202412024x 3x ≥3x ≤3x >3x <30x -≥3x ≥530.47910⨯53.047910⨯63.047910⨯73.047910⨯10n a ⨯110a <<的值是解答本题的关键.将3047900写成(,n 为整数)的形式即可.【详解】解:,故选:C .4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了中心对称图形与轴对称图形的概念.正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】解:A 、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、该图形是中心对称图形,不是轴对称图形,故此选项不符合题意;C 、该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、该图形是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:C .5. 下列运算中,正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据二次根式的加法、二次根式的除法、同底数幂的除法的运算法则和完全平方公式逐项判断即可.【详解】解:A10n a ⨯110a <<63047900 3.047910=⨯180︒==623a a a ÷=()222a b a b +=+B,正确,符合题意;C 、,故此选项计算错误,不符合题意;D 、,故此选项计算错误,不符合题意,故选:B.【点睛】本题考查了二次根式的加法、二次根式的除法、同底数幂的除法、完全平方公式,熟练掌握运算法则是解答的关键.6. 若反比例函数在每个象限内的函数值y 随x 的增大而减小,则( )A. B. C. D. 【答案】C【解析】【分析】根据反比例函数的性质,k >0时,在每个象限内y 随x 增大而减小列不等式求解.【详解】解:∵反比例函数在每个象限内的函数值y 随x 增大而减小,∴k-1>0,解得k >1.故选:C .【点睛】本题考查反比例函数的性质,解题关键是熟练掌握反比例函数中k 的正负对函数增减性的影响.7. 石家庄市某中学为了解八年级1200名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.给出下列判断:①这种调查方式是抽样调查;②1200名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200是样本容量.其中正确的判断有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:①这种调查方式是抽样调查故①正确;②1200名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;==62624a a a a -÷==()2222a b a ab b +=++1k y x -=k <0k >1k >1k <1k y x-=④200名学生的数学成绩是总体的一个样本,故④错误;⑤200是样本容量,故⑤正确;故选:C .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8. 如图,在中,,按以下步骤作图:分别以为圆心,大于一半的长为半径作圆弧,两弧相交于点和点,连结.若,,则的周长为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了线段垂直平分线的作法及性质,三角形的周长,根据作图过程可知,是线段的垂直平分线,根据线段垂直平分线的性质可得,进而得到的周长,即可求解,掌握线段垂直平分线的作法及性质是解题的关键.【详解】解:根据作图过程可知,是线段的垂直平分线,∴,∴的周长为.故选:.9. 如图,这是由10个全等的菱形组成的网格,菱形的顶点称为格点,我们把三个顶点都在格点上的三角形称为格点三角形,是格点三角形,将平移后仍为格点三角形(本身除外)的方法有( )A. 5种B. 6种C. 7种D. 8种【答案】C ABC AB AC >B C ,BC M N CD 8AB =4AC =ACD 9101112MN BC CD BD =ACD AC CD AD AC BD AD AC AB ++=++=+MN BC CD BD =ACD 4812AC CD AD AC BD AD AC AB ++=++=+=+=D ABC ABC【解析】【分析】根据菱形的性质画出图形解答即可.【详解】解:如图所示:故选:C .【点睛】此题考查菱形的性质,关键是根据菱形的四边相等解答.10. 如图,抛物线y =ax 2+bx +c 经过点(﹣1,0),与y 轴交于(0,2),抛物线的对称轴为直线x =1,则下列结论中:①a +c =b ;②方程ax 2+bx +c =0的解为﹣1和3;③2a +b =0;④c ﹣a >2,其中正确的结论为( )A. ①②③B. ①②④C. ②③④D. ①②③④【答案】D【解析】【分析】将点代入解析式可判断;由对称性可得另一个交点,可判断;由,可判断,由可判断,即可求解.【详解】解:抛物线经过点,,,故正确;对称轴为x =1,一个交点为,另一个交点为,方程的解为﹣1和3,故正确;为10-(,)①30(,)②12b a-=③20c a =,<④① 2y ax bx c ++=10-(,)0a b c ∴+﹣=a c b ∴+=①② 10-(,)∴30(,)∴20ax bx c ++=②由对称轴为x =1,,,则,故正确;抛物线与y 轴交于,c =2,a <0,,故正确,故选:D .【点睛】本题考查了抛物线与x 轴的交点,根与系数关系,二次函数图象与系数关系,二次函数图象上点的坐标特征,灵活运用这些性质解决问题是本题的关键.二、填空题(本大题6小题,每小题3分,共18分)将正确答案写在答题卡相应的位置上.11. 单项式的系数是______.【答案】【解析】【分析】根据单项式系数的定义:单项式中的数字因数,得出结果.【详解】解:单项式的系数是-1.故答案是:-1.【点睛】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.12. 如果,那么代数式的值为_____.【答案】7【解析】【分析】此题考查了代数式求值问题,用整体代入法求解即可.【详解】解:∵,∴,∴,故答案为:7.③∴12b a-=∴2b a =﹣20a b +=③④ 2y ax bx c ++=02(,)∴ 2c a ∴﹣>④ab -1-ab -23x y -=421x y -+23x y -=426x y -=421617x y -+=+=13. 已知是方程一个根,则另一个根为________.【答案】##【解析】【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵是方程的一个根,∴∴;∴方程的另一个根为;故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握根与系数的关系.14. 如图,直线与直线相交于点,则关于x ,y 的方程组的解为______.【答案】【解析】【分析】先把代入直线即可求出b 的值,从而得到P 点坐标,再根据两函数图象的交点就是两函数解析式组成的二元一次去方程组的解可得答案.【详解】解:∵直线经过点,∴,解得,的1x =20x m +=1x =-1x =-+1x =20x m +=21x +==21x =-1x =-1x =-1:31l y x =+2:l y mx n =+()1,P b 31y x y mx n =+⎧⎨=+⎩14x y =⎧⎨=⎩()1,P b 1:31l y x =+1:31l y x =+()1,P b 31b =+4b =∴,∴关于x ,y 的方程组的解为,故答案为:.【点睛】此题考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点的横纵坐标就是两函数组成的二元一次去方程组的解.15. 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为___________.【答案】75°##75度【解析】【分析】利用三角形内角和定理和平行线的性质解题即可.【详解】解:如图,∵∠2=90°-30°=60°,∴∠3=180°-45°-60°=75°,∵a ∥b ,∴∠1=∠3=75°,故答案为:75°.【点睛】此题考查平行线的性质,关键是根据两直线平行,同位角相等解答.16. 如图,在⊙O 中,半径OA ⊥OB ,过OA 的中点C 作FD ∥OB 交⊙O 于D 、F 两点,且CD,以O 为圆心,OC 为半径作,交OB 于E 点.则图中阴影部分的面积为______________.(1),4P 31y x y mx n =+⎧⎨=+⎩14x y =⎧⎨=⎩14x y =⎧⎨=⎩CE【解析】【详解】分析:(1)首先证明OA ⊥DF ,由垂径定理求出,由OD=2CO 推出∠CDO=30°,设OC=x ,则OD=2x,利用勾股定理求得OD 的长,再根据S 阴=S △CDO +S 扇形OBD -S 扇形OCE 计算即可.详解:连接OD ,∵OA ⊥OB ,∴∠AOB=90°,∵CD ∥OB ,∴∠OCD=90°,∴OA ⊥DF ,∴CD=,在Rt △OCD 中,∵C 是AO 中点,∴OA=OD=2CO ,设OC=x ,则x 22=(2x)2,解得:x=1,∴OA=OD=2,∵OC=OD ∠OCD=90°,∴∠CDO=30°,∵FD ∥OB ,,121212∴∠DOB=∠ODC=30°,∴S 阴=S △CDO +S 扇形OBD −S 扇形OCE=+−.点睛:本题考查了扇形面积的计算:设圆心角是n 0,圆的半径为R 的扇形面积为S ,则或,(其中l 为扇形的弧长)三、解答题(一)(本大题3小题,每小题7分,共21分)17. 计算:.【答案】【解析】【分析】本题考查了实数的运算,解题的关键是掌握相关运算的法则.根据特殊角三角函数值,零指数幂,绝对值的代数意义,二次根式的化简分别计算即可得到答案.【详解】解:.18. 图,E 是正方形内一点,是等边三角形,连接,,延长交于点F .(1)求证:;(2)求的度数.【答案】(1)见解析(2)【解析】【分析】(1)由正方形的性质可得,由等边三角形的性质可得,再证明,即可证明;(2)证明,,,可得,再利用等腰三角形的性质与平行线的性质可得答案.【小问1详解】122302360π⨯2901360π⨯π122360n r S π=1=2S lR 扇形)04sin 451︒+604sin 451)5︒+-+--415=++-6=ABCD BCE DE AE DE AB ABE DCE ≌△△AFD ∠75︒AB DC =BE CE =ABE DCE ∠=∠ABE DCE ≌△△CE BC BE ==CD BC =AB CD ∥CE CD =证明:在正方形中,,,∵ 为等边三角形,∴ ,,∴ ,即:,在和中, ,∴,【小问2详解】∵是等边三角形,∴,∵四边形是正方形∴,,∴,∴,∵,∴.19. 先化简,再求值:,其中.【答案】【解析】【分析】由题意先利用分式的运算法则进行计算化简,进而代入计算即可.【详解】解:ABCD AB DC =90ABC BCD ∠=∠=︒BCE BE CE =60EBC ECB ∠=∠=︒ABC EBC BCD ECB ∠-∠=∠-∠30ABE DCE ∠=∠=︒ABE DCE △AB DC ABE DCE BE CE =⎧⎪∠=∠⎨⎪=⎩ABE DCE ≌ BCE CE BC BE ==ABCD CD BC =AB CD ∥CE CD =()118030752CDE ∠=︒-︒=︒AB CD ∥75AFD CDE ∠=∠=︒2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭1x =+11x -2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭22111121x x x x x x x +-⎛⎫=-÷ ⎪++++⎝⎭()()()211111x x x x +=⋅++-当时,原式.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则以及分母有理化的方法是解题的关键.四、解答题(二)(本大题3小题,每小题9分,共27分)20. 2024年春节联欢晚会的吉祥物“龙辰辰”具有龙年吉祥,幸福安康的寓意,深受大家喜欢.某商场第一次用2400元购进一批“龙辰辰”玩具,很快售完;该商场第二次购进该“龙辰辰”玩具时,进价提高了,同样用2400元购进的数量比第一次少10件,求第一次购进的“龙辰辰”玩具每件的进价是多少钱?【答案】40元【解析】【分析】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.设第一次购进的“龙辰辰”玩具每件的进价是元钱,则第二次购进的“龙辰辰”玩具每件的进价是元,根据该商场第二次同样用2400元购进的数量比第一次少10件,列出分式方程,解方程即可.【详解】解:设第一次购进的“龙辰辰”玩具每件的进价是元钱,则第二次购进的“龙辰辰”玩具每件的进价是元,由题意得:,解得:,经检验,是原方程的解,且符合题意,答:第一次购进的“龙辰辰”玩具每件的进价是40元.21. 如图,在中,,点在边上,以为直径作交的延长线于点,若是的切线.(1)求证:;(2)若,,求半径的长.11x =-1x =+==20%x (120%)x +x (120%)x +2400240010(120%)x x-=+40x =40x =Rt ABC △90ACB ∠=︒D AC AD O BD E CE O CE BC =4CD =1tan 2BEC ∠=O【答案】(1)见解析(2)6【解析】【分析】(1)连接,根据切线的性质得到,得到,根据,得到,证明,根据等腰三角形的判定定理证明结论;(2)根据正切的定义求出,根据勾股定理列出方程,解方程得到答案.本题考查的是切线的性质、正切的定义、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.【小问1详解】证明:连接,是的切线,,,,,,,,,;【小问2详解】解:设的半径为,,,,,,,,OE OE EC ⊥90OED BEC ∠+∠=︒OE OD =OED ODE ∠=∠BEC CBE ∠=∠BC OE CE O OE EC ∴⊥90OED BEC ∴∠+∠=°90ACB ∠=︒ 90CDB CBE ∴∠+∠=︒OE OD = OED ODE ∴∠=∠ODE CDB ∠=∠ BEC CBE ∴∠=∠CE BC ∴=O r BEC CBE ∠=∠ 1tan 2BEC ∠=1tan 2CBD ∴∠=∴12CD BC =4CD = 8BC ∴=8EC ∴=在中,,即,解得:,即的半径为6.22. 幸福成都,美在文明!为助力成都争全国文明典范城市,某校采用四种宣传形式:A .宣传单宣传,B .电子屏宣传,C .黑板报宣传,D .志愿者宣传.每名学生从中选择一种最喜欢的宣传形式,学校就最喜欢的宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有______人,请补全条形统计图;(2)扇形统计图中,“D .志愿者宣传”对应的扇形圆心角度数为______;(3)本次调查中,在最喜欢“志愿者宣传”的学生中,有甲、乙、丙、丁四位同学表现优秀,若从这四位同学中随机选出两名同学参加学校的志愿者活动,请用列表或画树状图的方法,求选出两人恰好是甲和乙的概率【答案】(1)50,图见解析(2)(3)【解析】【分析】(1)根据C 项目的人数和所占的百分比求出总人数,再用总人数A 、C 、D 项目的人数即可解决问题;(2)用乘以 “D .志愿者宣传”的学生所占的比例即可;(3)列出表格,共有12种等可能的情况,其中被选取的两人恰好是甲和乙的有2种情况,再由概率公式求解即可.【小问1详解】本次调查的学生共有:(人),Rt OEC △222OC OE EC =+222(4)8r r +=+6r =O 108︒16360︒1020%50÷=喜欢B .电子屏宣传的人数有:(人),补全条形统计图如图所示:故答案为:50【小问2详解】“D .志愿者宣传”对应的扇形圆心角度数为;故答案为:;【小问3详解】列表得:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)共有12种等可能的结果,其中恰好是甲和乙的有2种,∴被选取的两人恰好是甲和乙的概率是.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.五、解答题(三)(本大题2小题,每小题12分,共24分)23. 在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,然后借助圆的相关知识来解决问题,例如:已知:是等边三角形,点是内一点,连接,将线段绕逆时针旋转得到线502010155---=1536010850︒⨯=︒108︒21==126ABC D ABC ∆CD CD C 60︒段,连接,,,并延长交于点.当点在如图所示的位置时:(1)观察填空:与全等的三角形是 ;(2)利用(1)中的结论,求的度数;(3)判断线段之间的数量关系【答案】(1)△BCE(2)60° (3)【解析】【分析】本题主要考查了等边三角形的性质和判定,全等三角形的性质和判定,四点共圆等,构造全等三角形是解题的关键.(1)根据等边三角形的性质得,,可知,再说明是等边三角形,可得,,进而得出,即可得出答案;(2)先说明点,,,四点共圆,可得,再根据,可得答案;(3)先证明三角形是等边三角形,再根据证明,得出,进而得出答案.【小问1详解】解:是等边三角形,,,.由旋转可知,,,是等边三角形,,,,∴故答案为:CE BE DE AD AD BE F D ACD AFB ∠FD FE FC ,,FC FE FD=+AB BC =60ACB ∠=︒60ACD DCB ∠+∠=︒A DCE 60BCE DCB ∠+∠=︒CD CE =ACD BCE ∠=∠C D F E 180AFE DCE ∠+∠=︒180AFB AFE ∠+∠=︒EFG AAS CEG DEF △≌△CG FD -ABC AB AC BC ∴==60BAC ACB ABC ∠=∠=∠=︒60ACD DCB ∴∠+∠=︒CE CD =60DCE ∠=︒DCE ∴60BCE DCB ∠+∠=︒ACD BCE ∠=∠CD CE =()SAS ACD BCE △≌△Δ:BCE【小问2详解】由(1)知.,,点,,,四点共圆,.,;【小问3详解】解:由(1)知是等边三角形,.由(2)得,点,,,四点共圆,.在上取一点,使,是等边三角形,,,.:点,,,四点共圆,,∴,,24. 已知抛物线与轴交于点和,与轴交于点C()SAS ACD BCE △≌△ADC BEC ∠∠∴=180ADC FDC ∠+∠=︒ BEC C ∴∠+180FDC =︒∴C D F E 180AFE DCE ∴∠+∠=︒180AFB AFE ∴∠+∠=︒60AFB DCE ∴∠=∠=︒DCE △CE DE ∴=180120DFE DCE ∠=︒-∠-︒C D F E 60CFE CDE ∴∠=∠=︒FC G FG FE =∴EFG EG FE ∴=60EGF ∠-︒120CGE DFE ∴∠=︒=∠ C D F E ECG EDF ∴∠=∠()AAS CEG DEF ≌CG FD ∴=FC FG CG FE FD∴=+=+24(0)y ax bx a =++>x (1,0)A (4,0)B y(1)求抛物线的表达式;(2)如图1,点是线段上的一个动点(不与点,重合),过点作轴的垂线交抛物线于点,连接,当四边形恰好是平行四边形时,求点的坐标;(3)如图2,在(2)的条件下,是的中点,过点的直线与抛物线交于点,且,在直线上是否存在点,使得与相似?若存在,求点的坐标;若不存在,请说明理由.【答案】(1)(2)(3)存在,的坐标为或.【解析】【分析】(1)用待定系数法可得;(2)由,可得直线解析式为,设,由,有,即可解得;(3)可得直线的表达式为,知在直线上,,过点作轴于点,过作轴于,根据,可得直线和直线关于直线对称,有,,,从而可得直线的表达式为,点的坐标为,即得,,故P BC B C P x Q OQ OCPQ Q D OC Q E 2DQE ODQ ∠=∠QE F BEF △ADC △F 257y x x =-+()22Q ,-F (4,2)(1.6, 2.8)-254y x x =-+(4,0)B (0,4)C BC 4y x =-+(,4)P m m -+OC PQ =244m m -+=(2,2)Q -DQ 22y x =-+A DQ AD =AC =Q QH x ⊥H E EK x ⊥K 2DQE ODQ ∠=∠AQ QE QH DAO QAH QGH EGB ∠=∠=∠=∠1GH AH ==(3,0)G QE 26y x =-E (5,4)EKB COA ∽V V EBK CAO ∠=∠,与相似,点与点是对应点,设点的坐标为,当时,有解得;当时,,解得.【小问1详解】解:把,代入得:,解得:,;【小问2详解】解:由,可得直线解析式为,设,则,,,要使四边形恰好是平行四边形,只需,,解得,;【小问3详解】解:在直线上存在点,使得与相似,理由如下:是的中点,点,点,由(2)知,直线表达式为,的DAC GEB ∠=∠BEF △ADC △E A F (,26)t t -BEF CAD ∽V V =(4,2)F BEF DAC ∽V V =(1.6, 2.8)F -(1,0)A (4,0)B 24y ax bx =++4016440a b a b ++=⎧⎨++=⎩15a b =⎧⎨=-⎩254y x x ∴=-+(4,0)B (0,4)C BC 4y x =-+(,4)P m m -+2(,54)Q m m m -+224(54)4PQ m m m m m ∴=-+--+=-+OC PQ OCPQ OC PQ =244m m ∴-+=2m =(2,2)Q ∴-QE F BEF △ADC △D OC (0,4)C ∴(0,2)D (2,2)Q -∴DQ 22y x =-+,直线上,,过点作轴于点,过作轴于,如图:,故,,,直线和直线关于直线对称,,,,由点,可得直线的表达式为,联立,解得或,点的坐标为,,,,,,,,,即,与相似,点与点是对应点,设点的坐标为,则当时,有,在(1,0)A A ∴DQ AD =AC =Q QH x ⊥H E EK x ⊥K QH CO Q P AQH ODQ ∠=∠2DQE ODQ ∠=∠ HQA HQE ∴∠=∠∴AQ QE QH DAO QAH QGH EGB ∴∠=∠=∠=∠1GH AH ==(3,0)G ∴(2,2)Q -(3,0)G QE 26y x =-25426y x x y x ⎧=-+⎨=-⎩54x y =⎧⎨=⎩22x y =⎧⎨=-⎩∴E (5,4)(4,0)B 1BK ∴=4EK =BE =∴14BK OA EK OC==90EKB COA ∠=︒=∠Q EKB COA ∴∽V V EBK CAO ∴∠=∠CAO DAO EBK EGB ∴∠-∠=∠-∠DAC GEB ∠=∠BEF ∴ ADC △E A F (,26)t t -EF =BEF CAD ∽V V BE EF AC AD =解得或(在右侧,舍去),;当时,,解得(舍去)或,,综上所述,的坐标为或.【点睛】本题考查二次函数的综合应用,涉及待定系数法求一次函数、二次函数的解析式,平行四边形,相似三角形等知识,难度较大,综合性较强,解题的关键是证明,从而得到与相似,点与点是对应点.∴=4t =6t =E (4,2)F ∴BEF DAC ∽V V BE EF AD AC=∴=8.4t = 1.6t =(1.6, 2.8)F ∴-F (4,2)(1.6, 2.8)-DAC GEB ∠=∠BEF △ADC △E A。
2023-2024 学年第二学期模拟考试九年级数学试卷1.答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上.2.考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效.3.全卷共6页,考试时间90分钟,满分100分.一.选择题(共10小题,每小题3分,共30分)1. 某正方体的平面展开图如图所示,则原正方体中与“祖”字所在的面相对的面上的字是()A. 繁B. 荣C. 昌D. 盛【答案】D【解析】【分析】本题主要考查正方体的展开图,熟练掌握正方形的展开图是解题的关键.根据正方形的展开图找到对立面即可得到答案.【详解】解:正方体中与“祖”字所在的面相对的面上的字是“盛”,故选:D.2. 剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .该图不是轴对称图形,是中心对称图形,不符合题意;B . 该图是轴对称图形,不是中心对称图形,符合题意;C .该图既是轴对称图形,又是中心对称图形,不符合题意;D .该图不是轴对称图形,是中心对称图形,不符合题意.故选:B .3. 某校“校园之声”社团招新时,需考查应聘学生的应变能力、知识储备、朗读水平三个项目,布布的三个项目得分分别为85分、90分、92分.若评委按照应变能力占20%,知识储备占30%,朗读水平占50%计算加权平均数来作为最终成绩,则布布的最终成绩为( )A. 85分B. 89分C. 90分D. 92分【答案】C【解析】【分析】本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,根据加权平均数的求法可以求得布布的最终成绩,本题得以解决.【详解】解:根据题意得:8520%9030%9250%90×+×+×=(分), ∴布布的最终成绩是90分.故选:C .4. 图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,60BCD ∠=°,50BAC ∠=°,当MAC ∠为( )度时,AM BE ∥.A. 15B. 65C. 70D. 115【答案】C【解析】 【分析】本题考查了平行线的性质,三角形内角和定理.根据“两直线平行内错角相等”求得ABC ∠的度数,利用三角形内角和定理求得ACB ∠的度数,再利用“两直线平行内错角相等”即可求解.【详解】解:∵AB 、CD 都与地面l 平行,∴AB CD ∥,∴60ABC BCD ∠=∠=°,∵50BAC ∠=°,∴180506070ACB ∠=°−°−°=°,∵AM BE ∥,∴70MAC ACB ∠=∠=°,故选:C .5. 下列计算正确的是( )A. 3332a a a ⋅=B. ()326ab ab =C. 232(3)6ab ab ab ⋅−=−D. ()321052ab ab b ÷−=− 【答案】D【解析】【分析】本题考查幂的运算,涉及同底数幂的乘除法、积的乘方等知识.根据同底数幂的乘除法、积的乘方法则逐一解答.【详解】解:A 、33632a a a a ⋅=≠,故本选项不符合题意;B 、()32366ab a b ab =≠,故本选项不符合题意; C 、22332(3)66ab ab a b ab ⋅−=−≠−,故本选项不符合题意;D 、()321052ab ab b ÷−=−,故本选项符合题意; 故选:D .6. 下列命题正确的是( )A. 在圆中,平分弦直径垂直于弦并且平分弦所对的两条弧B. 顺次连接四边形各边中点得到的是矩形,则该四边形是菱形C. 若C 是线段 AB 的黄金分割点,2AB =,则1AC =−D. 相似图形不一定是位似图形,位似图形一定是相似图形【答案】D【解析】【分析】此题考查了菱形的判定、命题与定理的知识,解题的关键是了解菱形的判定方法、相似图形、中点的四边形的知识,难度不大根据菱形的判定方法、相似图形、中点四边形和黄金分割点判断即可.【详解】解:A 、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,原命题是假命题,不符合题意;B 、顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相互垂直,原命题是假命题,不符合题意;C 、已知点C 为线段AB 的黄金分割点,若2AB =,则1AC =−或3AC =−不符合题意;D 、位似图形一定是相似图形,但是相似图形不一定是位似图形,原命题是真命题,符合题意; 故选:D .7. 古代数学著作《孙子算经》中有“多人共车”问题:今有五人共车,二车空;三人共车,十人步.问人与车各几何?其大意是:每车坐5人,2车空出来;每车坐3人,多出10人无车坐,问人数和车数各多少?设共有x 人,y 辆车,则可列出方程组为( ) A. ()52310y x y x −= +=B. 52310y x y x −= +=C. ()52310y x y x −= +=D. ()52310y x y x −= −=【答案】A【解析】 【分析】本题考查了二元一次方程组的应用,设共有x 人,y 辆车,根据题意,列出方程组,解方程组即可求解,根据题意,找到等量关系,列出二元一次方程组是解题的关键.【详解】解:设共有x 人,y由题意可得,()52310y x y x −= +=, 故选:A .8. 某露营爱好者在营地搭建一种“天幕”(如图1),其截面示意图是轴对称图形(如图2),对称轴是垂直于地面的支杆AB 所在的直线,撑开的遮阳部分用绳子拉直,分别记为AC ,AD ,且2AC AD ==米,CAD ∠的度数为140°,则此时“天幕”的宽度CD 是( )A. 4sin70° 米B. 4cos70°米C. 2sin20°米D. 2cos20°米【答案】A的【分析】本题考查了解直角三角形,等腰三角形三线合一的性质,解题的关键是掌握相关知识的灵活运用.根据正弦的定义,即可求解.【详解】解:2AC AD == 米,对称轴是垂直于地面的支杆AB 所在的直线,CAD ∠的度数为140°,CE DE ∴=,1702CAE CAD ∠=∠=°,sin CECAE AC∠=, sin 2sin 70CE AC CAE ∴=⋅∠=⋅°24sin 70CD CE ∴°,故选:A .9. 已知二次函数 ()20y ax bx c a ++≠图象的一部分如图所示,该函数图象经过点(50),,对称轴为直线2x =.对于下列结论:0b >①;②a c b +<;③多项式2ax bx c ++可因式分解为(1)(5)x x +−;④无论 m 为何值时,242am bm a b +≤+.其中正确个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】本题主要考查了二次函数图象与系数的关系,二次函数 图象的性质等等:先根据图像的开口方向和对称轴可判断①;由抛物线的对称轴为1222x x x +=可得抛物线与x 轴的另一个交点为(1,0)−,由此可判断②;根据抛物线与x 轴的两个交点坐标可判断③;根据函数的对称轴为2x =可知2x =时y 有最大值,由此可判断④.【详解】解:∵抛物线开口向下,∵对称轴为直线22b x a=−=, ∴40b a =−>,结论①正确;∵抛物线与x 轴一个交点为()50,,且对称轴为直线2x =, ∴抛物线与x 轴的另一个交点为()1,0−,即当=1x −时,0y =,∴0a b c −+=,∴a c b +=,结论②错误;∵抛物线2y ax bx c ++与x 轴的两个交点为()1,0−,()50,, ∴多项式2ax bx c ++可因式分解为()()15a x x +−,结论③错误;∵对称轴为直线2x =,且函数开口向下,∴当2x =时,y 有最大值,由2y ax bx c ++得,当2x =时,42y a b c =++,当x m =时,2y am bm c ++,∴无论m 为何值时,242am bm c a b c ++≤++,∴242am bm a b +≤+,结论④正确;综上:正确的有①④.故选:B .10. 如图,菱形ABCD 的边长为3cm ,60B ∠=°,动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA −−运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm /s 的速度沿着边 BA 向A 点运动,到达点A 后停止运动,设点P 的运动时间为()s x ,BPQ 的面积为y 2cm ,则y 关于x 的函数图象为( )的A. B.C. D.【答案】D【解析】【分析】本题考查动点问题的函数图象.根据拐点得到各个自变量范围内的函数解析式是解决本题的关键.用到的知识点为:30°的直角三角形三边比是:2.易得点P 运动的路程为3x cm ,点Q 运动的路程为x cm .