当前位置:文档之家› ANSYS高级接触问题

ANSYS高级接触问题

ANSYS高级接触问题
ANSYS高级接触问题

ANSYS高级接触问题

第一章接触问题概述

在工程中会遇到大量的接触问题,如齿轮的啮合、法兰联接、机电轴承接触、卡头与卡座、密封、板成形、冲击等等。接触是典型的状态非线性问题,它是一种高度非线性行为。接触例子如图1:

分析中常常需要确定两个或多个相互接触物体的位移、接触区域的大小和接触面上的应力分布。

接触分析存在两大难点:

在求解之前,你不知道接触区域、表面之间是接触或分开是未知的,表面之间突然接触或突然不接触会导致系统刚度的突然变化。

大多数接触问题需要计算摩擦。摩擦是与路径有关的现象,摩擦响应还可能是杂乱的,使问题求解难以收敛。

1.1 接触分类

1.1.1 刚-柔

一个表面是完全刚性的—除刚体运动外无应变、应力和变形,另一表面为软材料构成是可变形的。

只在一个表面特别刚硬并且不关心刚硬物体的应力时有效。

1.1.2 柔-柔

两个接触体都可以变形。

1.2 接触单元

ANSYS采用接触单元来模拟接触问题:跟踪接触位置;保证接触协调性(防止接触表面相互穿透);在接触表面之间传递接触应力(正压力和摩擦)。

接触单元就是覆盖在分析模型接触面上的一层单元。在ANSYS中可以采用三种不同的单元来模拟接触:面—面接触单元;点—面接触单元;点—点接触单元。

不同的单元类型具有完全不同的单元特性和分析过程。

1.2.1 面—面接触单元

用于任意形状的两个表面接触,不必事先知道接触的准确位置;两个面可以具有不同的网格;支持大的相对滑动;支持大应变和大转动。例如:面一面接触可以模拟金属成型,如轧制过程。

1.2.2 点—面接触单元

用于某一点和任意形状的面的接触,可使用多个点-面接触单元模拟棱边和面的接触;不必事先知道接触的准确位置;两个面可以具有不同的网格;支持大的相对滑动;支持大应变和大转动。例:点面接触可以模拟棱边和面之间的接触。

1.2.3 点-点接触单元

用于模拟单点和另一个确定点之间的接触。建立模型时必须事先知道确切的接触位置;多个点-点接触单元可以模拟两个具有多个单元表面间的接触;每个

表面的网格必须是相同的;相对滑动必须很小;只对小的转动响应有效。例如:点—点接触可以模拟一些面的接触。如地基和土壤的接触。

1.3 关于耦合和约束方程的应用

如果接触模型没有摩擦,接触区域始终粘在一起,并且分析是小挠度、小转动问题,那么可以用耦合或约束方程代替接触。使