当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上,过点Q 作QE BC ⊥于点E ,求得QE 的长度,然后根据面积公式可得y 与x 关系式;当点P 在线段CD 上时,12x <≤,BQ 边上的高是AB和CD 之间的距离,根据面积公式可得y 与x 之间的关系式;当点Q 在线段AD 上时,23x <≤,作出BQ 边上的高,利用三角形的面积公式可得y 与x 的关系式.然后根据各个函数解析式可得正确选项.【详解】解: 点P 的速度是3cm/s ,点Q 的速度为1cm/s ,运动时间为(s)x ,∴点P 运动的路程为3x cm ,点Q 运动的路程为x cm .①当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上.过点Q 作QE BC ⊥于点E ,90BEQ ∴∠=°.60B ∠=° ,30BQE ∴∠=°.12BE x ∴=cm .QE x ∴cm .22113(cm )22BPQ S BP QE x ∆∴=⋅=×.2(01)y x x ∴=≤≤. ∴此段函数图象为开口向上的二次函数图象,排除B ;②当12x <≤时,点P 在线段CD 上,点Q 在线段AB 上.过点C 作CF AB ⊥于点F ,则CF 为BPQ 中BQ 边上的高.90BFC ∴∠=°.60ABC ∠=° ,30BCF ∴∠=°.3cm BC = ,3cm 2BF ∴=.CF ∴.211(cm )22BPQ S BQ CF x ∆∴=⋅=.(12)y x x ∴=<≤. ∴此段函数图象为y 随x 的增大而增大的正比例函数图象,故排除A ;③当23x <≤时,点P 在线段AD 上,点Q 在线段AB 上.过点P 作PM AB ⊥于点M .90M ∴∠=°.四边形ABCD 是菱形,AD BC ∴∥.60ABC ∠=° ,60MAP ∴∠=°.30APM ∴∠=°.由题意得:(93)cm APx =−. 93cm 2x AM −∴=.PM ∴.211)22BPQ S BQ PM x ∆∴=⋅=.y ∴ ∴此段函数图象为开口向下的二次函数图象.故选:D .二.填空题(共5小题)11. 分解因式:244xy xy x −+=____________________【答案】()221x y −【解析】【分析】先提取公因式x ,再利用完全平方公式进行二次分解即可.【详解】解:244xy xy x −+=()2441x y y −+=()221x y −,故答案为:()221x y −.【点睛】本题考查提公因式法与公式法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12. a 是方程210x x −−=的一个根,则代数式2202422a a −+的值是______.【答案】2022【解析】【分析】本题考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.由题意得21a a −=,根据()2220242220242a a a a −+=−−,利用整体思想即可求解.【详解】解:由题意得:210a a −−=∴21a a −= ∴()22202422202422024212022a a a a −+=−−=−×= 故答案为:202213. 如图,在ABC 中,40B ∠=°,50C ∠=°,通过观察尺规作图的痕迹,可以求得DAE ∠=___________.【答案】25°##25度【解析】【分析】本题主要考查线段垂直平分线的性质、角平分线的定义、三角形内角和定理等知识点,熟练掌握线段垂直平分线的性质、角平分线的定义是解答本题的关键.由题可得,直线DF 是线段AB AE 为DAC ∠的平分线,再根据线段垂直平分线的性质、角平分线的定义以及三角形内角和定理求解即可.【详解】解:由题可得,直线DF 是线段AB 的垂直平分线,AE 为DAC ∠的平分线,∴AD BD DAE CAE =∠=∠,, ∴40B BAD ∠=∠=°, ∴80ADC B BAD ∠=∠+∠=°,∵50C ∠=°,∴180805050DAC ∠=°−°−°=°, ∴1252DAE CAE DAC ∠=∠=∠=°, 故答案为:25°.14. 如图,在平面直角坐标系中,四边形OABC 为菱形,反比例函数()0,0k y k x x =≠>的图象经过点C ,交AB 于点D ,若2sin 3B =,6OCD S =△,则k 值为___________.【答案】【解析】【分析】过点C 作CE OA ⊥于点E ,根据菱形性质,得2sin sin 3CE AOC B OC ∠==∠= ,设2CE a =,则3OC OA a ==,再表示出点C 的坐标,根据26212菱形OCD OABC S S ==×= 列方程即可求出a 的值及k 的值.【详解】解:过点C 作CE OA ⊥于点E ,四边形OABC 为菱形,,OC OA AOC B ∴=∠=∠,2sin sin 3CE AOC B OC ∴∠==∠=, 设2CE a =,则3OC OA a ==,在Rt OEC △中,OE =,,2)C a ∴26212菱形OCD OABC S S ==×= ,又3212菱形OABC S OA CE a a =×=×= ,0a > ,a ∴,C,k =的故答案为:【点睛】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、三角函数等知识,关键是辅助线的作法.15. 如图,矩形ABCD 的长BC =,将矩形ABCD 对折,折痕为PQ ,展开后,再将C ∠ 折到DFE ∠的位置,使点 C 刚好落在线段AQ 的中点 F 处,则折痕DE =___________.【解析】 【分析】本题考查了矩形的性质,直角三角形的性质,相似三角形的判定和性质等知识,解决问题的关键是作辅助线,构造相似三角形.过点F 作GH BC ⊥于H ,交AD 于G ,不妨设CQDQ a ==,可求得AQ ,AD ,DG ,FG ,FH 的值,证明DGF FHE △∽△,从而求得EF ,进而求得CE 和BE 的值,从而求得结果.【详解】解:如图,设DQCQ a ==,则22DF CD DQ a ===, 四边形ABCD 是矩形,90∴∠=∠=°C ADC ,BC AD =,F 是AQ 的中点,24AQ DF a ∴==,AD BC ∴===== ∴1a =∴1DQCQ ==,2DF CD ==,4AQ =, 过点F 作GH BC ⊥于H ,交AD 于G ,90GHC ∴∠=°,∴四边形CDGH 是矩形,2GH CD ∴==,GH CD ∥,AFG AQD ∴△∽△, ∴12AG FG AF AD DQ AQ ===,12AG AD ∴==,1122FG DQ ==, 13222FH GH FG ∴=−=−=, 90DGF FHE ∠=∠=° ,90HFE HEF ∴∠+∠=°,、90DFE C ∠=∠=° ,90DFG HFE ∴∠+∠=°,DFG HEF ∴∠=∠,DGF FHE ∴△∽△, ∴DG DF FH EF=,∴2EF=,EF ∴,CE EF ∴==,DE ∴===. 三.解答题(共7题,共55分)16 计算:4cos30°﹣2|+)0+(﹣13)﹣2. 【答案】8. .【解析】【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】4cos30°﹣2|++(﹣13)-2=214(211()3−+−+=219−++−+=8.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.17. 先化简:231(1)224x x x −−÷++,再从1−,0中选取适合的数字求这个代数式的值. 【答案】21x +,当0x =时,值为2 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的减法,再计算除法运算,得到化简的结果,结合分式有意义的条件,把0x =代入计算即可. 【详解】解;231(1)224x x x −−÷++()()()1123222x x x x x +−+−÷++ ()()()221211x x x x x +−⋅++− 21x =+, ∵分式有意义,∴1x ≠±且2x ≠−, ∴当0x =时,原式2201=+; 18. 某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间的数据(单位:min ),并对数据进行了整理,描述,部分信息如下: a .每天在校体育锻炼时间分布情况:每天在校体育锻炼时间x (min ) 频数(人) 百分比6070x ≤<14 14% 7080x ≤<40 m 8090x ≤< 3535% 90x ≥n 11% b .每天在校体育锻炼时间在8090x ≤<这一组的是:80 81 81 81 82 82 83 83 84 84 84 84 84 85 85 85 85 85 85 85 85 86 87 87 87 87 87 88 88 88 89 89 89 89 89根据以上信息,回答下列问题:(1)表中m =______,n =______;(2)若该校共有1000名学生,估计该校每天在校体育锻炼时间不低于80分钟的学生的人数;(3)该校准备确定一个时间标准p (单位:min ),对每天在校体育锻炼时间不低于p 的学生进行表扬.若要使25%的学生得到表扬,则p 的值可以是______.【答案】(1)40%,11(2)460人(3)86(答案不唯一)【解析】【分析】(1)根据所有组别的频率之和为1求出m 即可;用组别6070x ≤<的频数除以频率得到参与调查的学生人数,进而求出n 的值即可;(2)用1000乘以样本中每天在校体育锻炼时间不低于80分钟的学生的人数占比即可得到答案; (3)把每天在校体育锻炼时间从低到高排列,找到处在第75名和第76名的锻炼时间即可得到答案.【小问1详解】解:由题意得,114%35%11%40%m =−−−=,1414%100÷=人,∴这次参与调查的学生人数为100人,∴10011%11n =×=,故答案为:40%,11;【小问2详解】解:()100011%35%460×+=人,∴估计该校每天在校体育锻炼时间不低于80分钟的学生的人数为460人;【小问3详解】解:把每天在校体育锻炼时间从低到高排列,处在第75名和第76名的锻炼时间分别为85min 86min 、, ∵要使25%的学生得到表扬,∴8586p <≤,∴p 的值可以为86,故答案为:86(答案不唯一).【点睛】本题主要考查了频率与频数分布表,用样本估计总体等等,灵活运用所学知识是解题的关键. 19. 如图,在ABC 中,AB BC =,AB 为O 的直径,AC 与O 相交于点 D ,过点D 作DE BC ⊥于点E ,CB 延长线交O 于点F .(1)求证:DE 为O 的切线;(2)若1BE =,2BF =,求【答案】(1)见解析;(2).【解析】【分析】(1)根据已知条件证得OD BC 即可得到结论;(2)如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,构建矩形ODEH ,根据矩形的性质和勾股定理即可得到结论.【小问1详解】证明:OA OD = ,BAC ODA ∴∠=∠,AB BC = ,BAC ACB ∴∠=∠,ODA ACB ∴∠=∠,OD BC ∴ .DE BC ⊥ ,DE OD ∴⊥,OD 是O 的半径,DE ∴是O 的切线;【小问2详解】解:如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,∴四边形ODEH 是矩形,OD EH ∴=,OH DE =,OH BF ⊥ ,2BF =,112BH FH BF ∴===, 2OD EH BH BE ∴==+=,24AB OD ∴==,OH ==DE OH ∴==2BD ∴=,AD ∴【点睛】本题考查了切线的判定,勾股定理,矩形的判定与性质,垂径定理,等腰三角形的性质.解题的关键:(1)熟练掌握切线的判定;(2)利用勾股定理和垂径定理求长度.20. 2024年龙年春晚吉祥物形象“龙辰辰”正式发布亮相,作为中华民族重要的精神象征和文化符号,千百年来,龙的形象贯穿文学、艺术、民俗、服饰、绘画等各个领域,也呈现了吉祥如意、平安幸福的美好寓意.吉祥物“龙辰辰”的产生受到众人的热捧.某工厂计划加急生产一批该吉祥物,决定选择使用A 、B 两种材料生产吉祥物.已知使用B 材料的吉祥物比A 材料每个贵50元,用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍.(1)求售卖一个A 材料、一个B 材料的吉祥物各需多少元?(2)一所中学为了激励学生奋发向上,准备用不超过3000元购买A 、B 两种材料的吉祥物共50个,来奖励学生.恰逢工厂对两种材料吉祥物的价格进行了调整:使用A 材料的吉祥物的价格按售价的九折出售,使用B 材料的吉祥物比售价提高了20%,那么该学校此次最多可购买多少个用B 材料的吉祥物?【答案】(1)购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元(2)该学校此次最多可购买10个B 材料的吉祥物【解析】【分析】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.(1)设使用A 材料生产的吉祥物的单价为x 元/个,则使用B 材料生产的吉祥物的单价为(50)x +元/个,利用数量=总价÷单价,结合用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍,可列出关于x 的分式方程,解之经检验后,可得出使用A 材料生产的吉祥物的单价,再将其代入(50)x +中,即可求出使用B 材料生产的吉祥物的单价;(2)设该学校此次购买m 个使用B 材料生产的吉祥物,则购买()50m −个使用A 材料生产的吉祥物,利用总价=单价×数量,结合总价不超过3000元,可列出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.【小问1详解】解:设购买一个A 材料的吉祥物需x 元,则购买一个B 材料的吉祥物需()50x +元, 依题意,得:30001500450x x =×+, 解得:50x =,经检验,50x =是原方程的解,且符合题意,∴50100x ,答:购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元;【小问2详解】设该学校此次购买m 个B 材料的吉祥物,则购买()50m −个A 材料的吉祥物,依题意,得:()()5090%50100120%3000m m ×−+×+≤,解得:10m ≤.∴m 的最大值为10,答:该学校此次最多可购买10个B 材料的吉祥物.21. 【项目式学习】【项目主题】自动旋转式洒水喷头灌溉蔬菜【项目背景】寻找生活中的数学,九(1)班分四个小组,开展数学项目式实践活动,获取所有数据共享,对蔬菜喷水管建立数学模型,菜地装有1个自动旋转式洒水喷头,灌溉蔬菜,如图1所示,观察喷头可顺、逆时针往返喷洒.【项目素材】素材一:甲小组在图2中建立合适的直角坐标系,喷水口中心O 有一喷水管OA ,从A 点向外喷水,喷出的水柱最外层的形状为抛物线.以水平方向为x 轴,点O 为原点建立平面直角坐标系,点A (喷水口)在y 轴上,x 轴上的点D 为水柱的最外落水点.素材二:乙小组测得种植农民的身高为1.75米,他常常往返于菜地之间.素材三:丙小组了解到需要给蔬菜大鹏里拉一层塑料薄膜用来保温保湿,以便蔬菜更好地生长.【项目任务】任务一:丁小组测量得喷头的高OA =23米,喷水口中心点O 到水柱的最外落水点D 水平距离为8米,其中喷出的水正好经过一个直立木杆EF 的顶部F 处,木杆高3EF =米,距离喷水口4OE =米,求出水柱所在抛物线的函数解析式.任务二:乙小组发现这位农民在与喷水口水平距离是p 米时,不会被水淋到,求 p 的取值范围. 45°,截面如图3,求薄膜与地面接触点与喷水口的水平距离是多少米时,喷出的水与薄膜的距离至少是10厘米?(直接写出答案,精确到0.1米).【答案】任务一:2152643y x x =−++;任务二:1 6.5p <<;任务三:8.4米. 【解析】 【分析】任务一:运用待定系数法求解即可;任务二:求出当 1.75y =时x 的值,则p 的取值在这两根之间;(3)设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MN GQ m ==,则直线GM 与直线y x =−平行,则MP =,直线GM 的解析式是:y x b =−+,联立方程组得到关于x 的一元二次方程,利用Δ0=求出b 的值,从而求出OM ,继而求出OP ,从而得解. 【详解】解:任务一:由题意得抛物线过点203A,,()80D ,,()43F ,, 设抛物线的解析式为2y ax bx c ++, 将点203A ,,()80D ,,()43F ,代入得:2364801643c a b c a b c = ++= ++=, 解得:165423a b c =− = =, ∴水柱所在抛物线的函数解析式为2152643y x x =−++;; 任务二:当 1.75y =时,2152 1.75643x x −++= 解得121 6.5x x ==, ∴ p 的取值范围是:1 6.5p <<;任务三:∵薄膜所在平面和地面的夹角是45°,∴薄膜所在的直线与直线y x =−平行,如下图所示:设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MNGQ m ==,则直线GM 与直线y x =−平行.又∵薄膜所在平面和地面的夹角是45°,即45MPN ∠=°,∴MN NP =,MP =, 设直线GM 的解析式是:y x b =−+, 直线GM 的解析式与抛物线解析式联立得:2152643y x x y x b =−++ =−+∵这个到薄膜最近的点是G , ∴方程2152643x x x b −++=−+,即有20192643x x b −+=−两个相等得实数根, ∴2912Δ40463b =−−××−=, 解得:79396b =, ∴直线GM 的解析式是:79396y x =−+, 令793096y x =−=+, 解得: 79396x =∴793096M,,793m 96OM =,∴793968.4m OP OM MP =+=≈, 答:求薄膜与地面接触点与喷水口的水平距离是8.4米时,喷出的水与薄膜的距离至少是10厘米【点睛】本题考查待定系数法求二次函数解析式,二次函数的图象与性质,等腰直角三角形的判定与性质,二次函数与几何综合等知识,利用数形结合思想解题是关键.22. 【综合与实践】【问题背景】在四边形ABCD 中,E 是CD 边上一点,延长BC 至点F 使得CF CE =,连接DF ,延长BE 交DF 于点G .【特例感知】(1)如图1,若四边形ABCD 是正方形时.①求证:BCE DCF ≌;②当G 是DF 中点时,F ∠=__________度; 【深入探究】(2)如图2,若四边形ABCD 是菱形,2AB =,当G 为DF 的中点时,求CE 的长;【拓展提升】(3)如图3,若四边形ABCD 是矩形,3AB =,4AD =,点H 在BE 的延长线上且满足5BE EH =,当EFH 是直角三角形时,请直接写出CE 的长.【答案】(1)①见解析;②67.5;(2)2;(3)411,43或2. 【解析】【分析】(1)①运用正方形的性质和SAS 即可证明; ②连接BD ,则1452CBD ABC ∠=∠=°,运用全等三角形的性质和三角形的内角和推导90BGF ∠=°,从而得出BG 垂直平分DF ,继而求出CBE ∠,从而得解;(2)点G 作GM BC ∥交CD 于M ,设GM x =,则2CE CF x ==,12ME x =−,证明MGE CBE ∽得到MG ME CB CE=,从而列出方程求解即可; (3)说明90FEH ∠<°,从而分当90H ∠=°时和当90EFH ∠=°时两种情况,运用相似三角形对应边成比例列出方程求解即可.【详解】(1)①∵四边形ABCD 是正方形,∴BC DC =,90BCE DCF ∠=∠=°.又∵CE=CF ,∴()SAS BCE DCF ≌.②连接BD ,∵四边形ABCD 是正方形, ∴1452CBD ABC ∠=∠=°, 由①得:BCE DCF ≌,∴BEC F ∠=∠,又∴90CBE F CBE BEC ∠+∠=∠+∠=° ∴()18090BGFCBE F ∠=°−∠+∠=°, 又∵G 是DF 中点,∴BG 垂直平分DF ,∴BD BF =,∴BG 平分CBD ∠,122.52CBE CBD ∠=∠=°, ∴9067.5F CBE ∠=°−∠=°,故答案为:67.5;(2)过点G 作GM BC ∥交CD 于M ,∵DG FG =,∴1DM CM ==,12MG CF =. 设GM x =,则2CE CF x ==,12ME x =−.∵GM BC ∥,∴MGE CBE ∠=∠,GME BCE ∠=∠.∴MGE CBE ∽. ∴MG ME CB CE=.即1222x x x −=,解得11x =−,21x −(舍去).∴CE=2−.(3)CE 的长为411,43或2. 理由如下: ∵四边形ABCD 是矩形,3AB =,4AD =∴3AB CD ==,4AD BC ==,∴CE BC <,BEC CBE ∠>∠,∴45BEC ∠>°,又∵CE CF =,∴45FEC CFE ∠=∠=°,∴18090FEH FEC BEC ∠=°−∠−∠<°,当90H ∠=°时,如下图所示:设CE CF a ==,则BE ,4BF BC CF a =+=+, 又∵5BE EH =,∴65BH BE ==, ∵90H BCE ∠=∠=°,FBH EBC ∠=∠,∴BFH BEC △∽△, ∴BF BH BE BC == 解得:2a =或43,即2CE =或43当90EFH ∠=°时,过点H 作HN BC ⊥于M ,如下图所示:则CE HN ∥,∴BCE BNH △∽△ ∴56BCCE BE BN NH BH ===,即456CE BN NH ==, ∴245BN =,45CN BN BC =−=,65NH CE =,∵45CFE ∠=°,90EFH ∠=°,∴45HFN ∠=°,FN HN =, ∴6455CN CF FN CE CE =+=+=, ∴411CE =, 综上所述:CE 的长为411,43或2. 【点睛】本题考查正方形的性质,菱形的性质,矩形的性质,相似三角形的判定与性质,等腰三角形的判定与性质,直角三角形存在性问题等知识,灵活运用相似三角形的判定和性质解决问题是解题的关键.。
2024年上海市奉贤区中考一模数学试题一、选择题(本大题共6题,每题4分,满分24分)l下列函数中是二次函数的是()A.y=2x+lB.y =—2xC.y=x 2 +22.将抛物线y=x 2向右平移3个单位长度得到的抛物线是(A. y=x 2+3B. y=x 2-3C. y =(x -3)2D.y=启D.y=(x +3)23在Rt丛ABC 中,乙C=90气AC=S ,乙4=a ,那么BC 的长是()A.St an aB. 5c ot aC. 5sin aD. Sc os a4如图,在心灶死中,点D、E 分别在AB、AC 的反向延长线上,已知AB =2AD,下列条件中能判定DEii BC 的是()EDBAC l DEl AC 2 A.—=-B.—=-C —= -AE2BC 2EC 3s.已知同=5,例=3'且b 与a 方向相反,下列各式正确的是()3.3.5.5 A .b=::...aB. b=-::...aC. b=::...aD.b=-::...a5 5 336如图,将"访C 绕点8顺时针旋转,使得点A 落在边AC 上,点A、C 的对应点分别为D、E ,边DE 交AE 2D.—=-EC 3BC 千点F,连接CE.下列两个三角形不一定相似的是(BCA.6BAD 与_BCEB.VBDF 与1:::,.ECFC.. DCF 与6.BEFD. 6DBF 与.DEB二、填空题(本大题共12题,每题4分,满分48分)x-y 7.如果x :y =5:3,那么——-=8计算3(2a+b)-4a=9已知抛物线y =(a-2)入3-x开口向上,那么a的取值范围是10已知抛物线y =-2x 2 +l在对称轴左侧部分是的.(填“上升”或“下降”)ll.如果P是线段AB的黄金分割点,AB=2cm,那么较长线段AP的长是12.某人顺着坡度为1:✓3的斜坡滑雪,下滑了120米,那么商度下降了一米.cm13如图,已知ADIi BEi/CF,它们依次交直线l 1千点A 、B、C,交直线l 2千点D 、E 、F,已知AB:AC=3:5, DF=lO,那么EF的长为14如图,已知6.ABC的周长为15,点E、F是边BC的三等分点,DEii AB, DF I I AC,那么心DEF 的周长是.ABc15如图,已知"ABC 在边长为1个单位的方格纸中,三角形的顶点在小正方形顶点位置,那么L.ABC 的正切值为.广六----,-勹,B[----';--7.y..-斗I --4AC石16在1.A BC中,乙4=45°'cos乙B =—-(乙B是锐角),BC=✓S ,那么AB的长为517如图是某幢房屋及其屋外遮阳篷,已知遮阳篷固定点A距离地面4米(即AB=4米),遮阳篷的宽度5AC为2.6米,遮阳篷与房屋墙壁的夹角a的余弦值为—,当太阳光与地面的夹角为60°时,遮阳篷在地13面上的阴影宽度BD 为米.18如图,在梯形ABCD 中,ADIi BC, BC=3AD,点E 是AB中点,如果点F在DC 上,线段EF 把梯形分成而积相等的两个部分,那么——=DF DC8A D三、解答题(本大题共7题,满分78分)19.计算tan45° -l cot 30°-l l .2 s in 60°-2cos 60° 20已知抛物线y=x 2+bx+c 经过点A(3,0), B(O, -3).(])求抛物线表达式并写出顶点坐标;(2)联结AB,与该抛物线的对称轴交千点P,求点P的坐标.2]如图,在ABC 中,G 是,ABC 的重心,联结AG 并延长交BC 千点D.AC(I)如果AB动,万它=石,那么AD =(用向榄;、b 表示);(2)已知AD=6,AC=8,点E 在边AC 上,且LAGE =乙C,求AE 的长.22.如图l,某小组通过实验探究凸透镜成像规律,他们依次在光具座上垂直放趾发光物箭头、凸透镜和光屏,并调整到合适的窝度.如图2,主光轴/垂直千凸透镜MN,且经过凸透镜光心O,将长度为8厘米的发光物箭头AB 进行移动,使物距oc 为32厘米,光线AO 、BO 传播方向不变,移动光屏,直到光屏上呈现一个消晰的像A'Ir,此时测得像距OD 为12.8厘米.4,`'I尤I\片Pl(I)求像A'B'的长度.(2)已知光线AP平行千主光轴l,经过凸透镜MN折射后通过焦点F,求凸透镜焦距OF的长.l'&!l23如图,在J访C中,AB=AC,点D在边BC上,已知LAFD=乙B,边DF交AC千点E.(I)求证:AF·CE=CD-FE:AB BC(2)连接AD,如果—-=——,求证:AD2=AEAC.AF DF24在平面直角坐标系中,如果两条抛物线关千直线x=m对称,那么我们把一条抛物线称为另一条抛物线关千直线·x=I/1的镜像抛物线(I)如图,已知抛物线y=x2-2x顶点为A.yiXA@求该抛物线关千y轴的镜像抛物线的表达式;I@已知该抛物线关千直线x=rn的镜像抛物线的顶点为B,如果tanL.OB A=..:.(乙OBA是锐角),求m的4仙I(2)已知抛物线y=-:;-x2 +bx+ c(b >0) 顶点为C,它的一条镜像抛物线的顶点为D,这两条抛物线4的交点为E(2,l).如果CDE是直角三角形,求该抛物线的表达式25在直角梯形ABCD中,ADIi BC,乙8=90°,AD=6, AB=4, BC> AD, LADC 平分线交边BC于点E,点F在线段DE上,射线CF与梯形ABCD的边相交千点G.4(l )如图1,如果点G 与A 重合,当tan 乙BCD =一时,求BE 的长;B二C3(2)如图2,如果点G 在边AD 上,联结BG,当DG =4,且YCGB cn VBAG 时,求sin 乙BCD 的值;B A穹三(3)当F 是D E 中点,且AG =l 时,求CD 的长.2024年上海市奉贤区中考一模数学试题一、选择题(本大题共6题,每题4分,满分24分)l下列函数中是二次函数的是(A. y=2x+l 【答案】C 【解析)B. y=—2xC.y=x2 +2D.y=启【分析】木题考查了二次函数的定义,根据二次函数的定义逐项分析即可,熟练掌握其定义是解决此题的关键.【详解】A.y=2x+l是一次函数,故不符合题意:B.y=—是反比例函数,故不符合题意:2xC.y= x2 +2是二次函数,故符合题意:D. y=石了不是二次函数,故不符合题意,故选:C.2.将抛物线y=x2向右平移3个单位长度得到的抛物线是(A. y= x2 +3【答案)C【解析】B. y=x2-3C. y =(x-3)2【分析】根据抛物线平移规律:上加下减,左加右减解答即可D.y=(x+3)2【详解】解:抛物线y= x2向右平移3个单位长度得到的抛物线是y=(x-3)2.故选:C【点睛】本题考查了二次函数图象的平移,理解乎移规律是解题的关键.3在Rt丛ABC中,乙C=90°,AC=S, LA=a,那么BC的长是()A.Stana【答案】A【解析)B. ScotaC. SsinaD. Scosa【分析】木题考查了正切定义,正切等千对边比邻边,先画出图形,再根据正切三角函数的定义即可得.【详解】由题意,画出图形如下:AB C BC 则tan A =—一,即tan a =一—,AC 5 解得BC=5tana,故选:A .4如图,在心钮C 中,点D、E 分别在AB、AC 的反向延长线上,已知AB =2AD,下列条件中能判定DEii BC的是()E DBACl A—=-AE2【答案]C 【解析]【分析】木题考查了相似三角形的判定及性质,利用相似三角形的判定及性质逐一判断即可求解,熟练掌握DEl B —=-BC 22-3= AC -EC c AE 2D.—=-EC 3相似三角形的判定及性质是解题的关键.AB【详解】解:AB=2AD ,...—-=2,ADAC 1.... ABA、巾—=-,及—-=2不能判定DEii BC,故不符合题意;AE 2AD DE IAB B、巾—-=一,—-=2不能判定DEii BC,则错误,故不符合题意;BC 2 AD AC 2 C、—=-,EC 3 AC 2 ·-=-=2,AE 1AB ·—=2,AD :心EO公ABC,:.乙ADE=乙ABC,:.DEii BC,故符合题意;AE 2 ABD、巾—=-、—=2不能判定DEii BC,故不符合题意EC 3 AD 故选:C5.已知忖=5,树=3,且E与;的方向相反,下列各式正确的是()3-A . b =::...a【答案l B 【解析l【分析】本题考查了平面向见的线性运算由b与a的方向相反,且lal=S,I 叶=3'可得b和a的关系.3 -B.b = --aa 5-3= bcta 5-3= -b D 【详解】解:·:1111=5,I 叶=3,. ·. I 叶=3忆I,5... b与a的方向相反,�3-:.b=-::....a .故选:B .6如图,将.ABC 绕点B 顺时针旋转,使得点A 落在边AC 上,点A、C 的对应点分别为D、E,边D E 交BC千点F,连接CE.下列两个三角形不一定相似的是(B CA.6BAD 与.c.BCEB.VBDF与6.ECFC.DCF与6.BEFD. DBF 与...D邸【答案】D 【解析】【分析】本题考查相似三角形的判定、旋转性质、等腰三角形的性质,根据旋转的性质和相似三角形的判定逐项判断即可.熟练掌握相似三角形的判定是解答的关键.【详解】解:如图,BE由旋转性质得AB=BD, BC= B E, L.ABD=乙CBE,乙4=乙BDE,乙4CB=乙DEB AB BD BCBE:.,6.BAJ)v>心BCE,故选项A不符合题意;.:乙ABD=乙CBE,AB=BD, BC=BE, :.丛=丛DB =纽CE=纽EC ,:.乙BDF =乙BCF,又LDFB=乙CFE,:.D:.BDFV>D:.ECF,故选项B 不符合题意;.:乙DCF=乙FEB,又乙DFC=乙BFE,:. e.DCF (/)t.BEF,故选项C 不符合题意;根据题意,无法证明DBF 与..DEB 相似,故选项D 符合题意,故选:D .二、填空题(本大题共12题,每题4分,满分48分)x-y 7.如果x:y=S :3,那么一一-=【答案]23【解析]5【分析】根据x :y =5:3得到x =-:-Y,把它代入后而的式子求出比值.3 【详解】解:·:x: y =5:3, 5 :. 3x=5y ,即x = - y ,35 -y-y :.江立=3=3.yy3故答案是:一.23【点睛】木题主要考查了比例的性质,解题的关键是掌握比例基本的性质.8.计算3(2a+b)-4a =【答案】2a+3h【解析】【分析】木题主要考查了平面向揽,利用平面向量的定义与运算性质解答即可,熟练掌握平面向量的运算性质是解题的关键.【详解】3(2a+E)-4a=6a+3b-4a=2a+3l1:故答案为:2a+3b.9.已知抛物线y=(a-2)入3_x开口向上,那么a的取值范围是【答案l a>2##2<a令【解析】【分析】本题主要考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.利用二次函数y= ax2 +bx+c的性质:a>o时,抛物线开口向上,列出不等式解答即可.【详解】解:?抛物线y=(a-2)x2-x开口向上,:. a-2>0,:. a>2.:. a的取值范围是:a>2.故答案为:a>2.10已知抛物线y=-2x2+]在对称轴左侧部分是的.(填“上升”或“下降”)【答案】上升【解析】【分析】本题考查了二次函数图象的性质,熟练掌握二次函数y=ax2 +k的性质是解答本题的关键.根据性质解答即可.【详解)解:·:y=-2x2+1, a=-2<0,:.抛物线升口向下.对称轴是直线y轴,..在对称轴左侧部分是上升的.故答案为:上升.l l.如果P是线段AB的黄金分割点,AB=2cm,那么较长线段AP的长是【答案】(-1+石)【解析J【分析】木题考查了黄金分割的定义,关键是明确黄金分割所涉及的线段的比根据黄金分割的定义解答.【详解】解:设AP=xcm,根据题意列方程得,X2=2(2-X),即x2+2x-4=0,解得X1=-1+✓5心2=-l-石(负值舍去)故答案为:(-l+..f.订12.某人顺着坡度为1:.f_诈筛斜坡滑雪,下滑了120米,那么商度下降了一米.【答案)60【解析)cm【分析】此题考查了解直角三角形的应用——坡度坡角问题,设垂直高度,表示出水平距离,利用勾股定理求解即可,解题的关键是掌握坡度坡角的定义.【详解】?坡度为l:✓3,...设高度下降了x(x>O)米,则水平前进了石x米,由勾股定理得:x2+(✓3x) 2+ 3x =120气解得:x=60,故答案为:60.13.如图,已知ADIi BEi/CF,它们依次交直线l1千点A、B、c.交直线l2千点D、E、F,已知AB:AC=3:5, DF=lO,那么EF的长为【答案】4【解析)【分析】木题考查的是平行线分线段成比例定理,根据平行线分线段成比例定理列出比例式,代入已知数据计算即可,灵活运用定理、找准对应关系是解题的关键.【详解】?AD I BE CF, AB: AC=3:5,AB DE 3= =-,AC DF 5·: DF=lO,DE 3=-,l0 5:. D E=6,:. EF=l0-6=4.故答案为:4.14如图,已知6.ABC的周长为15,点E、F是边BC的三等分点,DEii AB, DF II AC,那么丛DEF 的周长是.AB c【答案)5【解析)【分析】本题主要考查了相似三角形的判定与性质,平行线的性质,利用平行线的性质和相似三角形的判定与性质解答即可,熟练掌握相似三角形的判定与性质是解题的关键.【详解】解:?点E,F是边BC的三等分点,I:.EF =..:.B e.'."DE II AB, DF II AC,:.乙DEF=乙B,. ·..• DEF C/)•ABC,..七DEF 的周长:心FE=乙C,E F I 凇C的周长=—-=-,B C 3:. DEF的周长=-xl5=5.3故答案为: 5.l5.如图,已知乙ABC 在边长为1个单位的方格纸中,三角形的顶点在小正方形顶点位置,那么LABC 的正切值为广.十六.勹,B:: , , , AC 【答案)-##0.5【解析)【分析】本题考查勾股定到及三角形函数的性质等知识点,构建合适的直角三角形即可解决问题,构造出合适的直角三角形是解题的关键.【详解】连接CD,如图所示,r····r····,....-,.B , : ::····! ,...,...,.1.] A C易得6.BCD是直角三角形,由勾股定理得,CD=扩了F=丘,在R t 矗BCD 中,BD=卢=2石,CD 扛1tan乙ABC =—=—=-.BD 2石2故答案为:一.I 16.在..ABC 中,石乙A=45°,cos乙B=—(乙B是锐角),【答案】3BC=石,那么AB的长为.【解析)【分析】本题主要考查了解直角三角形,勾股定理,过点C作CD.L AB寸-/),先解Rt b.DBC得到BD=l,即可利用勾股定理求出CD=2,再解Rt七ADC求出AD=2,则AB=AD+BD=3.【详解】解:如图所示,过点C作CD上AB-=f D,在R心DBC中,cosB=壁汇正,BC=石,B C 5:. B D=l,:.CD=�=2•CD在R t1,.AD C中,tan A=一—=1,AD:. AD=2,:. AB=AD+BD=3,故答案为:3.ABD17如图是某幢房屋及其屋外遮阳篷,已知遮阳篷的固定点A距离地面4米(即AB=4米),遮阳篷的宽度5AC为2.6米,遮阳篷与房屋墙壁的夹角a的余弦值为—,当太阳光与地面的夹角为60°时,遮阳篷在地13面上的阴影宽度BD为米.【答案】(2.4-石)【解析)【分析】本题考查解直角三角形的应用,先作CF上AB千点F,作CE上BD,交BD的延长线千点E,然后根据锐角三角函数和勾股定理,可以求得BE和DE的值,从而可以求得BD的值.【详解】解:作CF上AB千点F,作C E.L BD,交BD的延长线千点E,如图,5 由已知可得,AC=2.6米,cosa=—,LAFC=9()气AB=4米,13:. AF= AC-cos a = 2.6x —= 1 13...CF=J AC 2 -AF 2 =五言=2.4(米),BF=AB-AF = 4-1= 3(米),:.CE=BF=3米,CF=BE=2.4米,.乙CDE =60°,乙CED =90气:.DE= C E 3= = tan60°石石:. BD= B E-DE= (2.4-和(米)故答案为:(2.4-打)18如图,在梯形ABCD 中,ADIi BC, BC=3AD,点E 是AB 中点,如果点F 在DC 上,线段EF 把梯形分成而积相等的两个部分,那么——=DF D CA DB3 【答案l .:..##0.754【解析】【分析】木题考查梯形,相似三角形的判定和性质,三角形的面积,关键是由三角形的面积公式得到CFM=3FN,证明VFDM戎FCN,即可求解连接AF ,BF,过F 作MN_j_BC交BC 于N,交AD 延长线千M,由ADIi BC,得到MN_j_AD,由点E 是AB 中点,得到屾FAE 的面积=VFBE 的面积,由线段EF 把梯形分成面积相等的两个部分,得到6ADF 的面积=心BCF 的面积,由三角形面积公式得到FM=3FN,由YFDMcnYFCN,得到FD MF DF 3 —=—=3,即可求出——=-.FC NF DC 4【详解】解:连接AF ,BF ,过F作MN..1BC交BC于N,交AD延长线千M,A D M...夕.--�·: ADIi BC,:.MN..1.AD,了点E是AB中点,:..,.FAE 的面积=VFBE 的面积线段EF把梯形分成面积相等的两个部分,:.心AD F的面积=纽CF的面积,.. -AD· FM =-BC·FN , 2 2·: BC=3AD,:. FM =3FN,·: DMIICN,:. V FDM戎FCN,FD MF :.—=—=3, FC NFDF 3 ·-=-DC 4故答案为:一.34 三、解答题(本大题共7题,满分78分)19.计算即145°2 s in 60° -2cos 60°-lcot30°-ll.3-【答案)石2【解析)【分析】本题考查了实数的运算原式利用特殊角的三角函数值计算即可求出值,熟练掌握运算法则和特殊角的三角函数值是解本题的关键.【详解】tan45° 2si n 60°-2cos60°石l l -I石-112x 一-2x-2 2 =古-(石-I)=罕-扣l3-石=- -!cot 30° -II 20.已知抛物线y= x 2 +bx+c 经过点A(3,0),B(0,-3)(1)求抛物线表达式并写出顶点坐标;(2)联结AB,与该抛物线的对称轴交千点P,求点P的坐标.【答案】(1)抛物线表达式为y =x2-2.x -3;顶点坐标为(1,--4);(2)P (l ,-2)【解析J【分析】木题主要考查了二次函数的图象与性质,一次函数的图象与性质.(L)利用待定系数法和配方法解答即可;(2)利用待定系数法求得直线AB 的解析式,令x=l,求得Y 值,则结论可得.【小问l详解】解:抛物线y= x 2+bx+c 经过点A(3,0),B(0,-3), 9+3b =0{�::+c =O , b =-2 •{c =-3''...抛物线表达式为y="y =x " -2x -3;y = x 2 -2x -3= (x -1)2-4, .抛物线的顶点坐标为(1,-4);【小问2详解】解:设直线AB的解析式为y=kx+n,3k+n=0•{n= -3'{: :1-3直线AB的解析式为y=x-3. A B与该抛物线的对称轴交千点p,抛物线的对称轴为直线x=l,..当x=l时,y=1-3=-2.:. P(I,-2).2]如图,在ABC中,G是乙ABC的重心,联结AG并延长交BC千点D.AC(I)如果AB=a,A C =b,那么AD=(用向量a、b表示);(2)已知AD=6,AC=8,点E在边AC上,且L A GE=乙C,求AE的长.1 I2 2【答案】(l)-a+-b(2)3;【解析】【分析】本题主要考查了平面向量,三角形的巫心,相似三角形的判定与性质,(l)利用平面向量的定义解答即可;(2)利用三角形的重心的定义和相似三角形的判定与性质解答即可.【小问l详解】解:AB=a,AC=b,:. BC=B A+AC=-a+b·G是ABC的重心,联结AG并延长交BC千点D,:.A D为心ABC的BC边上的中线,即点D为BC的中点,1 1 -l -.. B D =-B C =--a .十-b2 2 2 __ _ _ _ 1-l -l -i -:. AD=AB+BD=a-.:...a+.:...b=.:...a+.:...b 2 2 2 2故答案为: 1 l-a+-b .2 2【小问2详解】·G 是._ABC 的重心,2 2 . ·. AG = -AD = -x6=4.3 3·LAGE=乙C,:._GAE c.n 1..CAD,AE AD :.-= AGAC AE 6 ..= - 4 8:. A E =3乙GAE =LCAD,22如图],某小组通过实验探究凸透镜成像的规律,他们依次在光具座上垂直放趾发光物箭头、凸透镜和光屏,并调整到合适的商度.如图2,主光轴l垂直千凸透镜MN,且经过凸透镜光心O,将长度为8匣米的发光物箭头AB进行移动,使物距oc 为32匣米,光线AO、BO传播方向不变,移动光屏,直到光屏上呈现一个清晰的像A'B',此时测得像距OD为12.8匣米.儿八牲广I(I)求像A'B'的长度,,.A[H2 (2)已知光线AP 平行干主光轴I'经过凸透镜MN 折射后通过焦点F,求凸透镜焦距OF 的长.【答案】(1)3.2厘米64 (2)—厘米.【解析l【分析】本题主要考查了相似三角形的应用,平行四边形的判定与性质等知识点,(I )利用相似三角形的判定与性质,通过证明丛OAB丑�O A'B'与6.0AC v>,OA'D 解答即可;(2)过点A'作A'E I OD交1\tlN于点E,利用平行四边形的判定与性质和相似三角形的判定与性质解答即可,熟练掌握相似三角形的判定与性质是解题的关键.【小问l详解】巾题意得:AB I MN I A'B', OC=32cm,OD=l2.8cm,AB=8cm,·: AB/I AB',:. LOAB-LOA'B',. AB OA..=A,B OA',·: AB/I AB',:. "OAC v>•QA'D,OA OCOA'OD. AB OCA'B'OD8 32A'B'12.8:. A'B'=3.2.占像A'B'的长度3.2厘米.【小问2详解】过点A'作A'E I OD交MN于点E,如图,`'I •';,·: A'E I OD, MN A'B',...四边形A'EOD为平行四边形,:. A'E=OD=l2.8cm,OE=A'D.同理:四边形ACOP为平行四边形,:. AP=0C=32cm,·: AP I CD, A'E I OD,:. AP J A'E,:.6AP沪ti.A'EO,PO AP 32 5=-=-=-,OE A'E 12.8 2PO 5=-A'D 2·: MN j: A'B',:. �PQF cn�'DF,PO OF 5= =-,A'D DF 25 64:. OF=-=-OD=—(厘米).7 7:.凸透镜焦距OF的长为—-厘米.723如图,在..ABC中,AB=AC,点D在边BC上,已知LAFD=乙B,边DF交AC千点E.(1)求证:AFCE=CD·FE;AB BC(2)连接AD,如果—-=——,求证:AD2 =AEAC.AF DF【答案】(l)见详解(2)见详解【解析】【分析】木题主要考查了等腰三角形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.(I)利用等腰三角形的性质和相似三角形的判定与性质解答即可;(2)利用相似三角形判定与性质解答即可.【小问l详解】证明:·:AB=AC,..乙ABC=乙ACB,·:乙AFD=乙B,:.乙AFD=乙ACB.:乙AEF=乙DEC,:心AEF0立EC,AF FE :.-=— DC CE':.AF-CE=CD-FE;【小问2详解】AB BC ·:—=—乙AFD=乙B ,AF DF':.L:::,.ABC夕心AFD,...乙ACB=乙ADF,乙DAC=乙EAD,. ·. µADC O µAED,AD AC :.-= AE AD':. AD 2 = AE·AC.24在平面直角坐标系中,如果两条抛物线关千直线x=m对称,那么我们把一条抛物线称为另一条抛物线关千直线x=m的镜像抛物线(I)如图,已知抛物线y=x 2-2x顶点为A.XA@求该抛物线关千y轴的镜像抛物线的表达式;@已知该抛物线关千直线x=m 的镜像抛物线的顶点为B,如果tan LOBA =.:.(乙OBA 是锐角),求m 的4值.(2)已知抛物线y=�x 2 +bx+c(b> 0)的顶点为C,它的一条镜像抛物线的顶点为D,这两条抛物线4的交点为E(2,l ).如果CDE 是直角三角形,求该抛物线的表达式3 5 【答案J Cl) (D y = x 2 + 2x ;@--或-(2)y=�(x+2)2-34【解析】2 2【分析】Cl )@由y=x 2 -2x=(x-1) -1,可得A(l,-1),则该抛物线关千y 轴的镜像抛物线的顶点为A(-1,-1),然后求镜像抛物线的表达式即可:@当X=/11.在点A 左侧时,该抛物线关千直线X=m.的镜像抛物线的顶点为B(2m-l,-l),如图1-l ,连接AB 交Y 轴于点E,则OE=I,由tan 乙OBA =-,可4得BE=-2m+l=4,计算求解即可;如图1-2,当x=m 在点A 右侧时,同理可得,2m-1=4,计算求解即可;(2)如图2,由题意知,若A CDE 是直角三角形,则"CDE 是等腰直角三角形,则EH =CH =DH,设EH=CH =DH= t,由£(2,1),可得C(2-t,l -t),即抛物线表达式为4 y=�(x-2+t)2 +1-t,将E(2,J )代入得,l =�(2-2+t)2+1-t,求出满足要求的t.进而可得抛物4线的表达式.【小问l详解】@解:·:y=x 2-2x=(x-1}2-l, :. A(l,-1),...该抛物线关于y 轴的镜像抛物线的顶点为A(-1,-1),:.该抛物线关千y 轴的镜像抛物线的表达式为y=(x+Jf-1.即y=X 2 +2X;@当x =m 在点A 左侧时,·: A(l,-1),该抛物线关千直线x=m 的镜像抛物线的顶点为B,:. B(2m-l,-l),如图1-1,连接AB 交Y 轴千点E,则OE =l,vxx=m图1-1·: tan 乙OB A=.:....,1 4:. BE=-2m +l=4,3解得,m =-一;2如图1-2,当x=m在点A右侧时,I , , ,,, A x=m图1-2同理可得,2m-l =4,5解得,m =一;23.. 5 综上所述,m 的值为--或-;2 2【小问2详解】解:如图2,y,图2由题意知,若CDE是直角三角形,则CDE是等腰直角三角形,则EH=CH=DH,设EH=CH=DH=t,·: E(2,1),:. C(2-t,1-t), :.抛物线的表达式为= y -(x-2+t)2+l -t ,4 将E (2,l )代入y =�(4 �(x -2+t)2+1-t 得,I =�(2-2+1/ +1-t ,4 解得,t=4或t=O (舍去),:.抛物线的表达式为1=) -(x+2)2 -3.4 【点睛】木题考查了二次函数解析式,轴对称的性质,等腰三角形的判定与性质,正切等知识,熟练掌握二次函数解析式,轴对称的性质,等腰三角形的判定与性质,正切是解题的关键.25在直角梯形ABCD 中,ADI/BC,乙B=90°,AD=6, AB=4, BC> AD,乙ADC 的平分线交边BC 于点E,点F在线段DE 上,射线CF 与梯形ABCD 的边相交千点G.4(I)如图I,如果点G 与A 重合,当tan乙BCD =一时,求BE 的长:勹三C (2)如图2,如果点G在边AD 上,联结BG,当DG=4,且VCGBcnVBAG 时,求sin 乙BCD 的值;B 三((3)当F 是D E 中点,且AG =l 时,求CD 的长【答案](I) 4石(2)—(3)CD 的长为5或9+寸7【解析】【分析】(I )过点D 作DH .L BC 千点H,利用且角梯形的性质,矩形的判定与性质求得DH,利用直角三角形的边角关系定理求得CH,利用勾股定理求得CD,利用角平分线的定义和平行线的性质得到CD=CE,则BE=BC-CE,(2)过点D作DM..LBC千点M,利用(I)结论,勾股定理和相似三角形的判定与性质求得BC,CM,再利用等腰直角三角形的判定与特殊角的三角函数值解答即可;(3)利用分类讨论的方法分两种情况讨论解答:@当点G在AD上时,利用等腰三角形的三线合一的性质,全等三角形的判定与性质解答即可;@当点G在AB上时,连接DG,GE,延长DG,CG交千点N,利用勾股定理求得BE,利用相似三角形的判定与性质求得AN,再利用全等三角形的判定与性质解答即可.【小问l详解】尸`C·: A D Ii BC,乙B=90°,解:过点D作DH..L BC千点H,如图,:.乙BAD=90°,·:DH.LBC,:.四边形ABHD为矩形,:. DH= A B= 4, BH =AD= 6,4tan乙BCD=_:_,DH 4=-,CH 3:.CH =3,:.CD=�=S,QADII BC,...乙ADE=乙DEC,Q乙心E=乙CDE,...乙CDE=乙CED,:.CE=CD=S,:. BC=BH +CH =9,.·.BE= BC -CE= 9-5 =4:【小问2详解】过点D作DM..l BC千点M,如图,产三c由(1)知:AD=BM =6, DM =AB= 4, CD= C E,QDG=4,AD=6,:.AG=2,:.BG=�=2乔·: VCGB=VBAG,BG BC...乙BAG=乙CGB=90°,—=—AG BG'2石BC· ·. =2 2石':.BC=lO,:.CM=BC-BM=4,:.DM=CM=4,: ..,.D MC为等腰直角三角形,...乙BCD=乙CDM=45°,:.sin乙BCD=sin45°=—;【小问3详解】@当点G在AD上时,如图,三c由(1)知:CD=C E,·: F是DE中点,:.CF..l DE,『DF G:F D;乙CDF在6DGF几DCF中,乙DF G=乙DFC=90°.」氏F车DCF(ASA),:. DG =DC,QAG=l,A D=6,:.DG=5,:. C D=DG=5:@当点G在AB上时,连接DG,GE,延长DG,CG交于点N,如图,A D人'-二二2..-.一.一一··一G I''、·. 、·``、、、、`、E C由(1)知:CD=CE,·: F是D E中点,:.CF上DE,:.cc为DE的垂直平分线,:.GD=GE,:. G D2 =GE2,:. A G2 +A D2 = B G2 +BE2,:. 12 +62 =32 + B E2,:. BE=2打,·: ADIi BC,:. V A NGv>VBCG,AG ANBG B CI AN..-=3 BC在l::JJNF和"DCF中,{;:D F D F乙CDF,乙NFD=乙CF D=90°:.,.DNF轧DCF(AAS),:. CD=ND,设CD=x,则BC=CE+ B E= x+ 2打,AN=DN -DA= CD-DA= x-6,1x-6-=.. 3-x+2打':. x=9+打,:. CD=9+打,综上,CD的长为5或9+.J了【点睛】木题主要考查了直角梯形的性质,平行线的性质,矩形的判定与性质,直角三角形的性质,直角三角形的边角关系定理,勾股定理,全等三角形的判定与性质,相似三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,过梯形的上底的一点作高线是解决此类问题常添加的辅助线.。
2023—2024学年度第二学期期中质量检测初四数学试题本试卷共8页,满分150分,考试时间120分钟.考试结束后.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将学校、班级、姓名、考试号、座号填写在答题卡和试卷规定位置.2. 选择题每小题选出答案后,用 2B 铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.非选择题必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内;如需改动,先划掉原来答案,然后再写上新答案.严禁使用涂改液、胶带纸、修正带修改.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记.5.评分以答题卡上的答案为依据.不按以上要求作答的答案无效.一、选择题(本题共 10 小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填在下面的表中.每小题4分, 满分40分,错选、不选、多选,均记0分.)1. 某体育场有10000个座位,10000用科学记数法表示为( )A. 4110×B. 50.110×C. 41010×D. 31010×【答案】A【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法进行解答即可.【详解】根据科学记数法的表示形式10n a ×,110a ≤<,可确定1a =,n 值等于原数的整数位数减1,可确定4n =,∴10000用科学记数法表示为:4110×.故选:A2. 下面的几何图形:其中是轴对称图形但不是中心对称图形的共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】 【分析】根据中心对称图形和轴对称图形的概念判断即可.【详解】解:正方形和圆既是中心对称图形,也是轴对称图形;等边三角形是轴对称图形,不是中心对称图形;正五边形是轴对称图形,不是中心对称图形,故选:C .【点睛】本题考查了中心对称图形和轴对称图形的识别,解题的关键是掌握中心对称图形和轴对称图形的概念,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;如果一个平面图形沿一条直线折叠直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.3. 下列运算正确的是( )A. 23a a a ⋅=B. 33a a −=C. 432a a a ÷=D. ()235a a = 【答案】A【解析】【分析】本题主要考查了同底数幂的运算法则,合并同类项,解题的关键是掌握同底数幂相乘(除),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方;合并同类项,【详解】解:A 、23a a a ⋅=,故A 正确,符合题意;B 、32a a a −=,故B 不正确,不符合题意;C 、43a a a ÷=,故C 不正确,不符合题意;D 、()236a a =,故D 不正确,不符合题意;故选:A .4. 一组数据3,3,4,6,8,9中位数是( )A. 4B. 5C. 5.5D. 6【答案】B【解析】【详解】试题分析:数据3,3,4,6,8,9的中位数是:(4+6)÷2=5,故选B .考点:中位数;统计与概率. 的5. 不等式组30240xx+>−≤的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】【分析】根据解不等式组的一般步骤解不等式组,求出不等式组的解集即可判断.【详解】解∶30 240 xx+>−解①得,x>﹣3,解②得,x≤2,不等式组的解集是﹣3<x≤2,表示在数轴上如下:故选:C.【点睛】此题考查的是解不等式组,掌握解不等式组的一般步骤、解集的取法和用数轴表示解集是解决此题的关键.6. 如图,直线a∥b,若∠1=24°,∠A=46°,则∠2等于()A. 46°B. 70°C. 40°D. 30°【答案】B【解析】【分析】如详解中图,先根据对顶角相等得出∠ADB的度数,再由三角形外角的性质得出∠3,即可由平行线的性质求出∠2的度数.【详解】如图,∵∠1=24°,∴∠ADB=∠1=24°.∵∠3是△ABD的外角,∴∠3=∠A+∠ADB=46°+24°=70°.∵直线a∥b,∠3=70°,∴∠2=∠3=70°.故选B.小,需要熟练掌握基本知识.7. 设点A(x1,y1)和点B(x2,y2)是反比例函数y=kx图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=-2x+k的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】如图1,根据当x1<x2<0时,y1>y2可知:反比例函数y=kx图象上,y随x的增大而减小,得k>0;如图2,再根据一次函数性质:-2<0,所以图象在二、四象限,由k>0得,与y轴交于正半轴,得出结论.【详解】解:∵当x1<x2<0时,y1>y2,∴反比例函数y=kx图象上,y随x的增大而减小,∴图象在一、三象限,如图1,∴k >0,∴一次函数y=-2x+k 的图象经过二、四象限,且与y 轴交于正半轴,∴一次函数y=-2x+k 的图象经过一、二、四象限,如图2,故选C .【点睛】本题考查了一次函数与反比例函数的图象和性质,知道:①当k >0,双曲线的两支分别位于第一、三象限,在每一象限内y 随x 的增大而减小;②当k <0,双曲线的两支分别位于第二、四象限,在每一象限内y 随x 的增大而增大;反之也成立;③一次函数y=kx+b 中,当k >0,图象在一、三象限;k <0,图象在二、四象限;b >0时,与y 轴交于正半轴,当b <0时,与y 轴交于负半轴.8. 甲、乙两人沿着总长度为10km 的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为km/h x ,则下列方程中正确的是( )A 1010121.2x x −= B. 10100.21.2x x −= C. 1010121.2x x −= D. 10100.21.2x x−= 【答案】D【解析】【分析】根据题意可直接进行求解. 【详解】解:由题意得:10100.21.2x x−=; 故选D ..【点睛】本题主要考查分式方程应用,熟练掌握分式方程的应用是解题的关键.9. 如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB=4,BC=2,那么线段EF 的长为( )B.C.D. 【答案】B【解析】 【详解】解:连接AF ,根据折叠的性知AF=CF ,AC ⊥EF ,OA=OC ,由AD=2,CD=4,根据勾股定理可求得,所以△COF ∽△CDA ,因此根据相似的性质可得OC OF CD AD =2OF =,可求得,所以故选B .【点睛】本题考查折叠变换,勾股定理,相似三角形的性质及判定的应用,掌握性质定理正确推理论证是解题关键.10. 如图,四边形ABCD 内接于O ,AC 为直径,ABC ∠的平分线BD 交AC 于点E ,点F 在BA 的延长线上,AF BC =.有如下五个结论:①AD CD =;②ABE DBC ∽ ;③AE CE BE DE ×=×;④AB BC +;⑤四边形ABCD 的面积为212AD ,则上列说法中正确的个数为( )A. 2个B. 3个C. 4个D. 5个的【答案】C【解析】【分析】由直径所对的圆周角等于90°可得出90ABC ADC ∠=∠=°,由已知条件可得出1452ABD DBC ABC ∠=∠=∠=°,由同弧所对的圆周角相等即可得出ABD ACD ∠=∠,进而ACD DAC ∠=∠,即可判断①,证明ABE DBC ∽可判断②,证明AEB DEC ∽可判断③,()SAS DAF DCB ≌可得出FDA BDC =∠,DF DB =,证明FDB △为等腰直角三角形,即可判断④,根据ADC ABC ABCD S S S =+ 四边形即可判断⑤.【详解】解:∵AC 为直径,∴90ABC ADC ∠=∠=°,∵BD 为ABC ∠的角平分线, ∴1452ABD DBC ABC ∠=∠=∠=°,∵ABD ACD ∠=∠,∴45ACD ∠=°,∴45DAC ∠=°,∴AD CD =,故①正确,∵BAE BDC ∠=∠, 又∵12ABE DBC ABC ∠=∠=∠∴ABE DBC ∽,故②正确,∵BAE CDE ∠=∠,又∵AEB DEC ∠=∠∴AEB DEC ∽, ∴AEBEDE CE =,即AE CE DE BE ⋅=⋅,故③正确,由①知DA DC =,∵FAD BCD ∠=∠,且AF CB =,∴()SAS DAF DCB ≌,∴FDA BDC ∠=∠,DF DB =∴90ADB BDC ∠+∠=°,∴90FDA ADB ∠+∠=°,∴FDB △为等腰直角三角形,∴FB =,即AF AB BC AB +=+=, 故④正确,∵ADC ABC ABCDS S S =+ 四边形 1122AD DC AB BC =⋅+⋅ 21122AD AB BC =+⋅ 故⑤错误,综上①②③④正确,故选:C .【点睛】本题主要考查了等角对等边,相似三角形的判定以及性质,全等三角形的判定以及性质,圆周角定理以及圆内接四边形的性质等知识,掌握这些判定定理以及性质是解题的关键,二、填空题(每小题4分,共20分)11. 点()3,3A −关于y 轴对称的点1A 的坐标是______.【答案】(3,3)【解析】【分析】平面直角坐标系中任意一点A (x ,y ),关于y 轴的对称点是(−x ,y ),从而可得出答案.【详解】根据轴对称的性质,得点A (−3,3)关于y 轴对称点的坐标A 1(3,3).故答案是:(3,3).【点睛】本题主要考查关于y 轴对称的点坐标的关系,解题的关键是掌握点关于y 轴对称的坐标规律.12. 因式分解:3212x x x −−=________. 【答案】()()43x x x −+【解析】【分析】本题主要考查了分解因式,先提取公因式x ,再利用十字相乘法分解因式即可得到答案.【详解】解:3212x x x −−()212x x x =−− ()()43x x x =−+,故答案为:()()43x x x −+.13. 如图,按照程序计算,若输出y 的值是1,则输入x 的值是________.【答案】34−【解析】 【分析】本题主要考查了解二元一次方程以及解分式方程,根据输出y 的值是1,代入上一步程序,得出2331x x ++=或311x x x−=+,然后分别解出x , 根据程序分析得出正确的值即可. 【详解】解:∵输出y 的值是1, ∴上一步计算为:2331x x ++=或311x x x −=+, 当2331x x ++=时,解得:=1x −,或2x =−,∵10−<,20−<,∴不符合程序判断条件, 当311x x x−=+时,解得:34x =−,(经检验,是原方程的解) ∵304−<, ∴符合程序判断条件. 故答案为:34−. 14. 若实数m ,n 分别满足2202320240m m ++=,2202320240n n ++=且m n ≠,则11m n+的值为________. 【答案】20232024−【解析】【分析】本题考查了一元二次方程根与系数的关系,解题关键是掌握“若一元二次方程20(0)ax bx c a ++=≠的两个根分别为1x ,2x ,则12b x x a +=−,12c x x a=. 直接利用根与系数的关系求解即可. 【详解】解:∵实数m ,n 分别满足2202320240m m ++=,2202320240n n ++=, ∴m 和n 是2202320240x x ++=的两个根,∴2023m n +=−,2024mn =, ∴1120232024m n m n mn++==−. 故答案为:20232024− 15. 如图,小明同学在观察图案中“◎”“★”的排列方式时,通过研究每个图案中它们数量的规律,发现第n 个图案中“★”的个数是“◎”的个数的2倍,则n 的值为________【答案】11【解析】【分析】本题考查的是图形类的规律探究,一元二次方程的解法,先归纳得到第n 个图案中“◎”的个数为3n ,第n 个图案中“★”的个数为()12n n +,再建立方程求解即可.【详解】解:∵图案中“◎”的个数依次为:3,6,9,⋅⋅⋅⋅⋅⋅∴第n 个图案中“◎”的个数为3n ,∵图案中“★”的个数依次为:1,3,6,10,⋅⋅⋅⋅⋅⋅∴第n 个图案中“★”的个数为()12n n +, ∴由题意得:()1232n n n +=×,解得:11n =(不符合题意的根舍去), 故答案为:11;三、解答题(第16,17,18,19题每题10分;第20,21题每题12分,第22,23题每题13分;满分90分)解答要写出必要的文字说明、证明过程或演算步骤.16. (1)先化简,再求值:()()()22113a a a a −−−−,其中1a = (2)解方程组:43253x y x y −+=− −=−【答案】(1)21a +,4−(2)11x y = = 【解析】【分析】本题主要考查二元一次方程组的求解及二次根式的运算:(1)先计算平方差,再进行去括号,合并同类项即可,然后把a 的值代入化简以后的式子中求值即可. (2)按照代入消元法解方程组即可.【详解】解:(1)()())22113a a a a −−−− 222313a a a a =−+−+21a =+1a =−∴原式(221114a =+=+=−(2) 43253x y x y −+=− −=− ①② 由①得:43y x =−③, 把③代入②得:()25433x x −−=−, 解得:1x =,把1x =代入③得4131y =×−=,∴方程组的解为11x y = =. 17. 网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题. 组别学习时间()h x 频数(人数) A01x <≤ 8 B12x <≤ 24 C 23x <≤ 32 D34x <≤ n E 4小时以上4(1)表中的n = ,扇形统计图中B 组对应的圆心角为 °;(2)请补全频数分布直方图;(3)该校准备召开利用网络资源进行自主学习的交流会,计划在 E 组学生中随机选出两人进行经验介绍,已知E 组的四名学生中,七、八年级各有1人,九年级有2 人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.【答案】(1)12,108(2)见解析 (3)16【解析】【分析】本题考查利用画树状图法或列表法求概率,还考查了扇形统计图以及频数分布直方图;熟练掌握运算公式(①各部分扇形圆心角的度数=部分占总体的百分比360×°,②百分比=该组频数÷总数)是解本题的关键.(1)根据A 组的频数和百分比求出总人数,再利用D 组的百分比求出n 的值,利用360°乘以B 组所占的百分比求解即可;(2)由频数分布表能作出频数分布直方图.(3)画树状图,能求出抽取的两名学生都来自九年级的概率.【小问1详解】解:810%80÷=,15%8012n =×=,B 组对应的圆心角2436010880=×°=°, 故答案:12,108;【小问2详解】解:如图所示:【小问3详解】解:画树状图为:共12种可能,抽取的两名学生都来自九年级的有2种可能,∴P (两个学生都是九年级)21126==, 答:抽取的两名学生都来自九年级的概率为16. 18. 根据调查,超速行驶是引发交通事故的主要原因之一,现规定在以下情境中的速度不得超过15m/s ,在一条笔直公路BD 的上方A 处有一探测仪,如平面几何图,24m,90AD D =∠=°,现探测到一辆轿车从B 点匀速向D 点行驶,测得31ABD ∠=°,2秒后到达C 点,测得50ACD ∠=°. 科学计算器按键顺序计算结果(已取近似为值)sin 3 1= 0.5cos 3 1=0.9tan 3 1 = 0.6sin 5 0= 0.8cos 5 0=0.6tan 5 0 = 1.2(1)求BC 的距离.(结果精确到1m )(2)通过计算,判断此轿车是否超速.【答案】(1)20m(2)没有超速【解析】【分析】本题考查了解直角三角形的应用:(1)在Rt △ABD 与Rt ACD △中,利用锐角三角函数定义求出BD 与CD 的长,由BD CD −求出BC 的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【小问1详解】解:在Rt △ABD 中,24m,31AD B =∠=°,tan31AD BD°∴=,即()2440m 0.6BD ==, ∵在Rt ACD △中,24m,50AD ACD =∠=°, tan50AD CD°∴=,即 ()2420m 1.2CD ==, ∴()402020m BC BD CD =−=−=,则BC 的距离为20m ;【小问2详解】解:根据题意得:()()20210m/s <15m/s ÷=, ∴此轿车没有超速.19. 如图,在平面直角坐标系中,反比例函数m y x=的图象与一次函数()2y k x =−的图象交于A ,B 两点, 其中A 点坐标为()3,2.(1)求反比例函数与一次函数的解析式及B 点坐标;(2)根据图象直接写出不等式()2m k x x>−的解集; (3)若点C 在y 轴上,且满足ABC 的面积为10,求点C 的坐标.【答案】(1)6y x=,24y x =−,()1,6B −− (2)1x <−或03x <<(3)()0,1或()0,9−【解析】【分析】本题考查待定系数法求解析式,反比例函数与一次函数的交点问题,三角形的面积.(1)采用待定系数法,把点()3,2A 代入函数m y x=和()2y k x =−,即可求出m 和k 的值,从而得到反比例函数和一次函数的解析式.解两个函数构成的方程组,即可得到交点坐标,从而解答;(2)根据图象,不等式的的解集就是反比例函数的图象位于一次函数图象上方时横坐标x 的取值范围;(3)先求出一次函数24y x =−图象与y 轴的交点()0,4M −,过点()3,2A 作AE y ⊥轴于点E ,过点()1,6B −−作BF y ⊥轴于点F ,得到3AE =,1BF =,设C 点的坐标为()0,C y ,则()44C C CM y y =−−=+,根据ABCAMC BMC S S S =+△△△即可得到方程,求解即可. 【小问1详解】解:∵点()3,2A 在反比例函数m y x =和一次函数()2y k x =−的图象上; ∴23m =,()232k =−, 解得:6m =,2k =, ∴反比例函数的解析式为6y x=, 一次函数的解析式为24y x =−; 解方程组624y x y x = =− ,得1132x y = = ,2216x y =− =− , 经检验,1132x y = = ,2216x y =− =− 均是方程组的解, ∴反比例函数与一次函数图象的另一交点B 的坐标为()1,6−−;【小问2详解】 由图象可知,不等式()2m k x x>−的解集是1x <−或03x <<; 【小问3详解】 设24y x =−与y 轴的交点为M ,令0x =,则4y =−,∴点M 的坐标为()0,4−,过点()3,2A 作AE y ⊥轴于点E ,过点()1,6B −−作BF y ⊥轴于点F ,∴3AE =,1BF =设C 点的坐标为()0,C y ,∴()44C C CM y y =−−=+ ∵111022ABC AMC BMC S S S CM AE CM BF =+=⋅+⋅= ∴1134141022C C y y ××++××+=, ∴45C y +=, 解得1C y =或9C y =−,∴点C 的坐标为()0,1或()0,9−.20. 如图,ABC 内接于O ,AB 是直径,DO BC ⊥,延长DO 到点E ,使得B E ∠=∠,连接,AD AE ,2,4OA OE ==.(1)求证:AE 是O 的切线;(2)求sin CAD ∠.【答案】(1)见解析 (2 【解析】【分析】题目主要考查相似三角形的判定和性质,切线的判定定理,勾股定理解三角形及求正弦值,理解题意,熟练掌握运用相似三角形的判定和性质及切线的判定定理是解题关键.(1)根据相似三角形的判定得出ODB OAE ∽,再由其性质及切线的判定定理即可证明;(2)根据相似三角形的性质得出1OD =,再由勾股定理及三角形中位线的性质确定22AC OD ==,利用正弦函数的定义求解即可.【小问1详解】∵在ODB 和OAE 中,B E DOB AOE ∠∠∠∠==,∴ODB OAE ∽,∴OAE ODB ∠∠=,∵OD BC ⊥,∴90ODB ∠=°,∴90OAE ∠=°∴AE 是O 的切线;【小问2详解】由(1)得ODB OAE ∽,OD OB OA OE ∴=,即224OD =, ∴1OD =,在 Rt ODB 中, 由勾股定理得:222OD DB OB +=DB ∴=∵ OD BC ⊥, OD 经过OCD DB ∴==∵O ,D 分别是,AB BC 的中点,∴22AC OD ==,∴在Rt ACD 中,ADsin CD CAD AD ∴∠==21. 如图,在以O 为圆心,1为半径的四分之一圆弧组成的扇形中,点P 在弧AB 上运动(不与端点,A B 重合),连接PO ,作PQ 垂直于半径OA ,垂足为Q ,设POA α∠=∠.(1)设PQ 的长度为y ,y 是角α的函数吗?请说明理由; (2)若Rt POQ △的面积为S ,请回答下列问题: ①当点P 在弧AB 上运动时,随着角α的逐渐变大,S 的变化规律为 (横线处填“逐渐变大”“逐渐变小”“先变大再变小”“先变小再变大”); ②求面积S 关于角α的表达式,并写出角α的取值范围; ③当S 取最大值时,请直接写出角α的值.【答案】(1)是,理由:对于变量α的每一个值,PQ 的长度y 都有唯一确定的值与之对应 (2)①先变大再变小;②1cos sin 2Sαα⋅,α°<∠<°090;③45° 【解析】【分析】本题考查函数的定义,三角形的面积. (1)由函数的定义可直接判断,对于变量α的每一个值,PQ 的长度y 都有唯一确定的值与之对应,故y 是α的函数;(2)①随着角α的逐渐变大,S 的变化规律为先变大再变小;②先求出底OQ ,再求高PQ 即可;③当S 取最大值时,即当点P 运动到弧AB 的中点,此时45α∠=°.【小问1详解】解:是.∵对于变量α的每一个值,PQ 的长度y 都有唯一确定的值与之对应 ∴y 是α的函数;【小问2详解】①先变大再变小,因为P 在A 时,面积为0,往B 方向运动时,面积逐渐变大,到达B 时,面积为0,故先变大再变小;故答案为:先变大再变小②在Rt POQ 中,∵αααα====cos cos ,sin sin OQ OPPQ OP 11cos sin 22S OQ PQ αα∴=⋅⋅=⋅ α°<∠<°090③当S 取最大值时,45α∠=°.理由:设点C 为OP 的中点,连结QC ,过点Q 作OP 的垂线,垂足为H ,连接QH .∵点C 为OP 的中点,PQ OQ ⊥∴OC CQ =1122S PO HQ PO CQ =⋅⋅≤⋅⋅ ∴当点P 运动到弧AB 的中点,使得HQ 与CQ 重合时,S 的值最大此时,=HQ HO ,⊥HQ OH ∴OHQ 为等腰直角三角形∴45α∠=°.22. 如图,在边长为6的菱形ABCD 中,60BCD ∠=°,连接BD ,点 E ,F 分别是边AB ,BC 上的动点,且AE BF =,连接DE ,DF ,EF .(1)如图①,当点E 是边AB 的中点时,求EDF ∠的度数; (2)如图②,当点E 是边AB 上任意一点时,EDF ∠的度数是否发生改变?若不改变,请证明:若发生改变,请说明理由;(3)若点P 是线段BD 上的一个动点,连接PF ,求PF DP +的最小值.【答案】(1)60°(2)不改变,见解析 (3)【解析】【分析】(1)由菱形ABCD 可得6AB BC CD AD ====,60BAD BCD ∠=∠=°,从而ABD △,BCD △是等边三角形,根据“三线合一”可得 1302EDB ADB ∠=∠=°,12AE AB =,进而证得点F 是边BC 的中点,从而1302BDF BDC ∠=∠=°,根据EDF EDB BDF ∠=∠+∠即可解答; (2)由(1)得到ABD △,BCD △是等边三角形,从而AD BD =,60DAB DBC ∠=∠=°,进而证得()SAS ADE BDF ≌,得到ADE BDF ∠=∠,从而60EDF ADB ∠=∠=°; (3)过点P 作PG AD ⊥于点 G ,连接PF ,过点F 作FG AD ′⊥于点G ′,交BD 于点P ′,则sin GP DP ADB =⋅∠=,因此PF PF GP =+,当点F ,P ,G 三点共线,且FG AD ⊥时,PF GP +有最小值,最小值为FG 的长,过点D 作DH BC ⊥于点H ,PF DP +的最小值即为DH 的长,在Rt CDH △中通过解直角三角形即可解答.【小问1详解】∵四边形ABCD 是菱形,边长为6,∴6AB BC CD AD ====,60BAD BCD ∠=∠=°,∴ABD △,BCD △是等边三角形,∴60ADB∠=°, ∵点E 是边AB 的中点, ∴11603022EDB ADB ∠=∠=×°=°,12AE AB =, ∵AE BF =, ∴1122BF AB BC == ∴点F 是边BC 的中点, ∴11603022BDF BDC ∠=∠=×°=°, ∴303060EDF EDB BDF ∠=∠+∠=°+°=°;【小问2详解】EDF ∠的度数不改变,证明如下:由(1)得到ABD △,BCD △是等边三角形,∴AD BD =,60DAB DBC ∠=∠=°,∵AE BF =,∴()SAS ADE BDF ≌,∴ADE BDF ∠=∠,∴60EDF BDE BDF BDE ADE ADB ∠=∠+∠=∠+∠=∠=°;【小问3详解】如图,过点P 作PG AD ⊥于点 G ,连接PF ,过点F 作FG AD ′⊥于点G ′,交BD 于点P ′,∵60ADB∠=°,∴在Rt DPG 中,sin sin60GP DP ADB DP DP =⋅∠=⋅°=∴PF DP PF GP +=+ ∴当点F ,P ,G 三点共线,且FG AD ⊥时,PF GP +有最小值,最小值为FG 的长,过点D 作DH BC ⊥于点H ,∵四边形ABCD 是菱形,∴DH FG ′=,∴PF +的最小值即为DH 的长, ∵DH BC ⊥,BCD △是等边三角形,∴sin sin60DH CD C CD =⋅⋅°==∴PF +的最小值为 【点睛】本题考查菱形的性质,等边三角形的判定及性质,三角形全等的判定及性质,垂线段最短,解直角三角形.正确作出辅助线,综合运用相关知识,采用转化思想是解题的关键.23. 已知抛物线()²30y ax bx a =+−≠与x 轴交于点(1,0)A −,点(3,0)B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,若直线BC 下方的抛物线上有一动点M ,过点M 作y 轴平行线交BC 于N ,过点M 作BC 的垂线,垂足为H ,求HMN △周长的最大值;(3)若点P 在抛物线的对称轴上,点Q 在x 轴上,是否存在以B ,C ,P ,Q 为顶点的四边形为平行四边形,若存在,求出点Q 的坐标,若不存在,请说明理由;(4)将抛物线向左平移1个单位,再向上平移4个单位,得到一个新的抛物线,问在y 轴正半轴上是否存在一点F ,使得当经过点F 的任意一条直线与新抛物线交于S ,T 两点时,总有2211FS FT +为定值?若存在,求出点F 坐标及定值,若不存在,请说明理由.【答案】(1)2=23y x x −−(2 (3)存在,Q 点的坐标为(2,0),(4,0),(2,0)−(4)存在,定点02,1F ,2211FS FT +的值为4 【解析】【分析】(1)把(1,0)A −,点(3,0)B 代入²3y ax bx =+−,得出关于a 、b 的二元一次方程组,解方程组求出a 、b 的值,即可得答案;(2)根据抛物线解析式求出点C 坐标,利用待定系数法求出直线BC 解析式,设()2,23M m m m −−,则(,3)N m m −,根据MN y ∥,MH BC ⊥及B 、C 两点坐标得出HMN △是等腰直角三角形,利用m 表示出HMN △的周长,利用二次函数的性质求出最大值即可得答案;(3)根据抛物线解析式求出对称轴为直线1x =,点P 坐标为(1,)s ,点Q 坐标为(,0)Q t ,根据平行四边形对角线中点的坐标相同,分BC 、BP 、BQ 为对角线三种情况,列方程组求出s 、t 的值即可得答案;(4)根据平移规律得出新的抛物线解析式为2y x ,设ST 的解析式为y kx b =+,11(,)S x y ,22(),T x y ,则(0,)F b ,联立抛物线与直线ST 的解析式得20x kx b −−=,利用一元二次方程根与系数的关系用k 、b 、1x 、2x 分别表示2FS 和2FT ,代入2211FS FT +,根据2211FS FT +为定值得出b 值及定值即可. 【小问1详解】 解:∵(1,0)A −,(3,0)B 在抛物线()230y ax bx a +−≠上, ∴309330a b a b −−= +−=, 解得:12a b = =−, ∴抛物线的表达式为:2=23y x x −−.【小问2详解】∵抛物线的表达式为:2=23y x x −−,∴当0x =时,=3y −,∴(0,3)C −,设直线BC 的解析式为y kx n =+, ∵(3,0)B ,(0,3)C −,∴303k n n += =−, 解得:13k n = =− ∴直线BC 解析式为3y x =−,设()2,23M m m m −−其中03m <<,则(,3)N m m −, ∴()223233MN m m m m m =−−−−=−+ ∵3OB OC ==,90BOC ∠=°, 的∴45OCB ∠=°∵MN y ∥轴,∴45MNH OCB ∠=∠=°, ∵MH BC ⊥,∴HMN △是等腰直角三角形,HM HN MN ∴=,∴HMN △的周长1l MN +)()213m m =+−+ ))2131m m −+++231)()2m −−∴当32m =时,HMN △的周长有最大值,l =最大 【小问3详解】 由题意知,抛物线的对称轴为直线2121x −=−=×,(3,0)B ,(0,3)C −, 设点P 坐标为(1,)s ,点Q 坐标为(,0)Q t ,①当BC 为对角线时,301030t s +=+ −=+, 解得:32s t =− =, ∴(20)Q ,,②当BP 为对角线时,310030t s +=+ +=−+ , 解得:34s t =− =, ∴(40)Q ,,③当BQ 为对角线时,310003t s +=+ +=−, 解得:32s t = =−, 解得:(20)Q −,,综上所述,存在点Q ,以B ,C ,P ,Q 为顶点的四边形为平行四边形,Q 点的坐标为(2,0),(4,0),(2,0)−. 【小问4详解】当抛物线2=23y x x −−向左平移1个单位,向上平移4个单位后,得到新的抛物线()()212134y x x +−+−+,即2y x ,设ST 的解析式为y kx b =+,点S 坐标为11(,)x y ,点T 坐标为22(,)x y ,则(0,)F b , 联立新抛物线与直线ST 的解析式得:2y kx b y x =+=∴20x kx b −−=, ∴12x x k +=,12x x b =−, ()()22222222111111FS x y b x k x k x =+−=+=+,同理,()22221FT k x =+, ()()2212122222222221212211111112111x x x x k b FS FT k x x kk b x x +− +∴+=+== +++ , ∵2211FS FT+为定值, ∴2212k k b +=+,解得:12b =, 当12b =时,22114FS FT +=, ∴定点221110,,2F FS FT+ 的值为4. 【点睛】本题考查二次函数的综合,包括待定系数法求二次函数解析式、二次函数图像的平移、求一次函数解析式、平行四边形的性质、求二次函数的最大值、一元二次方程根与系数的关系,综合性强,熟练掌握相关的性质及规律是解题关键。
2024年江苏省南京市玄武区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)某假期铁路南京站、南京南站共计发送旅客1610000人次,用科学记数法表示1610000是()A.0.161×107B.1.61×107C.1.61×106D.16.1×1052.(2分)下列计算正确的是()A.a4+a5=a9B.2a4•a5=2a9C.(2a4)5=32a9D.a8÷a2=a43.(2分)下列整数中,与最接近的是()A.﹣6B.﹣5C.﹣4D.﹣34.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论错误的是()A.a+b+c>0B.b﹣a>c﹣b C.ab>ac D.5.(2分)已知某函数图象经过点A(m﹣1,1)、B(m,1)和C(m+1,4),则其大致图象可能是()A.B.C.D.6.(2分)小丽在半径为100m的圆形广场内(包含边界)散步,从圆周上的点A处出发,沿直线行走到点B处,然后直角拐弯,沿直线行走到圆周上的点C处时停止行走,则小丽行走的路程AB+BC的最大值为()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)若式子有意义,则x的取值范围是.8.(2分)分解因式:x3﹣4x2y+4xy2=.9.(2分)计算的结果是.10.(2分)设x1,x2是方程x2+mx﹣2=0的两个根,且x1+x2=x1x2+1,则m=.11.(2分)方程的解是.12.(2分)如图,点A,B分别在反比例函数的图象上,点C在x轴的负半轴上,若平行四边形ACOB的面积是4,则k的值为.13.(2分)圆在中式建筑中有着广泛的应用.如图,某园林中圆弧形门洞的顶端到地面的高度为2.8m,地面入口的宽度为1m,门枕的高度为0.3m,则该圆弧所在圆的半径为m.14.(2分)如图,在菱形ABCD中,过点A作AE⊥CD,垂足E在CD的延长线上,过点E作EF⊥BC,垂足为F.若AE=3,EF=4,则菱形的边长为.15.(2分)如图,在正六边形ABCDEF中,经过点E,F的⊙O与边AB,CD分别相切于点G,H,与边DE交于点M,连接GM,FH交于点N,则∠GNF的度数为°.16.(2分)如图,在△ABC中,AB=AC=5,BC=6,点P是△ABC内一点,过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为D,E,F,连接AP,若PE2=PD•PF,则AP的最小值为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算:.18.(8分)解不等式组,并写出不等式组的整数解.19.(7分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,G是BD的中点,连接EG并延长,与CB的延长线交于点F,且BF=AE.求证CA=CB.20.(8分)图①是A,B两款新能源汽车在2023年6月到12月期间月销量(单位:辆)的折线统计图.现网上随机调查网友对A,B两款汽车的外观造型、舒适程度、操控性能和售后服务等四个项目进行评分(单位:分),整理评分数据,绘制成条形统计图(图②).(1)下列结论中,所有正确结论的序号是.①2023年6月到12月,B款汽车月销量呈上升趋势;②2023年6月到12月,A款汽车的月平均销量高于B款汽车;③2023年6月到12月,A款汽车月销量中位数小于B款汽车;④2023年6月到12月,A款汽车的月销量比B款汽车的月销量更稳定.(2)若将汽车的外观造型、舒适程度、操控性能和售后服务这四个项目的评分按2:3:3:2的比例计算平均得分,求出B款汽车的平均得分.(3)由图①可以看出,2023年6月~12月期间A款汽车月销量呈下降趋势.请根据上述信息,对生产A款汽车的厂家提出一条改进建议.21.(7分)如表,从A市到B市的飞机航班中,每天有三趟去程航班,两趟返程航班.甲、乙两人计划从A市出发,分别随机选择航班,同一天往返A、B两市.(1)在去程航班中,求甲、乙两人恰好选择相同航班的概率;(2)在往返航班中,若甲已选定往返航班,则乙选择的往返航班与甲均相同的概率为.航线航班号起落时间A市→B市MU28117:50﹣9:45 CA86028:00﹣10:00 CA18208:45﹣10:40B市→A市MU283218:05﹣20:20 CA860120:10﹣22:0022.(8分)在▱ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,连接AF、CH、AG、CE,AF、CE相交于点M,AG、CH相交于点N.(1)求证:四边形AMCN是平行四边形;(2)若四边形AMCN是矩形,连接AC、BD,则AC、BD满足的数量关系是.23.(7分)为测量某建筑物BC的高度,在坡脚A处测得顶端C的仰角∠CAB为45°,沿着倾斜角∠DAB 为18°的斜坡AD前行30m到达D处,此时测得顶端C的仰角∠CDE为58°,求建筑物BC的高度.(参考数据:sin18°≈0.30,cos18°≈0.95,tan18°≈0.32,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)已知二次函数y=﹣x2+2(m﹣4)x+m2﹣1(m是常数).(1)求证:不论m为何值,该函数图象与x轴总有两个公共点;(2)求证:当﹣1<m<1时,该函数图象与y轴的交点总在x轴的下方.25.(9分)小美驾驶电动汽车从家出发到某景点游玩,行驶一段时间,停车充电,电量充满后继续行驶,到达景点时汽车剩余电量与出发时恰好相同.在景点游玩一段时间后,按原路返回到家.小美往返均以80km/h的速度匀速行驶,汽车每小时的耗电量均相同,往返全程一共用时6.5小时,汽车剩余电量Q (kw•h)与时间t(h)的函数关系如图①所示.(1)该电动汽车每小时的充电量为kw•h;(2)求线段AB所表示的Q与t之间的函数表达式;(3)在图②中,画出小美离家的距离S(km)与t的函数图象.26.(8分)在△ABC中,BA=BC,D是BC边上的动点,经过点A的⊙O与BC边相切于点D,与AB,AC边分别交于点E,F,连接AD.(1)如图①,连接DF,求证△CDA∽△CFD;(2)如图②,AD是⊙O的直径,连接EF,若,AC=2,求EF的长.27.(11分)在△ABC中,∠C=2∠B.(1)设BC=a,AC=b,AB=c,求证:c2﹣ab﹣b2=0.小明的思路如图①,延长BC至点D,使CD=CA,连接AD.小红的思路如图②,将△ABC沿直线l翻折,使点B与点C重合,l与AB,BC分别交于点D,E,连接CD.在小明和小红的思路中,请选择一种继续完成证明.(2)如图③,已知线段m,n.求作:满足已知条件的△ABC,且AB=m,AC=n.(要求:尺规作图,保留作图痕迹,写出必要说明.)(3)若△ABC有一条边的长度为4,设,△ABC的周长为l,直接写出l关于k的函数表达式,以及l的取值范围.2024年江苏省南京市玄武区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1610000=1.61×106,故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.2.【分析】利用合并同类项的法则,单项式乘单项式的法则,积的乘方的法则,同底数幂的除法的法则对各项进行运算即可.【解答】解:A、a4与a5不属于同类项,不能合并,故A不符合题意;B、2a4•a5=2a9,故B符合题意;C、(2a4)5=32a20,故C不符合题意;D、a8÷a2=a6,故D不符合题意;故选:B.【点评】本题主要考查单项式乘单项式,合并同类项,积的乘方,同底数幂的除法,解答的关键是对相应的运算法则的掌握.3.【分析】由20.25<21<25,可知4<<5然后作答即可.【解答】解:∵16<21<25,∴<<,即4<<5,∵4.52=20.25,∴﹣5<﹣<﹣4.5∴与﹣最接近的整数为﹣5,故选:B.【点评】本题主要考查了无理数的估算,解题关键是熟练掌握如何估算无理数在哪两个整数之间.4.【分析】由数轴可知,a<0<b<c,|b|<|a|<|c|,由此判断各选项即可.【解答】解:由数轴可知,a<0<b<c,|b|<|a|<|c|,A、∵a<0<b<c,|b|<|a|<|c|,∴a+b+c>0,故选项A不符合题意;B、∵a<0<b<c,|b|<|a|<|c|,∴b﹣a>c﹣b,故选项B不符合题意;C、∵a<0<b<c,|b|<|a|<|c|,∴ab>ac,故选项C不符合题意;D、∵a<0<b<c,|b|<|a|<|c|,∴,故选项D符合题意;故选:D.【点评】本题考查的是实数与数轴,从数轴上获取已知条件是解题的关键.5.【分析】先根图象过点A(m﹣1,1)、B(m,1)可求出其对称轴为x=,故可排除A、B,再由C(m+1,4)在对称轴的右侧,y随x的增大而增大,得出抛物线开口向上,由此可得出结论.【解答】解:∵图象经过点A(m﹣1,1)、B(m,1),∴图象关于x=对称,∴可排除A、B.∵m+1>m,4>1,∴在对称轴右侧y随x的增大而增大,∴抛物线开口向上,∴D错误,C正确.故选:C.【点评】本题考查的是二次函数图象上点的坐标特点,先根据题意判断出抛物线的对称轴及增减性是解答此题的关键.6.【分析】根据题意可知:从圆周上的点A处出发,沿直线行走到点B处,然后直角拐弯,沿直线行走到圆周上的点C处,则∠ABC=90°,AC是直径,如图,根据题意确定运动轨迹为a+c,进而求解即可.【解答】解:根据题意图形如下:设AB=c,BC=a,AC=b,∵AB+BC>AC,∴此时当AC最大时,AB+BC才能取得最大值,AC为直径时,AC=200,AB2+BC2=AC2,∵(a﹣c)2≥0,∴a2﹣2ab+c2≥0,∴a2+c2≥2ac,即2ac≤2002,∴2ac+2002≤2002+2002,即:2ac+2002≤2×2002,∴(a+c)2≤2×2002,∵a,c为正数,∴a+c≤200,故选:C.【点评】本题考查勾股定理,正确记忆相关知识点是解题关键.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.【分析】根据分母不为零的条件进行解题即可.【解答】解:由题可知,x﹣2≠0时式子有意义,即x≠2.故答案为:x≠2.【点评】本题考查分式有意义的条件,掌握分母不为零的条件是解题的关键.8.【分析】先提取公因式x,然后利用完全平方差公式进行二次分解即可.【解答】解:x3﹣4x2y+4xy2=x(x2﹣2xy+4y2)=x(x﹣2y)2.故答案为:x(x﹣2y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.【分析】先算除法,化为最简二次根式,再合并同类二次根式.【解答】解:原式=3﹣=3﹣2=;故答案为:.【点评】本题考查二次根式的混合运算,解题的关键是掌握二次根式相关的运算法则.10.【分析】由根与系数的关系可得:x1+x2=﹣m,x1x2=﹣2,再代入所给的条件运算即可.【解答】解:由题意得:x1+x2=﹣m,x1x2=﹣2,∵x1+x2=x1x2+1,∴﹣m=﹣2+1,解得:m=1.故答案为:1.【点评】本题主要考查根与系数的关系,解答的关键是熟记根与系数的关系:x1+x2=,x1x2=.11.【分析】方程两边都乘(x+1)(x﹣1)得出2(x+1)+(x+1)(x﹣1)=x(x﹣1),求出方程的解,再进行检验即可.【解答】解:,方程两边都乘(x+1)(x﹣1),得2(x+1)+(x+1)(x﹣1)=x(x﹣1),2x+2+x2﹣1=x2﹣x,2x+x2﹣x2+x=﹣2+1,3x=﹣1,x=﹣,检验:当x=﹣时,(x+1)(x﹣1)≠0,所以分式方程的解是x=﹣.故答案为:x=﹣.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.12.【分析】延长BA交y轴于点D,连接OA,根据题意可知S△AOB=2,S△AOD==1,据此可计算=2+1=3,继而可得k值.出S△BOD【解答】解:如图,延长BA交y轴于点D,连接OA,∵平行四边形ACOB的面积是4,=2,∴S△AOB∵A在反比例函数y=的图象上,==1,∴S△AOD=2+1=3,∴S△BOD=2×3=6.∴k=2S△BOD故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数k值的几何意义是关键.13.【分析】设该门洞的半径的半径为r m,过点O作OC⊥AB于点C,延长CO交圆O于点D,连接OA,则CD=2.8﹣0.3=2.5m,OC=(2.5﹣r)m,由垂径定理得AC=BC=AB=0.5m,然后在Rt△AOC 中,由勾股定理得出方程,解方程即可.【解答】解:设该门洞的半径的半径为r m,如图,过点圆心O作OC⊥AB于点C,延长CO交圆O于点D,连接OA,则CD=2.8﹣0.3=2.5m,AC=BC=AB=×1=0.5(m),∴OC=(2.5﹣r)m,在Rt△AOC中,由勾股定理得:OA2=OC2+AC2,0.52+(2.5﹣r)2=r2,解得:r=1.3,即该门洞的半径为1.3m,故答案为:1.3.【点评】本题考查了垂径定理的应用以及勾股定理的应用,掌握垂径定理,由勾股定理得出方程是解题的关键.14.【分析】根据菱形的性质证明cos∠EAD=cos∠CEF,列式得AD=3DE,然后根据勾股定理求出DE,即可解决问题.【解答】解:在菱形ABCD中,AD=CD,AD∥BC,∴∠ADE=∠C,∵EF⊥BC,∴∠EFC=90°,∵AE⊥CD,∴∠EAD=90°﹣∠ADE=90°﹣∠C=∠CEF,∴cos∠EAD=cos∠CEF,∴=,∴=,∵AD=CD,∴AD=3DE,在Rt△ADE中,根据勾股定理得:AD2﹣DE2=AE2,∴(3DE)2﹣DE2=32,∴DE=,∴AD=3DE=.故答案为:.【点评】本题考查了菱形的性质,解直角三角形,勾股定理,解决本题的关键是得到AD=3DE.15.【分析】连接FG、OG、OH,根据切线的性质求出∠OGB,∠OHC,再求出∠O=60°,再在圆内接四边形EFGM中,求出∠FGM=60°,再根据内角和定理解答即可.【解答】解:连接FG、OG、OH,如图,∵⊙O与边AB,CD分别相切于点G,H,∴OG⊥AB,OH⊥CD,∴∠OGB=90°,∠OHC=90°,∵∠B=∠C=120°,∵五边形OGBCH的内角和为540°,∴∠O=120°,在圆内接四边形EFGM中,∵∠E=120°,∴∠FGM=60°,∴∠GNF=60°.故答案为:60.【点评】本题考查了正多边形与圆,准确掌握正多边形及圆的相关性质是解题关键.16.【分析】当AP⊥BC时,AP取得最小值,利用等腰三角形的性质和勾股定理求得AE,利用已知条件得到PD=PE,设PD=PE=x,则AP=AE﹣PE=4﹣x,利用相似三角形的判定与性质剪刀剪开得出结论.【解答】解:当AP⊥BC时,AP取得最小值,如图,∵AB=AC=5,AP⊥BC,∴BE=EC=BC=3,∠BAE=∠CAE,∴AE==4.∵PD⊥AB,PF⊥AC,∴PD=PF,∵PE2=PD•PF,∴PE2=PD2,∴PD=PE.设PD=PE=x,则AP=AE﹣PE=4﹣x,∵∠ADP=∠AEB=90°,∠DAP=∠EAB,∴△ADP∽△AEB,∴,∴,∴x=.∴AP=4﹣=.故答案为:.【点评】本题主要考查了等腰三角形的性质,相似三角形的判定与性质,直角三角形的性质,勾股定理,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】先通分算括号内的,把除化为乘,再把分子,分母分解因式约分.【解答】解:原式=÷=•=.【点评】本题考查分式的混合运算,解题的关键是掌握分式相关运算的法则.18.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得x≥﹣2;由②得x<4,∴原不等式组的解集为﹣2≤x<4,则不等式组的整数解有﹣2,﹣1,0,1,2,3.【点评】此题考查了解一元一次不等式组,以及不等式组的整数解,熟练掌握不等式取解集的方法是解本题的关键.19.【分析】由AAS可证△DEG≌△BFG,可得BF=DE=AE,由等腰三角形三角形的性质和平行线的性质可得∠A=∠ABC,即可求解.【解答】证明:∵G是BD的中点,∴DG=BG,∵DE∥BC,∴∠DEG=∠BFG,∠ADE=∠ABC,又∵∠DGE=∠BGF,∴△DEG≌△BFG(AAS),∴BF=DE,又∵AE=BF,∴DE=AE,∴∠A=∠ADE,∴∠A=∠ABC,∴CA=CB.【点评】本题考查了全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定方法是解题的关键.20.【分析】(1)根据统计图数据判断即可;(2)根据加权平均数公式计算即可;(3)答案不唯一,合理即可.【解答】解:(1)由题意得:①2023年6月到12月,B款汽车月销量呈上升趋势,说法正确;②2023年6月到8月,A款汽车的月平均销量高于B款汽车;9月到12月,A款汽车的月平均销量低于B款汽车,原说法错误;③2023年6月到12月,A款汽车月销量中位数小于B款汽车,说法正确;④2023年6月到12月,A款汽车的月销量比B款汽车的月销量更稳定,说法正确;所以正确结论的序号是①③④.故答案为:①③④;(2)=84.7(分),答:B款汽车的平均得分为84.7分;(3)由图①可以看出,2023年6月~12月期间A款汽车月销量呈下降趋势,建议生产A款汽车的厂家加大汽车宣传力度,必要时提高降价速销(答案不唯一).【点评】本题考查了中位数,扇形统计图,折线统计图以及加权平均数,掌握中位数,加权平均数等概念是关键.21.【分析】(1)列表可得出所有等可能的结果数以及甲、乙两人恰好选择相同航班的结果数,再利用概率公式可得出答案.(2)根据题意列出乙选择的往返航班的所有结果,由题意知乙选择的往返航班与甲均相同的结果有1种,利用概率公式可得出答案.【解答】解:(1)将去程航班的三个航班分别记为a,b,c,列表如下:a b ca(a,a)(a,b)(a,c)b(b,a)(b,b)(b,c)c(c,a)(c,b)(c,c)共有9种等可能的结果,其中甲、乙两人恰好选择相同航班的结果有3种,∴甲、乙两人恰好选择相同航班的概率为=.(2)将返程航班的两个航班分别记为d,e,乙选择的往返航班的所有情况列表如下:d ea(a,d)(a,e)b(b,d)(b,e)c(c,d)(c,e)共有6种等可能的结果.∵甲已选定往返航班,∴乙选择的往返航班与甲均相同的结果有1种,∴乙选择的往返航班与甲均相同的概率为.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.22.【分析】(1)依据四边形AFCH是平行四边形,可得AM∥CN,依据四边形AECG是平行四边形,可得AN∥CM,进而得出四边形AMCN是平行四边形;(2)根据矩形的性质得出AC=MN,进而利用BD=2MN=2AC解答即可.【解答】(1)证明:∵点E、F、G、H分别是平行四边形ABCD各边的中点,∴AH∥CF,AH=CF,∴四边形AFCH是平行四边形,∴AM∥CN,同理可得,四边形AECG是平行四边形,∴AN∥CM,∴四边形AMCN是平行四边形;(2)解:连接AC,∵四边形AMCN是矩形,∴AC=MN,∵BD=3MN,∴BD=3AC,故答案为:BD=3AC.【点评】本题主要考查了平行四边形的判定与性质,解决问题的关键是掌握平行四边形的判定方法.23.【分析】过点D作DF⊥AB,垂足为F,延长DE交CB于点G,根据题意可得:DG⊥CB,DF=BG,DG=BF,然后在Rt△ADF中,利用锐角三角函数的定义求出DF和AF的长,再设DG=BF=x m,则AB=(28.5+x)m,最后分别在Rt△DCG和Rt△ABC中,利用锐角三角函数的定义求出CG和CB的长,从而列出关于x的方程,进行计算即可解答.【解答】解:过点D作DF⊥AB,垂足为F,延长DE交CB于点G,由题意得:DG⊥CB,DF=BG,DG=BF,在Rt△ADF中,∠DAF=18°,AD=30m,∴DF=AD•sin18°≈30×0.30=9(m),AF=AD•cos18°≈30×0.95=28.5(m),∴DF=BG=9m,设DG=BF=x m,∴AB=AF+BF=(28.5+x)m,在Rt△DCG中,∠CDG=58°,∴CG=DG•tan58°≈1.6x(m),在Rt△ABC中,∠CAB=45°,∴CB=AB•tan45°=(28.5+x)m,∵CG+BG=CB,∴1.6x+9=28.5+x,解得:x=32.5,∴BC=1.6x+9=61(m),∴建筑物BC的高度约为61m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.【分析】(1)先计算根的判别式的值得到Δ=8(m﹣2)2+28,则利用非负数的性质可判断Δ>0,然后利用根的判别式的意义得到结论;(2)计算自变量为0对应的函数值得到二次函数图象与y轴的交点坐标为(0,m2﹣1),然后利用﹣1<m<1可判断二次函数图象与y轴的交点在y轴的负半轴上.【解答】证明:(1)∵Δ=4(m﹣4)2﹣4×(﹣1)×(m2﹣1)=8(m﹣2)2+28,而8(m﹣2)2≥0,∴Δ>0,∴不论m为何值,该函数图象与x轴总有两个公共点;(2)当x=0时,y=﹣x2+2(m﹣4)x+m2﹣1=y=m2﹣1,∴二次函数图象与y轴的交点坐标为(0,m2﹣1),∵﹣1<m<1,∴m2﹣1<0,∴二次函数图象与y轴的交点在y轴的负半轴上,即当﹣1<m<1时,该函数图象与y轴的交点总在x轴的下方.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程;Δ=b2﹣4ac决定抛物线与x轴的交点个数.也考查了二次函数的性质.25.【分析】(1)列式计算可得电动汽车每小时的充电量为100kw•h;(2)求出汽车行驶时每小时耗电=20(kw•h),可知到达景点时汽车剩余电量为70(kw•h),再用待定系数法可得线段AB所表示的Q与t之间的函数表达式为Q=﹣20t+130(1.5≤t≤3);(3)求出S与t的函数图象过(0,0),(1,80),(1.5,80),(3,200),(4,200),(6.5,0),再描点画出图象即可.【解答】解:(1)∵=100(kw•h),∴电动汽车每小时的充电量为100kw•h;故答案为:100;(2)∵到达景点时汽车剩余电量与出发时恰好相同,∴汽车行驶时每小时耗电=20(kw•h),∴到达景点时汽车剩余电量为100﹣20×(3﹣1.5)=70(kw•h),设线段AB所表示的Q与t之间的函数表达式为Q=kt+b,则,解得,∴线段AB所表示的Q与t之间的函数表达式为Q=﹣20t+130(1.5≤t≤3);(3)根据题意,小美在景区游玩了6.5﹣2[1+(3﹣1.5)]﹣(1.5﹣1)=1(小时),∴当t=4时,小美游玩结束开始返回,∴当0≤t≤1时,S=80t,图象过(0,0),(1,80),当1<t≤1.5时,S=80,图象过(1.5,80),当1.5<t≤3时,S=80+80(t﹣1.5)=80t﹣40,图象过(3,200),当3<t≤4时,S=200;图象过(4,200),当4<t≤6.5时,S=200﹣80(t﹣4)=﹣80t+520,图象过(6.5,0),画出图象如下:【点评】本题考查一次函数的应用,解题的关键是读懂题意,能从函数图象中获取有用的信息.26.【分析】(1)连接DF、OD、OF,则∠ODF=∠OFD=90°﹣∠DOF,由切线的性质得∠ODC=90°,则∠FDC=90°﹣∠ODF=∠DOF,而∠DAC=∠DOF,所以∠DAC=∠FDC,而∠C=∠C,即可证明△CDA∽△CFD;(2)连接DF、EF,由AD2=AB2﹣BD2=AC2﹣CD2,且AB=BC=,AC=2,得()2﹣(﹣CD)2=22﹣CD2,求得CD=,则AD2=AC2﹣CD2=,再证明△DAF∽△CAD,得=,求得AF=,再证明∠AEF=∠BAC,所以EF=AF=.【解答】(1)证明:如图①,连接DF、OD、OF,则OD=OF,∴∠ODF=∠OFD=(180°﹣∠DOF)=90°﹣∠DOF,∵⊙O与BC边相切于点D,∴BC⊥OD,∴∠ODC=90°,∴∠FDC=90°﹣∠ODF=90°﹣(90°﹣∠DOF)=∠DOF,∵∠DAC=∠DOF,∴∠DAC=∠FDC,∵∠C=∠C,∴△CDA∽△CFD.(2)解:如图②,连接DF、EF,∵AB是⊙O的直径,⊙O与BC边相切于点D,∴∠AFD=90°,BC⊥AD,∴∠ADB=∠ADC=90°,∴AD2=AB2﹣BD2=AC2﹣CD2,∵AB=BC=,AC=2,∴()2﹣(﹣CD)2=22﹣CD2,解得CD=,∴AD2=AC2﹣CD2=22﹣=,∵∠ADF=∠C=90°﹣∠CAD,∠DAF=∠CAD,∴△DAF∽△CAD,∴=,∴AF===,∵∠AEF=∠ADF=∠C=∠BAC,∴EF=AF=,∴EF的长是.【点评】此题重点考查圆周角定理、切线的性质定理、勾股定理、相似三角形的判定与性质、等腰三角形的判定等知识,正确地作出辅助线是解题的关键.27.【分析】(1)选择小明的思路:首先证得△ACD∽△BAD,推导出,即AD2=CD•BD,代入即可得证;选择小红的思路:首先证得△ACD∽△ABC,进而得到,代入数据即可得证;(2)作CD=n;以C为圆心,n为半径作圆,以D为圆心,m为半径作圆,两圆相交于点A;以A为圆心,m为半径作圆,交DC的延长线于点B,则△ABC即为所求.据此作图即可;(3)设AC=x,则AB=kx,首先推导出k>1;依据(1)中:AB2﹣BC•AC﹣AC2=0,分三种情况:①当AB=4时,推导出AC=,解得BC=,l=4k+4;②当BC=4时,代入得(kx)2﹣4x﹣x2=0,解得:x=,推导出l=+4;③当AC=4时,则AB=4k,解得:BC=4k2﹣4,推导出l=4k2+4k.【解答】(1)证明:选择小明的思路:∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠ACB=2∠CAD=2∠D.∵∠ACB=2∠B,∴∠CAD=∠D=∠B.又∵∠D=∠D,∴△ACD∽△BAD.∴,∴AD2=CD•BD,∵BC=a,CD=AC=b,AD=AB=c,∴c2=b(a+b),即c2﹣ab﹣b2=0;选择小红的思路:由翻折可知,∠B=∠DCB,BD=CD,∵∠ACB=2∠B,∴∠ACB=2∠DCB.∴∠ACD=∠DCB=∠B.又∵∠A=∠A,∴△ACD∽△ABC.∴,∵BC=a,AC=b,AB=c,∴,,∵AD+BD=AB,∴,即a2﹣ab﹣b2=0;(2)解:如图,△ABC即为所求(答案不唯一).①作CD=n;②以C为圆心,n为半径作圆,以D为圆心,m为半径作圆,两圆相交于点A;③以A为圆心,m为半径作圆,交DC的延长线于点B,则△ABC即为所求.(3)解:∵,设AC=x,则AB=kx,∵∠C=2∠B,∴AB>AC,即kx>x,∴k>1;由(1)知:AB2﹣BC•AC﹣AC2=0,分三种情况:①当AB=4时,即kx=4,∴x=,即AC=,代入AB2﹣BC•AC﹣AC2=0得:42﹣•BC﹣()2=0,解得:BC=,∴l=AB+AC+BC=++4=4k+4,∴l>8;②当BC=4时,代入AB2﹣BC•AC﹣AC2=0得:(kx)2﹣4x﹣x2=0,解得:x=,∴l=AB+AC+BC=4++=+4,∴l>4;③当AC=4时,则AB=4k,代入AB2﹣BC•AC﹣AC2=0得:(4k)2﹣4BC﹣42=0,解得:BC=4k2﹣4,∴l=AB+AC+BC=4k+4+4k2﹣4=4k2+4k,∴l>8;综上,当AB=4时,l=4k+4,此时l>8;当BC=4时,l=+4,此时l>4;当AC=4时,l=4k2+4k,此时l>8.【点评】本题属于相似形综合题,主要考查了相似三角形的判定与性质,三角形的周长公式的应用,利用周长公式得出结论是解答本题的关键。
2023年天津市部分区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________....【答案】DA....【答案】C【分析】根据从正面看到的图形是主视图进行判断即可.【详解】解:由题意得,主视图如下:故选:C.【点睛】本题考查了主视图.解题的关键在于熟练掌握从正面看到的图形是主视图.6.估计37的值应在(A.5和6之间10,8B.(6,8 A.()【答案】D⊥轴,根据【分析】过A点作AC x【点睛】本题考查了点的坐标,等腰三角形的性质,勾股定理,掌握并会利用等腰三角形的性质,勾股定理是解题的关键.9.已知一元二次方程2x-∴123632y y y ==-=-,,,∴231y y y <<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,理解题意,求出1y ,2y ,3y 的值是解题关键,本题也可以利用反比例函数的性质求解.11.如图,ABC 与111A B C △,关于直线MN 对称,P 为MN 上任一点(P 不与1AA 共线),下列结论不正确...的是()A .1AP A P=B .ABC 与111A B C △的面积相等C .MN 垂直平分线段1AA D .直线11,AB A B 的交点不一定在MN 上【答案】D【分析】根据轴对称的性质依次进行判断,即可得.【详解】解:∵ABC 与111A B C △,关于直线MN 对称,P 为MN 上任一点(P 不与1AA 共线),∴1AP A P =,ABC 与111A B C △的面积相等,MN 垂直平分线段1AA ,即选项A 、B 、C 正确,∵直线11,AB A B 关于直线MN 对称,∴直线11,AB A B 的交点一定在MN 上,即选项D 不正确,故选:D .【点睛】本题考查了轴对称的性质,解题的关键是掌握轴对称的性质.12.已知拋物线()2<0y ax bx c a =++与x 轴交于()1,0x ,()()212,0x x x <,其顶点在线段AB 上运动(形状保持不变),且()4,3A -,()13B ,,有下列结论:①3c ≤;②当0x >时,y 随x 的增大而减小;③若2x 的最大值为4,则1x 的最小值为7-.其中,正确结论的个数是()A .0B .1C .2D .3【答案】C【分析】根据抛物线开口向下可知函数有最大值3,即可判断①;根据抛物线的性质可知当1x >时,y 随x 的增大而减小即可判断②;根据2x 的最大值为4,则此时对称轴为直线1x =,则由对称性可得1x 的最小值为()4417---=-,即可判断③.【详解】解:∵拋物线()2<0y ax bx c a =++与x 轴交于()1,0x ,()()212,0x x x <,且抛物线顶点在线段AB 上运动(形状保持不变),()4,3A -,()13B ,,∴抛物线的函数值有最大值3,∴3c ≤,故①正确;∵抛物线顶点在线段AB 上运动(形状保持不变),且()4,3A -,()13B ,,∴抛物线对称轴在直线4x =-和直线1x =之间,∴当1x >时,y 随x 的增大而减小,故②错误;∵2x 的最大值为4,∴此时对称轴为直线1x =,∴由对称性可知,1x 的最小值为()4417---=-,故③正确;故选C .【点睛】本题主要考查了抛物线的性质,熟知抛物线的性质是解题的关键.二、填空题【答案】2【分析】如图,连接AE ,490AE AEO =∠=︒,,在Rt OB OA =,根据BE OB OE =-【详解】解:如图,连接AE 由题意知,OF 是ACE △的中位线,∴12OF AE =,OF AE ∥,∴490AE AEO =∠=︒,,在Rt AEO △中,由勾股定理得由矩形的性质可得OB OA =∴2BE OB OE =-=,故答案为:2.【点睛】本题考查了中位线,勾股定理,矩形的性质等知识.解题的关键在于添加辅助线,构造中位线.18.如图,在每个小正方形的边长为B 在圆上.(1)线段AC 的长等于________(2)过点D 作DF AC ∥,直线∵90BAE ∠=︒,∴BE 为圆的直径,∵GK 垂直平分AB ,∴BE 鱼GK 的交点为圆心∵MN AH ∥,∴ AM HN=,∴ANM HMN ∠=∠,∴IM IN =,∵OM ON =,∴IP 垂直平分MN ,即MP NP =.故答案为:取圆与格线的交点连接FD ,与圆交于点M ,N ;取圆与AC 的交点H ,连接MH ,AN ,两线交于点I ;作射线OI ,交MN 于点P ,则点P 即为所求.【点睛】本题主要考查了勾股定理,圆周角定理,垂直平分线的判定,等腰三角形的判定,垂径定理,解题的关键是找出圆心O 和点I .三、解答题19.解不等式组2123x x x +≥⎧⎨≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________.【答案】(1)1x ≥-(2)3x ≤(3)解集在数轴上表示见解析(4)13x -≤≤【分析】(1)根据解不等式的方法计算即可;(2)根据解不等式的方法计算即可;(3)根据解集在数轴上表示即可;(4)结合(3)中数轴的图形即可作答.【详解】(1)21x +≥2212x +-≥-1x ≥-,故答案为:1x ≥-;(2)23x x ≤+23x x x x -≤+-3x ≤,故答案为:3x ≤;(3)在数轴上表示如下:(4)结合数轴,取两个解集的公共部分:故答案为:13x -≤≤.【点睛】本题主要考查了求解不等式组的解集以及在数轴上表示不等式解集的知识.练掌握一元一次不等式的解法,熟知小找不到”的原则是解答此题的关键.20.某初中学校为了解学生课外阅读情况,随机调查了部分学生每周平均阅读时间.根据统计结果,绘制出如下统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为________,图①中m 的值为________(2)求统计的这组每周平均阅读时间数据的平均数、众数和中位数.【答案】(1)50,6(2)这组数据的平均数是9,众数为9,中位数为9【分析】(1)根据两个统计图可选由具体阅读时间的人数及所占百分比即可求出总人数,进而可求解.(2)根据条形统计图可求出阅读总时间数,可求出平均数,再找出出现次数最多的数据,将这组数据按从小到大的顺序排列,可找出处于中间的两个数,即可求解.【详解】(1)解:由统计图得:每周平均阅读时间7h 的学生有5人,占10%,∴调查的总人数:()55010%=人,由条形统计图得每周平均阅读时间11h 的学生有3人,3%6%50m ∴==.故答案:50,6.(2)解:由条形统计图得:(1)如图①,若D 为 AB 的中点,64A ∠=︒,求∠(2)如图②,若AB CD ⊥,过点D 作O 的切线与求ABD ∠的大小.【答案】(1)64D ∠=︒,45ABD ∠=︒(2)60ABD ∠=︒DE 是O 的切线,OD DE ∴⊥,即ODE ∠又DE CE ⊥ ,即DEC ∠180ODE DEC ∴∠+∠=︒C OD E ∴∥.则90AMF ∠=︒,8.8m CE DF ==在Rt AFM △中,45AFM ∠=︒,则45MAF AFM ∠=∠=︒,设AM FM x ==,在Rt ADM △中,38ADM ∠=︒,(1)如图①,求点B C ,的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形''''A O B C ,点A ,O ,别为A O B C '''',,,.设OO t '=,正方形''''A O B C 与MON △重合部分的面积为①如图②,当14t <≤时,正方形''''A O B C 与MON △重合部分为五边形,直线②当14t <≤时,由题意得21152S t t =-+-解得515t =-或515+当5t =时,点O '与点N 重合,此时2914482S =⨯⨯=>,∴59t <<,∴9A N A F t ''==-,由题意得()219922t -=,解得6t =或12t =(舍去);综上,t 的值是515-或6.故答案为:515-或6.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,矩形的性质,平移的性质,图形的面积,二次函数的性质等知识,根据题意分别画出图形,通过面积的和差关系求出S 关于t 的函数表达式是解题的关键.25.抛物线()230y ax bx a =+-≠(1)求抛物线的顶点坐标;(2)点Q 在拋物线对称轴上,当△(3)P 是拋物线对称轴上的一点,M 腰的等腰直角三角形时,求出符合条件的所有点【答案】(1)抛物线顶点坐标为(-点A 、B 关于抛物线的对称轴对称,AQ BQ ∴=,∴当点A 、Q 、C 在一条直线上时, 抛物线23+=2y x x -与∴设直线AC 的解析式为把点()30A -,代入,得1k ∴=-.设点P 的坐标为()1,m -.由PAM PEA AFM ∠=∠=∠PAE MAF PAE ∴∠+∠=∠APE MAF ∴∠=∠.()AAS APE MAF ≌ ∴.PE AF ∴=,AE MF =.2AF PE ∴==,MF AE =∴点M 的坐标为(3,m -+ 点M 在抛物线2+=2y x ()()2323m m ∴-++-+-2420m m ∴-+=,解得22m =+或2m =-∴点M 的坐标为(21,-当点P 在x 轴下方时,如图:同理可以求得点M的坐标为综上所述,当PAM△是以()--或(61,221,2-【点睛】本题考查了求二次函数及一次函数的解析式,二次函数的图象及性质,最短路径问题,全等三角形的判定与性质,试卷第21页,共21页。
2023年广东省广州市从化区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________....【答案】A【分析】根据从正面看得到的图形是主视图,可得图形的主视图,逐一进行判断即可.A .1a >-B .1b >A .23B .12【答案】C共有6种等可能的结果,能让两个小灯泡同时发光的有∴能让两个小灯泡同时发光的概率为A.83B【答案】C【分析】由折叠可得CFA.4【答案】B【分析】由抛物线的开口方向判断关系,然后根据对称轴及抛物线与∴0abc >,故①正确;由图可知:当2x =时,图像在x 轴下方,则420y a b c =++<,故②正确;当=1x -时,函数取最大值,且为y a b c =-+,故③错误;∵对称轴为直线=1x -,图像与x 轴交于()1,0,∴图像与x 轴的另一个交点为()3,0-,∵抛物线开口向下,∴当31x -≤≤时,0y ≥,故④正确;∵抛物线开口向下,对称轴为直线=1x -,∴1x <-时,y 随x 增大而增大,故⑤错误;∴正确的有①②④,共3个,故选B【点睛】本题主要考查图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求2a 与b 的关系.二、填空题11.嫦娥五号从月球风驰电掣般返回地球的速度接近第二宇宙速度,即112000米/秒,该速度112000用科学记数法表示为_________.【答案】51.1210⨯【分析】根据科学记数法的定义,即可求解.【详解】解:5112000 1.1210=⨯,故答案是:51.1210⨯【点睛】本题主要考查科学记数法,掌握科学记数法的形式:a ×10n (1≤|a |<10,n 为整数),是解题的关键.12.因式分解:16mn n -=______.【答案】()16n m -【分析】直接提公因式n 即可分解.【详解】解:()1616mn n n m -=-,故答案为:()16n m -.【点睛】本题考查了因式分解,解题的关键是掌握提公因式法.13.将点()2,1P -先向左平移1个单位长度,再向上平移2个单位长度得到点P ',则点P '的坐标为______.【答案】()3,3-【分析】根据平移的性质,向左平移a ,则横坐标减a ;向上平移a ,则纵坐标加a .【详解】解:∵()2,1P -先向左平移1个单位长度,再向上平移2个单位长度得到点P ', ∴213--=-,123+=,即点P '的坐标为()3,3-. 故答案为:()3,3-.【点睛】本题考查了坐标与图形的变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.14.一元二次方程290x ax ++=有两个相等的实数根,则=a ______.【答案】6±【分析】根据题意得Δ0=,进行计算即可得.【详解】解: 方程290x ax ++=有两个相等实数根,∴24190a ∆=-⨯⨯=,6a ∴=±,故答案为:6±.【点睛】本题考查了一元二次方程的个数与根的判别式的关系,解题的关键是掌握一元二次方程的个数与根的判别式的关系.15.抖空竹是中国传统文化苑中一株灿烂的花朵,是国家级的非物质文化遗产之一,可见于全国各地,天津、北京、辽宁、吉林、黑龙江等地尤为盛行.如图,AC 、BD 分别与O e 相切于点C 、D ,延长AC 、BD 交于点P .若120P ∠=︒,O e 的直径为12cm ,则图中»CD 的长为______.(结果保留π)【答案】2cmπ【分析】连接OC ,OD ,先求出COD ∠的度数,最后利用弧长公式求解答案即可.【详解】解:如图所示,连接OC ,OD ,AC ,BD 分别与O e 相切于点C ,D ,90OCP ODP ∴∠=∠=︒,【点睛】本题考查了切线的性质,弧长的计算,求出16.如图,11OA B V 、1A A V 【答案】(1,1)(202203,202+-【分析】由于11OA B V 是等腰直角三角形,可知直线联立,求出方程组的解,得到点1B 的坐标,则确定点1A 的坐标;由于11OA B V ,122A A B V 都是等腰直角三角形,则【点睛】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考填空题中的压轴题.三、解答题17.解不等式组:2138xx x->⎧⎨-<⎩.【答案】34x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:2138x x x ->⎧⎨-<⎩①②,解不等式①,得:3x >,解不等式②,得:4x <,则不等式组的解集为34x <<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,点F 、C 是AD 上的两点,且BC EF ∥,AB DE ∥,AC DF =.求证:ABC DEF ≌△△.【答案】见解析【分析】根据平行线的性质求出BCA EFD ∠=∠,A D ∠=∠,根据ASA 推出两三角形全等即可.【详解】解:∵BC EF ∥,∴BCA EFD ∠=∠,∵AB DE ∥,∴A D ∠=∠,在ABC V 和DEF V 中A DAC DFBCA EFD ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ABC DEF ∴V V ≌.【点睛】本题考查了平行线的性质和全等三角形的判定,解题的关键是熟练掌握角边角的方法证明三角形全等.【分析】(1)由表中的数据,将1x =,8y =;2x =,14y =代入中,求出k ,b 值即可;(2)令1592y =,求出x 值即可得解.【详解】(1)解:由表可知:当1x =时,8y =,当2x =时,14y =,∴8142k b k b =+⎧⎨=+⎩,解得:62k b =⎧⎨=⎩,∴62y x =+;(2)令1592y =,得159262x =+,解得:265=x ,∴当荔枝销售额为1592元时,销量是265千克.【点睛】本题考查了一次函数的应用,利用待定系数法求出函数关系式是解答本题的关键.21.随着中高考的改革,阅读的重要性也越来越凸显,阅读力成为学习力之一.某校开展了九年级学生一周阅读打卡活动,为了解一周阅读打卡活动的情况,随机抽查了该校九年级200名学生阅读打卡的天数,并根据抽查结果制作了如下不完整的频数分布直方图:根据以上恴息,解答下列问题:(1)请补全频数分布直方图;(2)被调查的200名学生阅读打卡天数的众数为______,中位数为______,平均数为______;(3)若该校有九年级学生1000人,请你估计该校九年级学生阅读打卡不少于5天的人数.【答案】(1)见解析(2)5天,5天,5.3天(3)750人【分析】(1)用样本容量分别减去其它天数的人数可得到实践活动天数为6天所对应的人数,从而补全统计图;(2)由图可知:打卡5天的人数最多,故众数为中位数为5天,平均数为320430560650200⨯+⨯+⨯+⨯=(3)6050401000750200++⨯=人,答:估计该校九年级学生阅读打卡不少于(1)尺规作图:作出劣弧»AD 的中点E (不写作法,保留作图痕迹)(2)连接BE 交AD 于F 点,连接AE ,求证:(3)若O e 的半径等于6,且O e 与AC π).(2)如图,∵AB 是O e 的直径,∴90AEB ADB ∠=∠=︒,∵AFE BFD ∠=∠,∴BFD AFE ∽△△;【点睛】本题考查作图-复杂作图,圆周角定理,等腰三角形的性质,相似三角形的判定,扇形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.为了测量流溪河某段河流的宽度,两个数学研究小组设计了不同的方案,他们在河点B,C在点A的正南方A的正南方向,点C正北方向200m BC=当点Q 在点A 的左侧(包括点A )或点Q 在点B 的右侧(包括点B )时,线段PQ 与抛物线只有一个公共点.20a ∴+≤或23a +≥.2∴≤-a (不合题意,舍去)或1a ≥.②当a<0时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点B )时,线段PQ 与抛物线只有一个公共点.023a ∴≤+<.21a ∴-≤<.又0a < ,20a ∴-≤<.综上所述,a 的取值范围为20a -≤<或1a ≥.【点睛】本题考查二次函数的综合应用,解题关键是熟练掌握二次函数的性质,通过分类讨论及数形结合的方法求解.25.在平行四边形ABCD 中,BAD ∠的平分线交边BC 于点E ,交DC 的延长线于点F .(1)如图1,求证:CE CF =;(2)如图2,FG BC ∥,FG EC =,连接DG 、EG ,当ABC ∠=60BDG ∠=︒;(3)在(2)的条件下,当2BE CE =,AE 23=时,求线段BD 的长.【答案】(1)见解析(2)见解析AB CD ∴∥,AD BC ∥,F BAF ∴∠=∠,CEF DAF ∠=∠,AF 平分BAD ∠,BAF DAF ∴∠=∠,F CEF ∴∠=∠,CE CF ∴=;(2)证明:如图2,延长AB 、FG 交于点H ,连接DH ,FG CE ∥ ,CE AD ∥,FH BC AD ∴∥∥,AH DF ∥ ,∴四边形AHFD 是平行四边形,DFA FAB DAF ∠=∠=∠ ,DA DF ∴=,∴四边形AHFD 是菱形,FD FH ∴=,AD AH =,120ABC ∠=︒ ,60DFH DAH ∴∠=∠=︒,FDH ∴△和ADH V 都是等边三角形,60DFG DHB FDH ∴∠=∠=∠=︒,FD HD =, 四边形BCFH 是平行四边形,BH CF ∴=,FG CE = ,CE CF =,FG BH ∴=,在DFG V 和DHB △中,FG BH GFD BHD FD HD =⎧⎪∠=∠⎨⎪=⎩,(SAS)DFG DHB ∴△≌△,四边形ABCD 是平行四边形,AB CD ∴∥,AD BC ∥,DAE AEB ∴∠=∠,180DCB ∠=︒AE 平分BAD ∠,BAE DAE ∴∠=∠,18030ABC BAE AEB ︒-∠∴∠=∠==。
2024年上海市青浦区中考一模数学试题(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每小题4分,满分24分)]下列图形中,一定相似的是(A.两个等腰三角形B.两个菱形C.两个正方形D两个等腰梯形2.已知,在Rtt.ABC中,乙C=90°,BC=l2, AC=5,则cosA的值是()厂二5 12 5A— B - C.— D.旦12 5 13 133如图,在"田C中,点D、E分别在边AB、AC上,LADE=LC,则下列判断错误的是() AB CA.啤D=乙BB.DE-AC=BC-AF,C.AD·AB=AE·AC4.下列说法中,正确的是()A.a+(-句=0C.如果lal=I叶,那么ii=bD. 1二=(告)2B如果e是单位向量,那么e=lD如果a非零向量,且b=-2a,那么all b5.如图,在"ABC中,点D在边BC上,点E在线段AD上,点F,G在边BC上,且E F II AB,EG II AC,则下列结论一定正确的是(AEF AC..BF DG _ DF DCB. BD ACA.—=——=—C.—=—D.—=—A B EC FD GC DE DA FD EC6.如图,二次函数y=釭2+bx+c(a-#0)的图像的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:CDc=l;@动<0:@a-h+c=O:@当x>-1时,y>O.其中正确结论的个数是() ``A.l个B.2个C.3个D.4个二、填空题:(本大题共12题,每小题4分,满分48分)a 4 a-b7.如果一=-,那么——-=b 3 b8.已知线段AB=2,点P是AB的黄金分割点,且AP<BP.那么BP=.9已知向量d与单位向量e方向相同,且I a 1=3,那么a=.(用向矗e的式千表示)10如果两个相似三角形的周长的比等千1:3,那么它们的面积的比等千11.如果抛物线y=x i +bx+2的对称轴是直线x=2,那么b的值等千.12如果点A(2,y1)和点B(3,y2)是抛物线y=x2+m(m常数)上的两点,那么Y1Y2.(填">”、"="、“<”)13如图,某人沿养斜坡AB方向往上前进了30米,他的垂直高度上升了15米,那么斜坡AB的坡比i=A/14如果抛物线y= ax2 +bx+c(a :;c 0)的顶点在x轴的正半轴上,那么这条抛物线的表达式可以是.(只需写一个)15如图,点G为等腰臼角三角形ABC重心,乙ACB=90°,连接CG,如果AC=3✓2,那么CG=cABl6如图,在边长相同的小正方形组成的网格中,点A、8、C、D都在这些小正方形的顶点上,AB、CD 相交千点O,那么sin乙BOD 的值为.c\勹l7如图,在矩形ABCD中,AB=3,AD =4,点E 在边AD 上,将..CDE沿直线CE翻折,点D的对应点为点G.延长DG 交边AB千点F,如果BF=1,那么DE的长为A“~B(..18规定:平面上一点到一个图形的距离是指这点与这个图形上各点的距离中最短的距离.如图@当乙P.MN>90时,线段RM 的长度是点R 到线MN 的距离,当乙PiGN =90°时,线段PiG 的长度是点P2到线段MN的距离如图@,在__ ABC中,L.C=90°,A C=3✓5, tanB=2,点D 为边AC 上一点,6石AD =2DC ,如果点Q为边AB 上一点,且点Q 到线段D C 的距离不超过--,设A Q 的长为d,那么d的取值范围为\b A 三二三、解答题(本大题共7题,满分78分)19计算[厂言言严玉叩沪伶顷寸+l tan 60°一石'20.如图,梯形ABCD中,ADIi BC,对角线AC、BD相交千点o,BC=2AD, OD=l.二c(I)求BD的长;(2)如果A B=a,B C=b,试用a,b表示向量oB.321如图,在-ABC中,AB=AC=5,tanC=-,乙BAC的平分线AD交边BC于点D,点E在边AC4上,且E C=2AE,BE与AD相交千点F.cD(I)求BC的长;(2)求EF:BF的值22.北淀浦河上的浦仓路桥是一座融合江南水乡文化气息的现代空间钢结构人行廊桥.某校九年级数学兴趣小组开展了测量”浦仓路桥顶部到水面的距离"的实践活动,他们的操作方法如下:如图,在河的一侧选取B、C两点,在B处测得浦仓路桥顶部点A的仰角为22°,再往浦仓路桥桥顶所在的方向前进17米至C处,在C处测得点A的仰角为37°,在D处测得地面BD到水面EF的距离DE为1.2米(点B、C、D在一条直线上,BD/1EF, DE..l EF, AF..l EF),求浦仓路桥顶部A到水面的距离AF.(精确到0.1米)(参考数据:sin22° � 0.37, cos 22° � 0.93, tan 22° � 0.40 ; siJ137° � 0.60, cos 37° � 0.80, tan37°::::。
2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。
九年级数学一、选择题(本大题共6题)1.在直角坐标平面内,如果点()41P ,,点P 与原点O 的连线与x 轴正半轴的夹角是α,那么cot α的值是()A.4B.14C.17D.17【答案】A 【解析】【分析】由锐角的余切定义,即可求解.【详解】解:如图,∵点()41P ,,∴4cot 41α==.故选∶A【点睛】本题考查解直角三角形,坐标与图形的性质,关键是掌握锐角的三角函数定义.2.关于抛物线()212y x =--以下说法正确的是()A.抛物线在直线=1x -右侧的部分是上升的B.抛物线在直线=1x -右侧的部分是下降的C.抛物线在直线1x =右侧的部分是上升的D.抛物线在直线1x =右侧的部分是下降的【答案】C【解析】【分析】根据题目中的抛物线解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵抛物线()212y x =--,∴抛物线在直线1x =右侧的部分是上升,故选项A 、B 错误,不符合题意;抛物线在直线1x =右侧的部分是上升的,故选项C 正确,符合题意,选项D 错误,不符合题意;故选∶C .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.二次函数2285y x x =++的图像的顶点位于()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】利用配方法把二次函数解析式配成顶点式,然后利用二次函数的性质求解.【详解】解:2285y x x =++()224445x x =++-+()224485x x =++-+,()2223x =+-,∴顶点坐标为()23--,,∴二次函数2285y x x =++的图像的顶点位于第三象限,故选C .【点睛】本题考查二次函数的性质,解答本题的关键是将题目中的函数解析式化为顶点式.4.如图,梯形ABCD 中,AD BC ∥,点E 、F 分别在腰AB 、CD 上,且EF BC ∥,下列比例成立的是()A.AE ADAB EF= B.AE EFAB BC= C.AE DFAB FC= D.AE DFAB DC=【答案】D 【解析】【分析】根据平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例,即可得到结论.【详解】解:∵AD BC ∥,EF BC ∥,∴AD BC EF ∥∥,∴AE DFAB DC=,故选D .【点睛】本题主要考查平行线分线段成比例,掌握平行线所分线段对应成比例是解题的关键.5.矩形ABCD 的对角线AC 与BD 相交于点O ,如果BC a =,DC b =,那么()A.()12DO a b =-B.()12DO b a =-C.DO a b=- D.()12DO b a =+【答案】B 【解析】【分析】求出BD a b =-,再根据12DO DB =r uuu r 即可得到结果.【详解】解:如图所示:∵BD BC CD=+BC DC =- a b=- ∴()1212DO DB b a -==,故选:B .【点睛】本题主要考查了平面向量,矩形的性质,本题侧重考查知识点的理解能力.6.下列条件中,不能判定ABC 与DEF 相似的是()A.70A D ∠=∠=︒,50B E ∠=∠=︒B.70A D ∠=∠=︒,50B ∠=︒,60E ∠=︒C.A E ∠=∠,12AB =,15AC =,4DE =,5EF =D.A E ∠=∠,12AB =,15BC =,4DE =,5DF =【答案】D 【解析】【分析】由相似三角形的判定依次判断,可求解.【详解】解∶A .∵70A D ∠=∠=︒,50B E ∠=∠=︒,∴ABC 与DEF 相似,故选项A 不合题意;B .∵70A D ∠=∠=︒,50B ∠=︒,∴180705060C ∠=︒-︒-︒=︒,∴60C E ∠=∠=︒,∴ABC 与DEF 相似,故选项B 不合题意;C .31AB ACDE EF==,A E ∠=∠,∴ABC 与DEF 相似,故选项C 不合题意;D .31AB BCDE DF==,但B ∠与D ∠不一定相等,ABC 与DEF 不一定相似,故选项D 符合题意;故选∶D .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.二、填空题:(本大题共12题)7.计算:()()3232a b a b --+=______.【答案】35a b -##53b a-+【解析】【分析】根据向量的运算法则可直接进行解答.【详解】解:()()3232a b a b--+6332a b a b =---35a b=- ,故答案为:35a b -.【点睛】本题考查的是平面向量的知识,熟悉向量的相关性质是解题的关键.8.如果一个二次函数的图像的对称轴是y 轴,且这个图像经过平移后能与232y x x =+重合,那么这个二次函数的解析式可以是______.(只要写出一个)【答案】()2323y x =++【解析】【分析】先设原抛物线的解析式为()2y a x h k =++,根据二次函数的图像平移性质知3a =,据此写出符合要求的解析式即可.【详解】解∶先设原抛物线的解析式为()2y a x h k =++,经过平移后能与抛物线23y x x =+重合,∴3a =,∴这个二次函数的解析式可以是()2323y x =++(答案不唯一).【点睛】本题考查二次函数的图像与几何变换,熟知二次函数图像平移中不变的性质是解答的关键.9.已知两个矩形相似,第一个矩形的两边长分别是3和4,第二个矩形较短的一边长是4,那么第二个矩形较长的一边长是______.【答案】163##153【解析】【分析】设第二个矩形较长的一边长是a ,根据相似多边形的性质得出344a=,再求出a 即可.【详解】解:设第二个矩形较长的一边长是a ,∵两个矩形相似,第一个矩形的两边长分别是3和4,第二个矩形较短的一边长是4,∴344a=,解得∶163a =,即第二个矩形较长的一边长是163,故答案为∶163.【点睛】本题考查了相似多边形的性质,能熟记相似多边形的性质(相似多边形的对应边的比相等)是解此题的关键.10.已知点P 是线段AB 的黄金分割点,且4AP BP AB >=,,那么AP =___________.【答案】2-##2-+【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则512AP AB =,代入数据即可得出AP 的长.【详解】解:∵P 为线段AB 的黄金分割点,且AP 是较长线段;∴122AP AB -==-.故答案为:2-.【点睛】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的32,较长的线段=原线段的12.11.已知ABC 的三边长分别为2、3、4,DEF 与ABC 相似,且DEF 周长为54,那么DEF 的最短边的长是______.【答案】12【解析】【分析】先计算出ABC 的周长,进而得出相似比为16∶,进而得出答案.【详解】解:∵ABC 的三边长分别为2、3、4,∴ABC 的周长为:9∵DEF 与ABC 相似,且DEF 周长为54,∴ABC 与DEF 的周长比为95416=∶∶,∴ABC 与DEF 的相似比为16∶,设DEF 的最短边的长是x ,则:216x =∶∶,解得∶12x =.故答案为∶12.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.12.如图是一个零件的剖面图,已知零件的外径为10cm ,为求出它的厚度x ,现用一个交叉卡钳(AC 和BD 的长相等)去测量零件的内孔直径AB .如果13==OC OD OA OB ,且量得CD 的长是3cm ,那么零件的厚度x 是______cm .【答案】12##0.5【解析】【分析】根据相似三角形的判定和性质,可以求得AB 的长,再根据某零件的外径为10cm ,即可求得x 的值.【详解】解∶∵13==OC OD OA OB COD AOB ∠=∠,∴COD AOB ∽ ,∴13CD AB =,∵CD 的长是3cm ,∴9cm AB =,∵零件的外径为10cm ,∴零件的厚度为∶()1091cm 22x -==,故答案为:12.【点睛】本题考查相似三角形的应用,解答本题的关键是求出AB 的值.13.在Rt ABC △中,90C = ∠,已知A ∠的正弦值是23,那么B ∠的正弦值是______.【答案】53##【解析】【分析】根据锐角三角函数的定义以及勾股定理进行计算即可.【详解】解:Rt ABC ∆中,90C ∠=︒,∠A 的正弦值是23即23BC AB =,∴设2BC k =,则3AB k =,由勾股定理得AC ==,∴sin 3AC B AB ==,故答案为∶53.【点睛】本题考查锐角三角函数、勾股定理,掌握锐角三角函数的定义以及勾股定理是正确解答的前提.14.如图,某幢楼的楼梯每一级台阶的高度为20厘米,宽度为30厘米,那么斜面AB 的坡度为______.【答案】1:1.5【解析】【详解】解:∵202tan 303B ∠==,∴斜面AB 的坡度为2:3=1:1.5,故答案为:1:1.5.【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高度h 和水平宽度l 的比是解题的关键.15.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x 厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y 平方厘米,那么y 关于x 的函数解析式是______.(不必写定义域)【答案】21102x x y -+=【解析】【分析】根据几何关系先把矩形的另一边用x 表示出来,再利用矩形面积公式得到y 与x 的表达式.【详解】解:如图所示,由题意,45B C ∠=∠=︒,90DFB EGC ∠=∠=︒,FG x=∴BDF 和CEG 都是等腰直角三角形,∴,BF DF CG EG ==,由矩形可知,DF EG =,∴BF CG DF EG ===,∴2011022x DF BF x -===-,∴矩形面积为211·101022y DF FG x x x x ⎛⎫==-=-+ ⎪⎝⎭,故答案为∶21102x x y -+=.【点睛】本题考查等腰直角三角形、矩形的性质和函数表达式,解题关键是熟知等腰直角三角形和矩形的性质.16.已知G 是ABC 的重心,G 作GD AC ∥交边AB 于点D ,作GE AB 交边AC 于点E ,如果四边形ADGE 的面积为2,那么ABC 的面积是______.【答案】9【解析】【分析】延长BG 交AC 于F 点,连接AG ,先证四边形ADGE 为平行四边形得112122ADG ADGE S S ==⨯=四边形 ,由G 是ABC 的重心,得2BG GF =,BF 为AC 边上的中线,再根据平行线分线段成比例可证2BD BGAD GF ==,从而即可求解.【详解】解:延长BG 交AC 于F 点,连接AG ,如图,∵GD AC ∥,GE AB ,∴四边形ADGE 为平行四边形,∴112122ADG ADGE S S ==⨯=四边形 ∵G 是ABC 的重心,∴2BG GF =,BF 为AC 边上的中线,∵GD AC ∥,∴2BD BG AD GF==,∴22BDG ADG S S == ,∴213ABG S =+= ,∵2BG GF =,∴1322AGF ABG S S == ,∴92ABF ABG AGF S S S =+=,∵BF 为AC 边上的中线,∴92292ABC ABF S S ==⨯= .故答案为∶9.【点睛】本题考查了三角形的重心∶三角形的重心到顶点的距离与重心到对边中点的距离之比为21∶,也考查了平行四边形的判定与性质和平行线分线段成比例,熟练掌握平行线分线段成比例定理是解题的关键.17.如图,在矩形ABCD 中,过点D 作对角线AC 的垂线,垂足为E ,过点E 作BE 的垂线,交边AD 于点F ,如果3AB =,5BC =,那么DF 的长是______.【答案】95【解析】【分析】利用矩形的性质求出AC ,利用三角形的面积、勾股定理求出DE 、CE 的长,再利用等角的余角相等说明BAE ADE ∠=∠、AEB DEF ∠=∠,得DEF AEB ∽ ,最后利用相似三角形的性质得结论.【详解】解:∵四边形ABCD 是矩形,∴90ABC ADC ∠=∠=︒,3AB CD ==,5BC AD ==,AB CD ∥,∴AC ===∵1122ADC S AD CD AC DE ∆=⋅=⋅,∴153434DE =,∵DEAC ⊥,∴CE ==34=,∴253434AE AC CE =-=,∵AB CD ∥,∴BAE DCA ∠=∠,90DCA CDE CDE ADE ∠+∠=∠+∠=︒ ,∴BAE ADE ∠=∠,∵BE EF ⊥,DEAC ⊥,∴90BEA AEF AEF FED ∠+∠=∠+∠=︒,∴BEA FED ∠=∠,∴DEF AEB ∽ ,∴DF DEAB AE=∴95DE AB DF AE ⋅==,【点睛】本题主要考查了相似三角形,掌握相似三角形的性质与判定、三角形的内角和定理及勾股定理是解决本题的关键.18.将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD 如图所示,其中90A C ∠=∠= ,7AB =厘米,9BC =厘米,2CD =厘米,那么原来的直角三角形纸片的面积是______平方厘米.【答案】983或54【解析】【分析】先由勾股定理求得6AD =厘米,再分情况讨论,利用三角形相似求解即可.【详解】解:连接BD ,∵90A C ∠=∠= ,7AB =厘米,9BC =厘米,2CD =厘米,∴22222BD BC CD AD AB =+=+即2222927AD +=+,∴6AD =厘米,①如下图,延长AD ,BC 相交于点N ,设NC x =厘米,∵90NCD A ∠=∠=︒,N ∠=∠,9BN x =+厘米,∴NCD NAB ∽ ,∴ND NC CD NB NA AB ==即2967ND x x ND ==++,∴83x =厘米,103ND =厘米,111098672233ANB S AN AB ⎛⎫=⨯=⨯+⨯= ⎪⎝⎭ 平方厘米;②如下图,延长CD,BA 相交于点M ,设MD y =厘米,∵90MAD C ∠=∠=︒,M M ∠=∠,2CM y =+厘米,∴MAD MCB ∽ ,∴MA MD ADMC MB CB ==即6279MA y y AM ==++,∴10y =厘米,()1110295422CMB S CM BC =⨯=⨯+⨯= 平方厘米,故答案为983或54.【点睛】本题主要考查了相似三角形的判定及性质,勾股定理,熟练掌握相似三角形的判定及性质是解题的关键.三、解答题(本大题共7题)19.计算:tan45cot45sin45cos30︒︒︒︒++.【答案】-【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:tan45cot45sin45cos30︒︒︒︒++===【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知:如图,平行四边形ABCD 中,点M 、N 分别在边DC 、BC 上,对角线BD 分别交AM 、AN 于点E 、F ,且::1:2:1DE EF BF =.(1)求证:MN BD ∥;(2)设AM a =,AN b = ,请直接写出BD关于a、b的分解式.【答案】(1)证明见解析;(2)3322BD a b =- .【解析】【分析】(1)由平行四边形的性质可得,DM AB BN AD ∥,∥,AB CD =,AD BC =,进而得DEM BEA ∽ ,BFN DFA ∽ ,得13DM DC BN BC ==∶∶∶,再证MCN DCB ∽ 得CMN CDB ∠=∠,从而即可得证;(2)由向量的差可知,NM AM AN a b =-=- ,再证32BD MN =,从而3322BD a b =- .【小问1详解】证明:∵::1:2:1DE EF BF =∴13DE BE =∶∶,13BF DF =∶∶∵四边形ABCD 是平行四边形,∴DM AB ∥,BN AD ∥,AB CD =,AD BC =',∴DEM BEA ∽ ,BFN DFA ∽ ,∴13DM DC DM AB DE BE ===∶∶∶∶,13BN BC BN AD BF BD ===∶∶∶∶,∴13DM DC BN BC ==∶∶∶,∴23CM DC CN BC ==∶∶∶,∵MCN DCB ∠=∠,∴MCN DCB ∽ ,∴CMN CDB ∠=∠,∴MN BD ∥;【小问2详解】解:∵AM a = ,AN b = ,∴NM AM AN a b =-=-,由(1)知,MN BD ∥,MCN DCB ∽ ,23CM DC =∶∶,,∴23MN BD CM DC ==∶∶∶,∴32BD MN =,∴3322BD a b =- .【点睛】本题主要考查相似三角形的性质与判定,平行线分线段成比例,平面向量的计算等相关知识,熟练掌握相关知识是解题关键.21.在平面直角坐标系xOy 中,已知抛物线2y x mx m =++.(1)如果拋物线经过点()19,,求该拋物线的对称轴;(2)如果抛物线的顶点在直线y x =-上,求m 的值.【答案】(1)2x =-;(2)0或2.【解析】【分析】(1)把已知点的坐标代入函数解析式,列出关于系数的方程,解方程求得m 的值;然后将所求的抛物线解析式转化为顶点式,直接得到拋物线的对称轴;(2)根据题意可以求得抛物线的顶点坐标,然后将顶点坐标代入y x =-,从而可以求得m 的值.【小问1详解】解:把点()19,代入2y x mx m =++,得291m m =++.解得4m =,则该抛物线解析式为:()22442y x x x =++=+.∴该拋物线的对称轴是2x =-;【小问2详解】解:∵22224m m m y x mx m x ⎛⎫+-=+=+ ⎪⎝+⎭,∴抛物线2y x mx m =++的顶点坐标是242m m m ⎪-+⎛⎫- ⎝⎭,,∵抛物线2y x mx m =++的顶点在直线y x =-上,∴224m m m -=+,解得∶0m =或2m =.【点睛】本题考查了二次函数的性质,函数图象上点的坐标特征,顶点式2()y a x h k =-+,顶点坐标是()h k ,,对称轴是直线x h =,此题考查了学生的应用能力,熟练掌握二次函数的性质是解题的关键.22.圭表(如图1)是我国古代度量日影长度的天文仪器,它包括一根直立的杆(称为“表”)和一把南北方向水平放置且与杆垂直的标尺(称为“圭”).当正午的阳光照射在“表”上时,“表”的影子便会投射在“圭”上.我国古代很多地区通过观察“表”在“圭”上的影子长度来测算二十四节气,并以此作为指导农事活动的重要依据.例如,我国古代历法将一年中白昼最短的那一天(当日正午“表”在“圭”上的影子长度为全年最长)定为冬至;白昼最长的那一天(当日正午“表”在“圭”上的影子长度为全年最短)定为夏至.某地发现一个圭表遗迹(如图2),但由于“表”已损坏,仅能测得“圭”上记录的夏至线与冬至线间的距离(即AB 的长)为11.3米.现已知该地冬至正午太阳高度角(即CBD ∠)为3534︒',夏至正午太阳高度角(即CAD ∠)为8226︒',请通过计算推测损坏的“表”原来的高度(即CD 的长)约为多少米?(参考数据见表1,结果精确到个位)表1αsin αcos αtan α3534︒'0.580.810.728226︒'0.990.137.5(注:表1中三角比的值是近似值)【答案】表CD 的高度是9米.【解析】【分析】利用CBD ∠和CAD ∠的正切,用CD 表示出BD 和AB ,得到一个只含有CD 的关系式,再解答即可.【详解】解:∵在Rt ADC 中,tan82267.5CD AD ︒'==,在Rt BDC 中,tan35340.72CDBD︒'==,∴215AD CD =,2518BD CD =,∵2521131815CD CD -=.,∴9CD =(米)答∶表CD 的高度是9米.【点睛】本题主要考查了三角函数,熟练掌握建模思想是解决本题的关键.23.已知:如图,点D 、F 分别在等边三角形ABC 的边CB 的延长线与反向延长线上,且满足2BD CF BC ⋅=.求证:(1)ADB FAC ∽△△;(2)AF AD BC DF ⋅=⋅.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由三角形的性质证AB BC AC ==,DBA ACF ∠=∠,再由2BD CF BC ⋅=得BD BAAC CF=,即可得证;(2)证明FAC FDA ∽ 即可得证.【小问1详解】证明:∵ABC 是等边三角形,∴AB BC AC ==,60ABC ACB CAB ∠=∠=∠=︒,∴180120180DBA ABC ACB ACF ∠=︒-∠=︒=︒-∠=∠,∵2BD CF BC ⋅=,∴BD BC BC CF =即BD BAAC CF=,∴ADB FAC ∽△△;【小问2详解】证明:由(1)得ADB FAC ∽△△,∴FAC D ∠=∠,∵F F ∠=∠,∴FAC FDA ∽ ,∴AF ACDF AD=,∵AC BC =,∴AF AD BC DF ⋅=⋅,【点睛】本题主要考查了等边三角形的性质、相似三角形的判定及性质,熟练掌握相似三角形的判定及性质是解题的关键.24.在平面直角坐标系xOy 中,点()11A y -,,()20B y ,,()31C y ,,()42D y ,在抛物线2y x bx c =-++上.(1)当10y =,23y y =时,①求该抛物线的表达式;②将该抛物线向下平移2个单位,再向左平移m 个单位后,所得的新抛物线经过点()10-,,求m 的值;(2)若20y =,且1y 、3y 、4y 中有且仅有一个值大于0,请结合抛物线的位置和图像特征,先写出一个满足条件的b 的值,再求b 的取值范围.【答案】(1)①22y x x =-++;②1m =或2m =;(2)可取2b =-,1b <-或12b <≤.【解析】【分析】(1)①先求得对称轴为12x =,再根据待定系数法即可求得抛物线的表达式;②根据平移得()()222y x m x m =-++++-,又由抛物线过点()10-,,即可得解;(2)由20y =得抛物线2y x bx =-+,又由点()11A y -,,()31C y ,,()42D y ,在抛物线2y x bx =-+上,且使得1y 、3y 、4y 中有且仅有一个值大于0,从而可取2b =-,此时10y >,30y <,40y <,分抛物线的对称轴在y 轴的左侧时和抛物线的对称轴在y 轴的右侧两种情况讨论求解b 的取值范围.【小问1详解】解:①∵抛物线2y x bx c =-++过点()20B y ,,()31C y ,,23y y =,∴点B 、C 为对称点,其对称轴为01122x +==,∴122b x ==,∴1b =,∴2y x x c =-++,∵2y x x c =-++过点()11A y -,,10y =,∴()011c =-+-+,解得2c =,∴抛物线的表达式为22y x x =-++,②抛物线22y x x =-++向下平移2个单位,再向左平移m 个单位后得()()222y x m x m =-++++-,∵()()222y x m x m =-++++-过点()10-,,∴()()201122m m =--++-++-,解得1m =或2m =;【小问2详解】解:∵20y =,∴抛物线过点()00B ,,∴抛物线2y x bx=-+∵点()11A y -,,()31C y ,,()42D y ,在抛物线2y x bx =-+上,且使得1y 、3y 、4y 中有且仅有一个值大于0,∴可取2b =-,此时10y >,30y <,40y <,当抛物线的对称轴在y 轴的左侧时,∵抛物线2y x bx =-+开口向下,∴10y >,30y <,40y <,∴()210b --->,210b -+<,2220b -+<,∴1b <-,当抛物线的对称轴在y 轴的右侧时,∵抛物线2y x bx =-+开口向下,∴10y <,30y <,40y >,∴()210b ---<,210b -+>,2220b -+≤,∴1b >-,1b >,2b ≤,∴12b <≤,综上得,1b <-或12b <≤.【点睛】本题主要考查了二次函数的图像及性质,待定系数法求解二次函数的解析式以及二次函数与坐标轴的交点,熟练掌握二次函数的图像及性质式解题的关键.25.已知,如图1,在四边形ABCD 中,90BAC ADC ∠=∠=︒,4CD =,4cos 5ACD ∠=.(1)当BC AD ∥时(如图2),求AB 的长;(2)连接BD ,交边AC 于点E ,①设CE x =,AB y =,求y 关于x 的函数解析式并写出定义域;②当BDC 是等腰三角形时,求AB 的长.【答案】(1)203;(2)AB 的长为103或125-.【解析】【分析】(1)在Rt ACD △中,解直角三角形得5AC =,3AD =,再证BAC CDA ∽ 即可得解;(2)①先求得5AE x =-,165EN x =-,根据0AE >,0EN >可得定义域,证明BAC CDA ∽ 可得y 关于x 的函数解析式;②分两类讨论求解,当BD BC =时,作BQ CD ⊥于点Q ,作AP BQ ⊥于点P ,证BPA CDA ∽ 得解,当4BD CD ==时,作BN 垂直直线AD 于点N ,证NBA DAC ∽ 得解.【小问1详解】解:∵在Rt ACD △中,4cos 5ACD A CD C ∠==,4CD =,∴5AC =,3AD ==,∵BC AD ∥,∴ACB DAC ∠=∠,∵90BAC ADC ∠=∠=︒,∴BAC CDA ∽ ,∴BA AC CD AD =即543BA =,∴203AB =;【小问2详解】解:①如图2,作DN AC ⊥于点N ,∵1122ADC S AC DN AD CD =⨯=⨯ ,4CD =,5AC =,3AD =,∴125DN =,∴165CN ==,95AN AC CN =-=,∵CE x =,∴5AE x =-,165EN x =-,∵0AE >,0EN >,∴165x 5<<,∵90BAE DNE ∠=∠=︒,AEB NED ∠=∠,∴AEB NED ∽ ,∴AE AB NE DN =,即5161255x y x -=-,∴6012516xy x -=-1655x ⎛⎫<< ⎪⎝⎭,②∵90BAC ADC ∠=∠=︒,∴BC AC CD >>,∴BC CD ≠,当BD BC =时,作BQ CD ⊥于点Q ,作AP BQ ⊥于点P ,如下图,易知四边形APQD是矩形,∴2AP DQ CQ ===,90PAD PAC CAD ∠=∠+∠=︒,∵90BAC BAP PAC ∠=∠+∠=︒,∴BAP CAD ∠=∠,∵90BPA CDA ∠=∠=︒,∴BPA CDA ∽ ,∴AB AP AC AD =即253AB =,∴103AB =;当4BD CD ==时,作BN 垂直直线AD 于点N ,如下图,∴90N ADC ∠=∠=︒,∴90NAB NBA ∠+∠=︒,∵90BAC ∠=︒,∴90NAB CAD ∠+∠=︒,∴NBA CAD ∠=∠,∴NBA DAC ∽ ,∴AN AB CD AC =即45AN AB =,∴45AN AB =,∵BN ⊥AD ,∴222241635BN BD DN AB ⎛⎫=-=-+ ⎪⎝⎭,2222245BN AB AN AB AB ⎛⎫=-=- ⎪⎝⎭,∴2224416355AB AB AB ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭,解得125AB -=或125AB =(舍去),综上AB 的长为103或319125-.【点睛】本题主要考查了解直角三角形、勾股定理、求函数解析式、矩形的判定及性质以及相似三角形的判定及性质,熟练掌握勾股定理以及相似三角形的判定及性质是解题的关键.第24页/共24页。
和平区2023-2024学年度第二学期九年级第一次质量调查数学学科试卷温馨提示:本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页、试卷满分120分.考试时间100分钟.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列四个点,不在反比例函数图象上的是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了反比例函数图象上点的坐标特征,要明确,反比例函数图象上的点符合函数解析式.由于反比例函数的,故A 、B 、C 、D 中,积为12的点为反比例函数图象上的点,否则,不是图象上的点.【详解】解:A 、,点在反比例函数图象上,故本选项不合题意;B 、,点在反比例函数图象上,故本选项不合题意;C 、,点不在反比例函数图象上,故本选项符合题意;D 、,点在反比例函数图象上,故本选项不合题意;故选:C .2. 下列图形中,可以看作是中心对称图形的是( )A. B. C.D.12y x =()3,4142,425⎛⎫-- ⎪⎝⎭()2,5()6,212y x=12xy =3412⨯= 524()1225-⨯-= 251012⨯=≠ 6212⨯=【答案】A【解析】【分析】本题考查中心对称图形的定义,中心对称图形定义:把一个图形绕着某个点旋转180度,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据定义逐项判定即可得出结论.熟练掌握中心对称图形的定义是解决问题的关键.【详解】解:A、是中心对称图形,故选项符合题意;B、不是中心对称图形,故选项不符合题意;C、不是中心对称图形,故选项不符合题意;D、不是中心对称图形,故选项不符合题意;故选:A.3. 如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A. B.C. D.【答案】B【解析】【分析】本题考查了简单组合体的三视图,掌握从上面看得到的图形是俯视图是关键.根据从上面看得到的图形是俯视图,可得答案.【详解】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形.故选:B.4. 鲁班锁,民间也称作孔明锁、八针锁,如图是鲁班锁中的一个部件,它的主视图是()A. B. C. D.【答案】D【解析】【分析】本题考查了三视图的知识,主视图是从物体的主面看得到的视图.找到从正面看所得到的图形即可,注意所有的看到的或看不到的棱都应表现在主视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面看,是矩形中间有一个凹槽,故选:D.5. 的值等于()A. 0B.C.D.【答案】A【解析】【分析】本题考查特殊角的三角函数值、二次根式减法运算等知识,先计算特殊角的三角函数值,再由二次根式减法运算求解即可得到答案,熟记特殊角的三角函数值、二次根式减法运算是解决问题的关键.,故选:A.6. 如图,已知,,,.将沿图中的DE剪开,剪下的阴影三角形与不相似的是()A.B.C. D.【答案】D【解析】【分析】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.根据相似三角形的判定逐一判断即可.60sin45︒-︒160sin45︒-︒12=-=ABC=60B∠︒6AB=8BC=ABCABC【详解】解:A 、,,,故A 不符合题意;B 、,,,故B 不符合题意;C 、由图形可知,,,,,,又,,故C 不符合题意;D 、由已知条件无法证明与相似,故D 符合题意,故选:D .7. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.一次随机摸取两个小球,所得标号之和小于5的概率为( )A.B.C.D.【答案】A 【解析】【分析】此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率所求情况数与总情况数之比.列表可知,共有12种等可能的结果,其中取出的两个小球标号和小于5的结果有4种,再由概率公式求解即可.【详解】解:列表如下:12341345C C ∠=∠ 60DEC B ∠=∠=︒DEC ABC ∴ ∽C C ∠=∠ CDE B ∠=∠CDE CBA ∴ ∽624BE AB AE =-=-=853BD BC CD =-=-=4182BE BC ==3162BD AB ==∴BE BDBC BA=B B ∠∠= BDE BAC ∴∽△△ADE V ABC 13381258=235634574567由表格可知,共有12种等可能的结果,取出的两个小球标号的和小于5的结果有4种,一次随机摸取两个小球取出的小球标号的和小于5的概率,故选:A8. 如图,在平面直角坐标系中,以正六边形的中心为原点,顶点在轴上,若半径是4,则顶点的坐标为( )A. B. C. D.【答案】C 【解析】【分析】过点作,如图所示,利用正多边形外角性质求出内角及线段长,再由含直角三角形性质及勾股定理求出长,数形结合即可得到.【详解】解:过点作,连接,如图所示:在正六边形中,,因为,所以是等边三角形,∴41123==ABCDEF O A D ,x C (2,()2,4-(2,-4⎫-⎪⎪⎭C CG AD ⊥OG 30︒CG (2,C -C CG AD ⊥OC ABCDEF 1136018060226ADC CDE ︒⎛⎫∠=∠=︒-=︒ ⎪⎝⎭4OC OD ==OCD,,在中,,则,则由勾股定理可得,,故选:C .【点睛】本题考查图形与坐标、涉及正多边形性质、含直角三角形性质及勾股定理等知识,熟练掌握正多边形性质、含直角三角形性质,数形结合是解决问题的关键.9. 如图,取一根长100的匀质木杆,用细绳绑在木杆的中点并将其吊起来.在中点的左侧距离中点处挂一个重的物体,在中点右侧用一个弹簧秤向下拉,使木杆处于水平状态,弹簧秤与中点的距离(单位:)及弹簧秤的示数(单位:)满足.若弹簧秤的示数不超过7,则的取值范围是( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查了反比例函数的应用,熟练掌握反比例函数的图像与性质是解题关键.根据题意确定弹簧秤的示数关于的函数解析式,再结合图像即可获得答案.【详解】解:根据题意,,∴弹簧秤的示数关于的函数解析式为,且该函数图像在第一象限,随的增大而减小,当时,可有,越大,弹簧秤的示数越小,而的最大值,∴若弹簧秤的示数不超过7,则的取值范围是.故选:D .10. 如图,在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部4CD ∴=122OG GD OD ===Rt CDG △60CDG ∠=︒30DCG ∠=︒CG ==∴(2,C -30︒30︒cm O O O ()125cm 25cm L =()19.8N 9.8N F =O O L cm F N 11FL F L =F N L 035L <<35L >035L <≤3550L ≤≤F L 119.825245N cm FL F L ==⨯=⋅F L 245F L=F L 7N F =24535cm 7L ==L F L 110050cm 2=⨯=F N L 3550L ≤≤(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为,设雕像下部高,则下列结论不正确的是()A. 雕像的上部高度与下部高度的关系为:B. 依题意可以列方程C. 依题意可以列方程D.【答案】B 【解析】【分析】本题考查了黄金分割,一元二次方程的应用,准确熟练地进行计算是解题的关键.根据黄金分割的定义进行计算,逐一判断即可解答.【详解】解:由题意得:,,,,,,,整理得:,解得:或(舍去),,雕塑下部高度为,2m BC m x AC BC ::2AC BC BC =2240x x --=()222xx =-1-::AC BC BC AB =2AB = ::2AC BC BC ∴=BC x = m (2)m AC ABBC x ∴=-=-(2)::2x xx ∴-=22(2)x x ∴=-2240x x +-=1x =1x =-1)m BC ∴=-∴1)m -故A 、C 、D 都正确,B 不正确,故选:B11. 如图,将绕点逆时针旋转得到,点的对应点为点,的延长线交于点,连接,则下列说法不正确的是( )A. B. C. D. 【答案】C 【解析】【分析】根据旋转的性质可直接得出A 正确;数形结合,由角度之间的关系证明,可得出B 正确;过点分别作于点,作交的延长线于点,根据证明得出,利用角平分线的判定定理可推出平分,可得出D 正确,由已知无法确定C 正确,即可得到答案.【详解】解:将绕点逆时针旋转得到,,,,,故A 正确;,即,又,,,,故B 正确;过点分别作于点,作交的延长线于点,如图所示:由旋转性质知,,ABC A ADE V C E ED BC F AF AD AB =180EAC DFB ∠+∠=︒AD BC ∥EFA AFB∠=∠180ADF B ∠+∠=︒A AH EF ⊥H AG CB ⊥CB G AAS AHD AGB ≌△△AH AG =AF DFB ∠ ABC A ADE V AD AB ∴=EAC DAB ∠=∠E C ∠=∠EAD CAB ∠=∠E EAD C CAB ∠+∠=∠+∠ ADF C CAB ∠=∠+∠180C CAB B ∠+∠+∠=︒180ADF B ∴∠+∠=︒180DAB DFB ∴∠+∠=︒180EAC DFB ∴∠+∠=︒A AH EF ⊥H AG CB ⊥CB G AB AD =EDA CBA ∠=∠,又,,,又,,平分,,故D 正确;由已知无法确定,故C 错误,故选:C .【点睛】本题考查了旋转的性质、三角形内角和定理、全等三角形的判定与性质、角平分线的判定等知识,准确作出辅助线构造直角三角形逐项验证是解决问题的关键.12. 已知抛物线(a ,b ,c 是常数,)经过点,其对称轴是直线,当时,与其对应的函数值.有下列结论:①;②若点,,均在函数图象上,则;③若方程的两根为,且则;④.其中,正确结论的个数有( )A. 1个 B. 2个C. 3个D. 4个【答案】B 【解析】【分析】本题主要考查了二次函数的图象与性质、二次函数与一元二次方程等知识,熟练运用二次函数的图象与性质是解题关键.由该二次函数的图象的对称轴为,可得,再结合图象确定,易得,即可判断结论①;由图象可知,抛物线开口向上,离对称轴水平距离越大,y 值越大,据此即可判定结论②;由抛物线的对称性可知抛物线与x 轴的另一交点为,可得抛物线解析式为ADH ABG ∴∠=∠90G AHD ∠=∠=︒(AAS)AHD AGB ∴≌△△AH AG ∴=AH HF ⊥ AG FG ⊥AF ∴DFB ∠EFA AFB ∴∠=∠AD BC ∥2y ax bx c =++0a ≠1,02⎛⎫-⎪⎝⎭1x ==1x -1y >0abc <()13,y -()23,y ()30,y 132y y y >>()()212520a x x +-+=1x 2x 12x x <121522x x -<<<47a >1x =2b a =-00a c ><,20b a =-<5(0)2,,令,作,由图象可知,即可判定结论③.由题意得,,将代入即可判断结论④【详解】解:根据题意:画出大致图象如下:由图象可知,,∵对称轴是直线,∴,∴,∴,∴,故结论①错误;∵点,,均在函数图象上,∴,故结论②错误;由抛物线的对称性可知,抛物线与x 轴的另一交点为,∴抛物线解析式为,令,则有,如图作,由图像可知,故结论③正确.∵当时,与其对应的函数值,抛物线(a ,b ,c 是常数,)经过点,1522y a x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭151222a x x ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭12y =-121522x x -<<<1a b c -+>11042a b c -+=2b a =-00a c ><,1x =12bx a=-=2b a =-20b a =-<0abc >()13,y -()23,y ()30,y 313101-->->-123y y y >>5(0)2,1522y a x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭151222a x x ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭()()212520a x x +-+=12y =-121522x x -<<<=1x -1y >2y ax bx c =++0a ≠1,02⎛⎫- ⎪⎝⎭∴,∵,∴,∴,∴,故结论④正确.故选:B .第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分)13. 不透明袋子中装有9个球,其中有3个黄球、6个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黄球的概率为______.【答案】【解析】【分析】此题主要考查了概率的求法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种可能,那么事件A 的概率.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:由题意得:摸出一个黄球的概率为:,故答案为:.14. 已知点,在反比例函数的图象上.如果,则,的大小关系为:______.【答案】【解析】【分析】本题考查反比例函数图象与性质,涉及利用反比例函数增减性比较函数值大小,根据中的,得到在每一个象限内,随增大而减小,则时,,熟练掌握反比例函数图象与性质是解决问题的关键.1a b c -+>11042a b c -+=2b a =-31a c +>504a c +=5314a a ->47a >13()m P A n=3193=13()11,A x y ()22,B x y 1y x =120x x <<1y 2y 1y 2y >1y x =0k >y x 120x x <<12y y >【详解】解:反比例函数中,,在每一个象限内,随增大而减小,,,故答案为:.15. 在中(如图),点D 、E 分别为、的中点,则______.【答案】【解析】【分析】本题考查三角形的中位线和相似三角形的性质和判定,根据中位线性质证明,再利用相似的性质即可解题.【详解】解:点D 、E 分别为、的中点,为的中位线,,,,,,故答案为:.16. 一次函数的图象经过一、二、四象限,则的取值范围为______.【答案】##【解析】【分析】由函数的图象经过一、二、四象限,可知,解不等式组即可.【详解】解:函数的图象经过一、二、四象限,1y x=10k =>∴y x 120x x <<∴12y y >>ABC AB AC :ADE ABC S S =V V 1:4ABC ADE △△∽ AB AC ∴DE ABC DE BC ∴∥12DE BC =ADE ABC ∴∠=∠AED ACB∠=∠∴ADE ABC △△∽∴221124ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭△△1:4()228y k x k =-++k 42k -<<24k >>-()228y k x k =-++20280k k -+,()228y k x k =-++,解不等式组得,解得:.故答案为:.【点睛】本题考查了一次函数的图象和性质,解题的关键是能根据所过的象限判断与的符号.17. 如图,已知半圆的直径长为2,点为中点,为上任意一点,与相交于点.(1)______(度);(2)的最小值为______.【答案】①. ②. ##【解析】【分析】(1)由点为中点,得到,再由圆周角定理及其推论可得是等腰直角三角形,从而确定,最后,根据四边形是圆的内接四边形求解即可得到答案;(2)由(1)中结论,结合已知条件得到是等腰直角三角形,即,由瓜豆原理,利用全等三角形判定与性质确定点在以为圆心、为半径的圆上运动,且,如图所示,结合点到圆周上动点距离最值求法与勾股定理即可得到答案.【详解】解:(1)点为中点,,则,半圆的直径为,,即是等腰直角三角形,,四边形是圆的内接四边形,20280k k -<⎧∴⎨+>⎩24k k <⎧⎨>-⎩42k -<<42k -<<2k -28k +O BC A BC P AC AD AP ⊥BP D APC ∠=CD13511-+A BC »»BA BC =ABC =45ABC ∠︒ABCP ADP △AD AP =D O 'O B ' BDA APC = A BCBABC ∴=A ABC CB =∠∠ O BC 90BAC ∴∠=︒ABC 45ABC ∴∠=︒ ABCP,则,(2)由(1)知,等腰直角三角形,半圆的直径为,,则,,是等腰直角三角形,即,,,在上运动过程中始终保持、,连接,将绕着点顺时针旋转到,连接、,如图所示:,,,在和中,,,半圆的直径长为2,点为中点,,,根据题意,是动点,在上运动,则旋转的角度是,点在以为圆心、为半径的圆上运动,旋转的角度是,即,连接,如图所示:是∴180APC ABC ∠+∠=︒18045135APC ∠=︒-︒=︒135APC ∠=︒ABC O BC 90BPC ∴∠=︒45APD ∠=︒ AD AP ⊥∴ADP △AD AP = AD AP ⊥AD AP =∴P AC 90PAD ∠=︒1AD AP=OA OA A 90︒O A 'OP O D 'O A OA OP '∴== 90O AD DAO OAP DAO '∠+∠=︒=∠+∠O AD OAP '∴∠=∠O AD '△OAP △OA O A O AD OAPPA AD =⎧⎪∠=∠='⎨'⎪⎩()SAS ≌O AD OAP '∴△△O D OP '∴= O BC A BC112O D OP BC '∴===90AOC AOB ∠=∠=︒D P AC OP =90AOC ∠︒∴D O 'O B 'O D '90︒ BDA APC =O B '四边形是正方形,且边长为,,由点到圆周上动点距离关系可知,当三点共线时,可取到最小值,在中,,的最小值为,故答案为:(1);(2.【点睛】本题考查圆综合,涉及圆周角定理及其推论、等腰直角三角形的判定与性质、圆内接四边形性质、瓜豆原理、点到圆周上动点距离最值、勾股定理、三角形全等的判定与性质等知识,熟练掌握圆的性质是解决问题的关键.18. 如图,在每个小正方形的边长为1的网格中,三角形内接于圆,且顶点A ,B 均在格点上.(1)线段的长为______;(2)若点D 在圆上,在上有一点P ,满足.请用无刻度的直尺,在如图所示的网格中,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)______.【答案】 ①. ②. 图见解析;连接与网格线相交于点F ,取与网格线的交点E ,连接并延长与网格线相交于点G ,连接并延长与圆相交于点P .则点P 即为所求.【解析】【分析】(1)由勾股定理即可求得线段的长;(2)连接与网格线相交于点F ,取与网格线的交点E ,连接并延长与网格线相交于点G ,连接并延长与圆相交于点P .则点P 即为所求.分别证明及,则可得∴O BOA '1∴1O B BC O B ''⊥=,O D C '、、CD Rt O BC '△CO '==∴CD 1CO O D ''-=-1351-ABC AB BC BP AD =BD AB FE AG AB BD AB FE AG BEG AEF V V ≌AEG BEF V V ≌,即有.【详解】(1)、解:由勾股定理得:;(2)解:连接与网格线相交于点F ,取与网格线的交点E ,连接并延长与网格线相交于点G ,连接并延长与圆相交于点P .则点P 即为所求.∵,∴,∴;∵,∴,∵,∴,∴;∵,∴,∴,∴,∴.【点睛】本题考查了勾股定理,无刻度直尺作图,相似三角形的判定与性质,全等三角形的判定与性质,夹在两平行弦间的弧长相等等知识.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19. 已知,是一元二次方程(是常数)的两个不相等的实数根.(1)求的取值范围;(2)若,求一元二次方程的根;AP BD ∥))AD BP =AB ==BD AB FE AG AEH ABM V V ∽12AE AH AB AM ==AE BE =BG AF ∥GBE FAE ∠=∠BEG AEF ∠=∠BEG AEF V V ≌=GE FE AEG BEF AE BE ∠=∠=,AEG BEF V V ≌EAG EBF ∠=∠AP BD ∥))AD BP =1x 2x 220x x c ++=c c 8c =-(3)若,则的值为______.【答案】(1)(2),(3)【解析】【分析】(1)根据题意,由一元二次方程根的判别式,解不等式即可得到答案;(2)将代入原方程得到,因式分解法解一元二次方程即可得到答案;(3)根据题意,由一元二次方程根与系数的关系直接求解即可得到答案.【小问1详解】解:∵有两个不相等的实数根,∴,∴;【小问2详解】解:∵,∴,因式分解得,或,解得,;小问3详解】解:,是一元二次方程(是常数)的两个不相等的实数根,,故答案为:.【点睛】本题考查一元二次方程综合,涉及一元二次方程根的判别式、解不等式、因式分解法解一元二次方程、一元二次方程根与系数的关系等知识,熟练掌握一元二次方程性质与解法是解决问题的关键.20. 已知抛物线(a ,b 为常数,)经过,两个点.(1)求抛物线的解析式;(2)抛物线的顶点为______;(3)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线______.【答案】(1)【123x x =-c 1c <12x =24x =-3-8c =-2280x x +-=220x x c ++=224240b ac c ∆=-=->1c <8c =-2280x x +-=()()240x x -+=∴20x -=40x +=12x =24x =- 1x 2x 220x x c ++=c ∴123x x c ==-3-21y ax bx =+-0a ≠()2,3()1,021y x =-(2)(3)【解析】【分析】本题考查了待定系数法的应用,二次函数的图象和性质,二次函数图象的平移;(1)利用待定系数法求解即可;(2)根据顶点式可直接得出答案;(3)根据二次函数“左加右减,上加下减”的平移规律求解即可.【小问1详解】解:由抛物线经过,两个点,得,解得,∴抛物线的解析式为;【小问2详解】∵抛物线的解析式为,∴顶点为,故答案为:;【小问3详解】将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线,故答案为:.21. 已知内接于,直线与相切于点D ,且,连接.()0,1-()213y x =--21y ax bx =+-()2,3()1,0421310a b a b +-=⎧⎨+-=⎩10a b =⎧⎨=⎩21y x =-21y x =-()0,1-()0,1-21y x =-()()2211213y x x =---=--()213y x =--ABC O DM O DM AB ∥CD(1)如图①,若,求的大小;(2)如图②,的直径为4,若,求和的长.【答案】(1)(2), 【解析】【分析】(1)连接与相交于点H .根据圆内接四边形对角互补可得,再根据切线的性质和可得,,即可求解;(2)过点B 作,根据圆周角定理可得,,从而根据三角函数和勾股定理可求得,,即可求解【小问1详解】解:连接与相交于点H .∵四边形是圆内接四边形,.∴.∵为的切线,∴.∴.∵,∴.∴.114ADB ︒∠=ACD ∠O AB 30CAB ∠=︒DB CD 33︒DB=CD =OD AB 66ACB ∠=︒MD AB ∥90OHA ODM ∠=∠=︒BN CD ⊥12DCB DOB =∠∠CDB A ∠=∠DB cos DN BD BDN =⋅∠OD AB ADBC 114ADB ︒∠=18066ACB ADB ∠=︒-∠=︒MD O OD DM ⊥90ODM ∠=︒MD AB ∥90OHA ODM ∠=∠=︒OD AB ⊥∴.∴.【小问2详解】解:过点B 作.∴.∵,∴.∴.∵,∴,∵,∴.在中,,在中,,∴,.∴.在中,,∴.∴∴AD BD=1332ACD BCD ACB ∠=∠=∠=︒BN CD ⊥90CNB BND ∠=∠=︒AB MD ∥90MDO DOB ∠=∠=︒1452∠=∠=︒DCB DOB 30A ∠=︒30CDB A ∠=∠=︒4AB =2OD OB ==Rt ODB △DB ==Rt DBN △30CDB ∠=︒cos DN BDN BD ∠==12BN BD ==cos DN BD BDN =⋅∠==Rt CBN 45DCB ∠=︒tan 1BN BCN CN∠==tan BN CN BCN =⋅∠=CD CN DN =+=【点睛】此题考查了圆周角定理、垂径定理、等腰三角形的判定和性质、切线的性质定理等知识,熟练掌握相关定理是解题的关键.22. 综合与实践活动中,要利用测角仪测量建筑物的高度.如图,建筑物前有个斜坡,已知,,在同一条水平直线上.某学习小组在斜坡的底部测得建筑物顶部的仰角为,在点处测得建筑物顶部的仰角为.(1)求点到的距离的长;(2)设建筑物的高度为(单位:):①用含有的式子表示线段的长(结果保留根号):②求建筑物的高度(取1.31.7,结果取整数).【答案】(1)(2)①;②建筑物的高度约为【解析】【分析】本题考查解直角三角形的应用-俯角仰角,涉及含30度的直角三角形性质、矩形的判定与性质等知识,熟练掌握锐角三角函数测高方法是解决问题的关键.(1)根据题意得到,利用含的直角三角形性质计算即可得到答案;(2)①根据题意,在和解直角三角形,数形结合,由代值求解即可得到答案;②过点作,垂足为,如图所示,利用矩形判定与性质,在中,解直角三角形求解即可得到答案.【小问1详解】解:由题意知,在,,,∴,即的长为;【小问2详解】CD AB 30BAE ∠=︒20m AB =A E D ,,AB A C 45︒B C 53︒B AD BE CD h m h DE CD tan53︒10m (m h -CD 40m90AEB ∠=︒30︒Rt ABE △Rt ADC DE AD AE =-B BF CD ⊥F Rt BFC △90AEB ∠=︒Rt ABE △30BAE ∠=︒20AB =1102BE AB ==BE 10m解:①在中,,∴,在中,由,,,得,∴,即的长为;②过点作,垂足为,如图所示:根据题意,,∴四边形是矩形,∴,可得,在中,,,∴,即,∴,答:建筑物的高度约为.23. 甲,乙两人骑自行车从地到地.甲先出发骑行时,乙才出发:开始时,两人骑行速度相同,后来甲改变骑行速度,乙骑行速度始终保持不变:乙出发后,甲到达地.下面图中表示乙骑行时间,表示骑行的距离.图象反映了甲,乙两人骑行的距离与时间之间的对应关系.Rt ABE △cos AE BAE AB ∠=cos AE AB BAE=⋅∠=Rt ADC tan CD CAD AD ∠=CD h =45CAD ∠=︒tan 45CD AD h ==︒DE AD AE h =-=-ED (m h -B BF CD ⊥F 90BED D BFD ∠=∠=∠=︒BEDF BF DE h ==-10BE DF ==10CF CD DF h =-=-Rt BFC △tan CF CBF BF∠=53CBF ∠=︒tan CF BF CBF =⋅∠(10tan 53h h -=-⨯︒()40m h =≈CD 40m A B 3km 2.8h B x y(1)乙比甲提前______到达地,乙的骑行速度为______,值为______;(2)求甲骑行过程中,关于的函数解析式;(3)乙到达地,此时甲离地的路程为______;(4)在甲到达地前,当______时,甲乙两人相距.【答案】(1),,;(2)当时,,当时,;(3);(4),或.【解析】【分析】本题考查的知识点是从函数的图象获取信息、求一次函数解析式、行程问题(一次函数的实际应用)、行程问题(一元一次方程的应用),解题关键是善于从函数图像中获取信息并运用.(1)根据从函数图像中获得的信息,结合速度路程时间公式求解即可;(2)观察函数图像,分段对甲骑行过程中关于的函数解析式进行求解,需要注意表示的是乙骑行的时间,而甲先出发;(3)根据图象得甲还需到达,根据路程时间速度即可求解;(4)先求出不同时间段内能表示乙的骑行过程的函数解析式,再分段进行讨论:、、.【小问1详解】解:依图得:乙比甲提前到达地,、两地间距离为,乙的骑行速度为,第一阶段两人骑行速度相同,甲在第一阶段的骑行速度也为,又甲先出发骑行,h B /h km t h y x B B km B x =h 2km 0.415101x ≤≤153=+y x 1 2.8x <≤108y x =+41.22 2.6=÷y x x 0.4h =⨯01x ≤≤1 2.4x <≤ 2.4 2.8x <≤ 2.8 2.40.4h -=B A B 36km ∴3615/h 2.4km = ∴15/h km 3km则当骑行距离为时,骑行时间.故答案为:;;.【小问2详解】解:由可得,当时,甲的骑行速度为,且甲先出发骑行,;当时,设,将和代入可得,,解得,.综上,当时,;当时,.【小问3详解】解:依题得,乙到达时,甲还需到达,且甲在第二阶段的骑行速度为,甲离地的路程为.故答案为:.【小问4详解】解:依题得:乙骑行过程中,关于函数解析式为当时,,当时,,①当时,在相同骑行速度下,由于甲先出发,甲始终领先于乙,的18km 1831h 15t -==0.4151()101x ≤≤15/h km 3km 153y x ∴=+1 2.8x <≤y kx b =+()1,18()2.8,36182.836k b k b +=⎧⎨+=⎩108k b =⎧⎨=⎩108y x ∴=+01x ≤≤153y x =+1 2.8x <≤108y x =+0.4h 361810/h 2.81km -=-∴B 100.44km ⨯=4y x 0 2.4x ≤≤15y x =2.4 2.8x <≤36y =01x ≤≤3km该情况不成立;②当时,甲乙两人相距,即,解得或;③当时,乙不再运动,此时甲乙两人相距,即,解得.综上,在甲到达地前,当,或时,甲乙两人相距.故答案为:,或.24. 在平面直角坐标系中,为原点,点,点,把绕点逆时针旋转,得,点旋转后对应点为,,记旋转角为,连接.(1)如图①,若,求的长;(2)如图②,若,求的长;(3)若点P 为线段的中点,求的取值范围(直接写出结果即可).【答案】(1)(2(3【解析】【分析】(1)由旋转的性质,结合平行四边形的判定与性质即可得到答案;(2)由旋转的性质,结合勾股定理判定是等边三角形,进而由中垂线的判定与性质得到,由勾股定理求出线段长,数形结合得到;(3)由旋转性质可知,点、点的运动轨迹为以为圆心的圆,连接,过点作交延长线于点,确定相关线段长度,再由瓜豆原理得到点的运动轨迹为以为圆心的圆,如图所的1 2.4x <≤2km ()108152x x +-=1.2x =22.4 2.8x <≤2km ()361082x -+=2.6x =B 1.2x =2 2.6h 2km 1.22 2.6O ()2,0A ()0,2B ABO B A BO ''△A O ,A 'O 'αAO '90α=︒AO '60α=︒AO 'AO 'A P '2A P '≤≤+ABA '△A E BE '==90AEB ∠=︒AO AE O E ''=-=O 'A 'B PA 'A AD PA '∥O A ''D D B示,根据最小值是最大值是;结合即可得到答案.【小问1详解】解:∵点,点,∴,∵绕点逆时针旋转得,∴,,∴,∵,∴,,∴四边形是平行四边形,∴;【小问2详解】解:连接,延长与相交于点,如图所示:在中,∵绕点逆时针旋转得,∴,,∴,,∴是等边三角形,∴,又∵,∴点,在的垂直平分线上,∴垂直平分,ADDB BA -=-AD DB BA +=12PA AD '=()2,0A ()0,2B 2OA OB ==ABO B 90︒A BO ''△2BO OB '==90O BO '∠=︒2O B OA '==180O BO AOB '∠+∠=︒O B OA '∥ O B OA '=AOBO ¢2AO OB '==AA 'AO 'A B 'E Rt AOB △AB ==ABO B 60︒A BO ''△A BO ABO ''≌△△60ABA '∠=︒AB A B '==2OB O B '==2OA O A ''==ABA '△AA AB '==O A O B '''=O 'A A B 'AO 'A B '∴,在中,在中,∴;【小问3详解】解:由旋转性质可知,点、点的运动轨迹为以为圆心的圆,连接,过点作交延长线于点,,,,,,在中,在旋转过程中,始终保持不变,且也保持不变,则由瓜豆原理可知,点的运动轨迹为以为圆心的圆,如图所示:由点到圆周上点的距离关系得到最小值是;最大值是;,;【点睛】本题考查旋转综合,涉及旋转性质、平行四边形的判定与性质、等边三角形的判定与性质、中垂线的判定与性质、勾股定理、三角形中位线的性质、点到圆周上点距离最值、瓜豆原理等知识,综合性较强、难度较大,熟练掌握相关几何判定与性质,数形结合,根据题意准确作出辅助线求解是解决问题的关键.A E BE '==90AEB ∠=︒Rt AEB AE ==Rt A O B ''△12O E BE A E A B '''====AO AE O E ''=-=O 'A 'B PA 'A AD PA '∥O A ''D 2A O AO ''∴==2BO BO '==BA =2DA O A '''==12PA AD '=Rt BDO '△BD ==O BD '∠DB O B ='D B AD DB BA -=AD DB BA += 12PA AD '=∴PA '-PA '+A P '≤≤25. 已知抛物线:(是常数,)的顶点为,与x 轴相交于点和点,与y 轴相交于点,抛物线上的点的横坐标为.(1)求点和点坐标;(2)若点在直线下方的抛物线上,过点作轴,轴,分别与直线相交于点和点,当取得最大值时,求点的坐标;(3)抛物线:(是常数,)经过点,若点在轴下方的抛物线上运动,过点作于点,与抛物线相交于点,在点运动过程中的比值是否为一个定值?如果是,请求出此定值;如果不是,请说明理由.【答案】(1)、 (2) (3)是一个定值,此定值为,理由见解析【解析】【分析】(1)由题意,设抛物线解析式为,利用待定系数法确定函数关系式,令求出点坐标,令求出点坐标;(2)先利用待定系数法确定直线:,设,求出坐标,根据两点之间距离公式,结合二次函数图象与性质求解即可得到答案;(3)由待定系数法确定抛物线:,设,且,得出坐标,再由两点之间距离公式求出,代值求即可得到答案.【小问1详解】解:抛物线:的顶点为,设抛物线解析式为,抛物线:与x 轴相交于点,,解得,抛物线:,1C 2y ax bx c =++a b c ,,0a ≠()1,4P --()1,0A B C 1C P t B C P BC 1C P PE x ⊥P F y ⊥BC E F EF P 2C 221y mx mx =+-m 0m ≠A P x 1C P PD x ⊥D 2C H P HP DH ()3,0B -()0,3C-315,24P ⎛⎫-- ⎪⎝⎭2()214y a x =+-0y =B 0x =C BC 3y x =--()2,23P n n n +-E F 、2C 212133y x x =+-()2,23P p p p +-31p -<<、D H HP DH 、HP DH1C 2y ax bx c =++()1,4P --∴()214y a x =+- 1C 2y ax bx c =++()1,0A 044a ∴=-1a =∴1C ()214y x =+-。
2019-2020年中考数学一模试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一个是正确的,每小题选对的得3分,错选、不选或选出的答案超过一个,均记零分).1.﹣32的相反数是()A. 6 B.﹣6 C. 9 D.﹣92.在全国特殊困难地区,中央财政每年将投入专款实施营养改善计划,每名学生每天补贴3元,惠及近2600万名农村学生.将2600万用科学记数法表示为()A.2.6×106B. 2.6×107C. 0.26×108D.26×1063.下列运算正确的是()A. a4•a2=a8B. a4+a2=a6C. a2÷a﹣1=a3D.(﹣2a3)2=﹣4a64.如图,已知直线AB、CD相交于点O,∠D=105°,如果DE∥AB,那么∠AOC 的度数是()A.75°B.85°C.95°D.105°5.四张完全相同的卡片上,分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为()A. 1 B.C.D.6.如图是一个有多个相同小正方体堆积而成的几何体,该几何体的左视图是()A.B.C.D.7.二元一次方程组的解是()A.B.C.D.8.若⊙O1、⊙O2的半径分别为2和5,圆心距O1O2=6,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离9.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AD=CD10.若关于x、y的二元一次方程组的解满足x﹣y>1,则a的取值范围是()A.a>﹣1 B.a<2 C.a>1 D.a<411.如图,把直线y=2x向下平移后得到直线AB,直线AB与x轴、y轴分别相交于点A、B.若△ABO的面积是1,则直线AB的解析式是()A.y=3x+ B.y=2x﹣C.y=3x﹣2 D.y=2x﹣212.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,3),则m的值为()A. 1 B. 3 C.3或﹣5 D.1或﹣3二、填空题(本大题共6小题,每小题3分,共18分)13.的倒数是,绝对值是.14.一组数据2,5,1,6,2,x,3中唯一的众数是x,这组数据的中位数是.15.如图,▱ABCD中,AB=5,AD=8,CE平分∠BCD交BA的延长线于E点,则AE=.16.分解因式:4a﹣a3=.17.某蔬菜基地的圆弧形大棚的剖面如图所示,已知中间柱CD=2m,AB=8m,则半径OA 的长为m.18.将正六边形ABCDEF的各边按如图所示延长,从射线AB开始分别在各射线上标记点P1、P2、P3、…,按此规律,点P xx在射线上.三、解答题(本大题共8小题,满分66分)19.计算:|﹣3|﹣2tan60°+()﹣2+.20.解方程:﹣=1.21.2012年9月11日,日本政府不顾中方一再严正交涉,宣布“购买”钓鱼岛及其附属的南小岛和北小岛,实施所谓“国有化”.钓鱼岛局势紧张,某校针对“钓鱼岛事件”在本校学生中做了一次抽样调查,并把调查结果分为三种类型:A.不知道“钓鱼岛事件”;B.知道“钓鱼岛事件”,但不太清楚原因;C.知道“钓鱼岛事件”,并清楚事发原因并表示关注.如图是根据调查结果绘制的两幅不完整的统计图,请你根据图中所给的信息解答下列问题.(1)请将表示类型为“B”的条形统计图补充完整;(2)在扇形统计图中表示类型为“B”的扇形所对的圆心角为度;(3)如果该校共有学生800人,试估计该校有多少学生知道“钓鱼岛事件,并清楚事发原因并表示关注”.22.如图,从山顶A处看地面D点的俯角为30°,看地面C点的俯角为60°,测得CD=200米,求山高AB.(精确到0.1米,≈1.732)23.如图,在Rt△AOB中,∠A=90°,∠AOB=60°,在边长为1的小正方形组成的网格中,△AOB的顶点O、A均在格点上,点B在x轴上,点A的坐标为(﹣1,2).(1)点A关于点O中心对称的点的坐标为;(2)△AOB绕点O顺时针旋转60°后得到△A1OB1,那么点A1的坐标为;线段AB在旋转过程中所扫过的面积是.24.某市的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,规定:若每月用电量不超过190度,收费标准为0.53元/度;若每月用电量为190度﹣290度,收费标准由两部分组成:①其中190度;按0.53元/度收费,②超出190度的部分按0.58元/度收费.现提供一居民某月电费发票的部分信息如下表所示:Xxx居民电费专用发票计费期限:一个月用电量(度)电价(元/度)阶梯一:190 0.53阶梯二:190﹣290(超出部分)0.58本月实用金额:106.5(元)(大写)壹佰零陆根据以上提供信息解答下列问题:(1)如果月用电量x度来表示,实付金额用y元来表示,请你写出实付金额用y元与月用电量x度之间的函数关系式;(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;(3)若小强和小华家一个月的实际用电量分别为120度和250度,则实付金额分别为多少元?25.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上(1)要使CB∥MD,可以添加条件∠1=∠M,或∠C=∠D,除此之外,请你添加一个条件(注,不需要再添加任何线段或字符)使之能推出CB∥MD,并证明;(2)若BC=4,cosM=,求⊙O的直径.26.如图,已知抛物线y=ax2+bx=3与y轴交于点A,与x轴交于点B(﹣1,0)和点C(3,0).(1)求抛物线的表达式和对称轴;(2)设抛物线的对称轴与直线AC交于点D,连接AB、BD,求△ABD的面积;(3)点M为抛物线上一动点,过点M作y轴的平行线MN,与直线AC交于点N.问在抛物线上是否存在点M,使得以D、N、M为顶点的三角形与△ACO相似?若存在,求点M的坐标;若不存在,请说明理由.xx年广西梧州市藤县中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一个是正确的,每小题选对的得3分,错选、不选或选出的答案超过一个,均记零分).1.﹣32的相反数是()A. 6 B.﹣6 C.9 D.﹣9考点:相反数;有理数的乘方.分析:首先计算﹣32=﹣9,即求9的相反数,根据相反数的定义求解即可.解答:解:﹣32=﹣9,﹣9的相反数为:9,即﹣32的相反数为9,故选:C.点评:本题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在全国特殊困难地区,中央财政每年将投入专款实施营养改善计划,每名学生每天补贴3元,惠及近2600万名农村学生.将2600万用科学记数法表示为()A. 2.6×106B.2.6×107C.0.26×108D.26×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2600万用科学记数法表示为:2600万=26000000=2.6×107.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.a4•a2=a8B.a4+a2=a6C.a2÷a﹣1=a3D.(﹣2a3)2=﹣4a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、(﹣2)的偶次幂是正数,故D错误;故选:C.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.如图,已知直线AB、CD相交于点O,∠D=105°,如果DE∥AB,那么∠AOC的度数是()A.75°B.85°C.95°D.105°考点:平行线的性质.分析:由平行线的性质得出同旁内角互补求出∠BOD,再由对顶角相等求出∠AOC即可.解答:解:∵DE∥AB,∴∠BOD+∠D=180°,∴∠BOD=180°﹣105°=75°,∴∠AOC=∠BOD=75°.故选:A.点评:本题考查了平行线的性质、对顶角相等的性质;熟练掌握平行线的性质,并能进行推理论证与计算是解决问题的关键.5.四张完全相同的卡片上,分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为()A. 1 B.C.D.考点:概率公式;轴对称图形.专题:计算题.分析:卡片共有四张,轴对称图形有菱形、等腰梯形、圆,根据概率公式即可得到卡片上所画图形恰好是轴对称图形的概率.解答:解:卡片中,轴对称图形有菱形、等腰梯形、圆,根据概率公式,P(轴对称图形)=.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.如图是一个有多个相同小正方体堆积而成的几何体,该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从正面看易得第一层有2个正方形,第二层最左边有一个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.二元一次方程组的解是()A.B.C.D.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①﹣②得:3y=3,即y=1,把y=1代入①得:x=﹣1,则方程组的解为.故选A点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.若⊙O1、⊙O2的半径分别为2和5,圆心距O1O2=6,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离考点:圆与圆的位置关系.分析:首先知道圆与圆的5种位置关系,然后再作判断.解答:解:∵⊙O1、⊙O2的半径分别为2和5,圆心距O1O2=6,∴2+5>6,5﹣2<6,∴⊙O1与⊙O2的位置关系是相交,故选B.点评:本题考查了圆与圆的位置关系的应用,能理解圆与圆位置关系的内容是解此题的关键,注意:两圆外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).9.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AD=CD考点:菱形的判定.分析:由已知条件得出四边形ABCD是平行四边形,再由一组邻边相等,即可得出四边形ABCD是菱形.解答:解:需要添加的条件是AD=CD;理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AD=CD,∴平行四边形ABCD是菱形(一组邻边相等的平行四边形是菱形);故选:D.点评:本题考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.10.若关于x、y的二元一次方程组的解满足x﹣y>1,则a的取值范围是()A.a>﹣1 B.a<2 C.a>1 D.a<4考点:二元一次方程组的解;解一元一次不等式.专题:计算题.分析:把a看做已知数求出方程组的解表示出x与y,代入x﹣y>1中,求出a的范围即可.解答:解:,①×4+②得:9x=4a+2,即x=,把x=代入①得:y=,代入x﹣y>1中,得:﹣>1,去分母得:4a+2﹣a+4>9,即3a>3,解得:a>1.故选C.点评:此题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.11.如图,把直线y=2x向下平移后得到直线AB,直线AB与x轴、y轴分别相交于点A、B.若△ABO的面积是1,则直线AB的解析式是()A.y=3x+ B.y=2x﹣C.y=3x﹣2 D.y=2x﹣2考点:一次函数图象与几何变换.分析:利用一次函数平移规律假设出直线AB的解析式,进而得出BO,AO的长,再利用三角形面积公式得出.解答:解:设直线y=2x向下平移后得到直线AB的解析式为:y=2x+b,则OB=﹣b,AO=﹣,故△ABO的面积是:×(﹣b)×(﹣)=1,解得:b1=2(不合题意舍去),b2=﹣2,则直线AB的解析式是:y=2x﹣2.故选:D.点评:此题主要考查了一次函数图象与几何变换,表示出AO,BO的长是解题关键.12.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,3),则m的值为()A. 1 B. 3 C.3或﹣5 D.1或﹣3考点:反比例函数图象上点的坐标特征.分析:根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出m2+2m﹣9=﹣6,再解出m的值即可.解答:解:如图:∵四边形ABCD、GBFO、CEOF、OEDH为矩形,又∵BO为四边形GBFO的对角线,OD为四边形OEDH的对角线,∴S△BOG=S△BOF,S△OHD=S△OED,S△ABD=S△CDB,∴S△ABD﹣S△BOG﹣S△HOD=S△BCD﹣S△BOF﹣S△OED,∴S四边形AGOH=S四边形CEOF=2×3=6,∴xy=m2+2m﹣9=﹣6,解得m=1或m=﹣3.故选D.点评:本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S四边形CEOF=S四边形HAGO.二、填空题(本大题共6小题,每小题3分,共18分)13.的倒数是﹣3,绝对值是.考点:倒数;绝对值.分析:根据倒数的定义和绝对值的性质解答.解答:解:﹣的倒数是﹣3,绝对值是.故答案为:﹣3;.点评:本题考查了倒数,绝对值,熟记概念和性质是解题的关键.14.一组数据2,5,1,6,2,x,3中唯一的众数是x,这组数据的中位数是2.考点:中位数;众数.分析:利用众数的定义先求出x,再从小到大排列数据求出中位数即可.解答:解:∵数据2,5,1,6,2,x,3中,有唯一的众数是x,∴x=2.从小到大排列为1,2,2,2,3,5,6,∴这组数据的中位数是2.故答案为:2.点评:本题主要考查了众数与中位数,解题的关键是熟记众数与中位数的定义.15.如图,▱ABCD中,AB=5,AD=8,CE平分∠BCD交BA的延长线于E点,则AE= 3.考点:平行四边形的性质.分析:由平行四边形ABCD中,CE平分∠DAB,可证得△BCE是等腰三角形,继而利用AE=BE﹣AB,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,∴∠BEC=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠BEC=∠BCE,∴BC=BE=8,∴AE=BE﹣AB=8﹣5=3.故答案为:3.点评:此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.16.分解因式:4a﹣a3=a(2+a)(2﹣a).考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用平方差公式继续分解.解答:解:4a﹣a3=a(4﹣a2)=a(2+a)(2﹣a).故填:a(2+a)(2﹣a).点评:本题考查了提公因式法与公式法分解因式,分解因式时,有公因式的,先提公因式,再考虑运用何种公式法来分解.17.某蔬菜基地的圆弧形大棚的剖面如图所示,已知中间柱CD=2m,AB=8m,则半径OA 的长为5m.考点:垂径定理的应用;勾股定理.分析:根据垂径定理可得AD=AB=4m,设AO=xm,则DO=(x﹣2)m,根据勾股定理可得(x﹣2)2+42=x2,再解方程即可.解答:解:∵CO⊥AB,∴AD=AB=4m,设AO=xm,则DO=(x﹣2)m,(x﹣2)2+42=x2,解得:x=5.故答案为:5.点评:此题主要考查了垂径定理的应用,以及勾股定理的应用,关键是掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.18.将正六边形ABCDEF的各边按如图所示延长,从射线AB开始分别在各射线上标记点P1、P2、P3、…,按此规律,点P xx在射线CD上.考点:规律型:图形的变化类.分析:根据已知可得P1在AB上,P2在BC上,P3在CD上,P4在DE上,P5在EF上,P6在FA上,P7在AB上,…,发现规律,6个点为一组,依次循环,=335…3,可得在CD 上.解答:解:∵P1在AB上,P2在BC上,P3在CD上,P4在DE上,P5在EF上,P6在FA上,P7在AB上,…,=335…3,∴P xx在射线CD上.故答案为:CD.点评:本题主要考查了图形的变化规律,根据已知发现规律是解答此题的关键.三、解答题(本大题共8小题,满分66分)19.计算:|﹣3|﹣2tan60°+()﹣2+.考点:实数的运算;负整数指数幂;特殊角的三角函数值.分析:本题涉及绝对值、特殊角的三角函数值、负整数指数幂、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:|﹣3|﹣2tan60°+()﹣2+=3﹣2+4+2=7.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.20.解方程:﹣=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母,得(x+1)(x+2)﹣(4﹣x)=x2﹣1,整理得:4x=1,系数化为1,得x=,经检验x=是原方程的解,则原方程的解为x=.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.2012年9月11日,日本政府不顾中方一再严正交涉,宣布“购买”钓鱼岛及其附属的南小岛和北小岛,实施所谓“国有化”.钓鱼岛局势紧张,某校针对“钓鱼岛事件”在本校学生中做了一次抽样调查,并把调查结果分为三种类型:A.不知道“钓鱼岛事件”;B.知道“钓鱼岛事件”,但不太清楚原因;C.知道“钓鱼岛事件”,并清楚事发原因并表示关注.如图是根据调查结果绘制的两幅不完整的统计图,请你根据图中所给的信息解答下列问题.(1)请将表示类型为“B”的条形统计图补充完整;(2)在扇形统计图中表示类型为“B”的扇形所对的圆心角为162度;(3)如果该校共有学生800人,试估计该校有多少学生知道“钓鱼岛事件,并清楚事发原因并表示关注”.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)先求出调查的学生数,再求出B类型的人数,即可补全统计图;(2)利用“B”的扇形所对的圆心角为=360°×“B”的百分比;(3)先求出类型为“C”的百分比,再用总人数乘这个百分比即可.解答:解:(1)调查的学生数为:15÷25%=60(人),B类型的人数为:60﹣15﹣18=27(人),画条形统计图(2)“B”的扇形所对的圆心角为:360°×=162°,故答案为:162.(3)抽取的学生中类型为“C”的占18÷60=30%,∴估计该校800名学生知道“钓鱼岛事件,并清楚事发原因并表示关注”的有:800×30%=240(人).点评:本题主要考查了条形统计图,扇形统计图及用样本估计总体,解题的关键是读懂统计图,从中获取准确的信息.22.如图,从山顶A处看地面D点的俯角为30°,看地面C点的俯角为60°,测得CD=200米,求山高AB.(精确到0.1米,≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:设山高AB的高度为x米,在Rt△ABD中,∠ADB=30°,利用三角函数可以用x表示BD的长度,在Rt△ABC中,∠ACB=60°,可以得到BC=x,而CD=DB﹣BC,由此根据已知条件可以得到关于x的方程,解方程即可求解.解答:解:由题意可知:∠ADB=30°,∠ACB=60°,设山高AB为x米∵在Rt△ABC中,tan∠ACB=,∴CB===,∵在Rt△ABD中,tan∠ADB=,∴DB===x,∵BD﹣CB=CD∴x﹣=200,∴x=100≈173.2.答:山高AB约173.2米.点评:此题主要考查了解直角三角形﹣仰角、俯角的问题,解题的关键是正确理解仰角、俯角的定义,然后利用三角函数可以列出关于x的方程解决问题.23.如图,在Rt△AOB中,∠A=90°,∠AOB=60°,在边长为1的小正方形组成的网格中,△AOB的顶点O、A均在格点上,点B在x轴上,点A的坐标为(﹣1,2).(1)点A关于点O中心对称的点的坐标为(1,﹣2);(2)△AOB绕点O顺时针旋转60°后得到△A1OB1,那么点A1的坐标为(1,2);线段AB在旋转过程中所扫过的面积是.考点:作图-旋转变换;扇形面积的计算.分析:(1)根据关于原点对称的点的坐标特点,即可得出答案;(2)由旋转的性质可求得点A1的坐标,线段AB扫过的面积==从而可求得答案.解答:解:(1)∵点A的坐标为(﹣1,2),∴A关于点O中心对称的点的坐标为(1,﹣2);(2)如图所示:根据图形可知:点A1的坐标为(1,2).由点A的坐标可知:OA==,∵∠AOB=60°,∴∠AOB=30°.∴OB=2OA=2.由旋转的性质可知:.线段AB扫过的面积===﹣=.故答案为:(1)(1,﹣2);(2)(1,2);.点评:本题考查了利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.某市的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,规定:若每月用电量不超过190度,收费标准为0.53元/度;若每月用电量为190度﹣290度,收费标准由两部分组成:①其中190度;按0.53元/度收费,②超出190度的部分按0.58元/度收费.现提供一居民某月电费发票的部分信息如下表所示:Xxx居民电费专用发票计费期限:一个月用电量(度)电价(元/度)阶梯一:190 0.53阶梯二:190﹣290(超出部分)0.58本月实用金额:106.5(元)(大写)壹佰零陆根据以上提供信息解答下列问题:(1)如果月用电量x度来表示,实付金额用y元来表示,请你写出实付金额用y元与月用电量x度之间的函数关系式;(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;(3)若小强和小华家一个月的实际用电量分别为120度和250度,则实付金额分别为多少元?考点:一次函数的应用.分析:(1)本题考查的是分段函数的知识.依题意可以列出函数关系式;(2)根据(1)的函数解析式,先判断出应该代入那一段函数解析式,再代入解答.(3)根据(1)的函数解析式,先判断出应该代入那一段函数解析式,再代入解答.解答:解:(1)当0≤x≤190时,y=0.53x;当x>190时,y=0.58(x﹣190)+190×0.53=0.58x﹣9.5;(2)因为106.5>0.53×190=100.7,所以把y=106.5代入y=0.58x﹣9.5中,可得106.5=0.58x﹣9.5,解得:x=200,答:这个家庭本月的实际用电量是200度;(3)因为120<190,所以把x=120代入y=0.53x=0.53×120=63.6元;因为250>190,所以把x=250代入y=0.58x﹣9.5=0.58×250﹣9.5=135.5元.点评:本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力.25.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上(1)要使CB∥MD,可以添加条件∠1=∠M,或∠C=∠D,除此之外,请你添加一个条件∠1=∠C(注,不需要再添加任何线段或字符)使之能推出CB∥MD,并证明;(2)若BC=4,cosM=,求⊙O的直径.考点:圆周角定理;垂径定理;解直角三角形.分析:(1)添加条件∠1=∠C,能推出CB∥MD.由∠C与∠M是所对的圆周角,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得∠C=∠M,又由∠1=∠C,易得∠1=∠M,即可判定CB∥MD;(2)首先连接AC,AB为⊙O的直径,可得∠ACB=90°,又由弦CD⊥AB,根据垂径定理求得=,继而可得∠A=∠M,又由BC=4,cosM=,在Rt△ACB中利用勾股定理即可求得⊙O的直径.解答:解:(1)添加条件∠1=∠C,能推出CB∥MD.理由如下:∵∠C与∠M是所对的圆周角,∴∠C=∠M,又∵∠1=∠C,∴∠1=∠M,∴CB∥MD.故答案为∠1=∠C;(2)连接AC,∵AB为⊙O的直径,∴∠ACB=90°,又∵CD⊥AB,∴=,∴∠A=∠M,∴cosA=cosM,在Rt△ACB中,∵cosA=,∴cosM=cosA=,设AC=x,则AB=3x,∵AC2+BC2=AB2,BC=4,∴x2+42=(3x)2,解得,x=±(负值舍去),∴AB=3x=3,即⊙O的直径为3.点评:此题考查了圆周角定理、垂径定理、平行线的判定,勾股定理以及三角函数等知识.此题难度适中,注意方程思想与数形结合思想的应用.26.如图,已知抛物线y=ax2+bx=3与y轴交于点A,与x轴交于点B(﹣1,0)和点C(3,0).(1)求抛物线的表达式和对称轴;(2)设抛物线的对称轴与直线AC交于点D,连接AB、BD,求△ABD的面积;(3)点M为抛物线上一动点,过点M作y轴的平行线MN,与直线AC交于点N.问在抛物线上是否存在点M,使得以D、N、M为顶点的三角形与△ACO相似?若存在,求点M的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)把点B(﹣1,0)和点C(3,0)分别代入y=ax2+bx+3求出a和b的值,可求出抛物线解析式,进而可求出其对称轴方程;(2)利用已知条件易求△ABC和△BCD的面积,由S△ABD=S△ABC﹣S△DBC计算即可;(3)在抛物线上存在点M,使得以D、N、M为顶点的三角形与△ACO相似,首先证得Rt△AOC为等腰直角三角形,所以∠OAC=∠OCA=45°,则以D、M、N为顶点的三角形也必须是等腰直角三角形.由MN∥OA得∠MND=∠OAC=45°,故以D、M、N为顶点的直角三角形只能以点D或M为直角顶点,再分两种情况:①当M为直角顶点时,DM⊥MN,此时△DMN∽△COA;②当D为直角顶点时,DM⊥AC,此时△DMN∽△OCA,分别讨论求出符合题意的点M的坐标即可.解答:解:(1)∵抛物线y=ax2+bx+3经过B(﹣1,0)和C(3,0),∴,解得,∴抛物线的表达式为y=﹣x2+2x+3,∴对称轴为直线x=1,(2)令x=0得:y=3,∴A(0,3),设AC的解析式为y=kx+b将A(0,3)、C(3,0)代入得,,解得:,∴直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴D(1,2),∴S△ABD=S△ABC﹣S△DBC=×4×3﹣×4×4=2;(3)假设存在点M,使得以D、M、N为顶点的三角形与△AOC相似.在Rt△AOC中,∵OA=OC=3,∴Rt△AOC为等腰直角三角形,∴∠OAC=∠OCA=45°,则以D、M、N为顶点的三角形也必须是等腰直角三角形.由MN∥OA得∠MND=∠OAC=45°,故以D、M、N为顶点的直角三角形只能以点D或M 为直角顶点.①当M为直角顶点时,DM⊥MN,此时△DMN∽△COA,∴DM所在的直线为y=2,由,解得x=1±,∴M(1﹣,2)或M(1+,2);②当D为直角顶点时,DM⊥AC,此时△DMN∽△OCA,∵D在对称轴上,∴DB=DC,∴∠DBC=∠DCB=45°,∴∠BDC=90°,∴BD⊥AC,故M在直线BD上,设BD的解析式为y=kx+b,将B、D的坐标代入得,解得:,精品文档∴BD的解析式为y=x+1,由,解得:x=﹣1或2,将x=﹣1代入y=x+1,得y=0,∴M(﹣1,0),将x=2代入y=x+1,得y=3,∴M(2,3),综上所述,在抛物线.存在点M,使得以D、N、M为顶点的三角形与△ACO相似,点M 的坐标为(1﹣,2),(1+,2),(﹣1,0),(2,3).点评:本题着重考查了待定系数法求二次函数解析式、一次函数的解析式、函数图象交点的问、等腰直角三角形的判定和性质以及相似三角形的判定和性质等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法,题目的综合性较强,难度较大,对学生的综合解题能力要求很高,是一道不错的中考压轴题.30277 7645 癅21963 55CB 嗋37591 92D7 鋗<36167 8D47 赇34465 86A1 蚡G32510 7EFE 绾d31617 7B81 箁34019 84E3 蓣m923218 5AB2 媲实用文档。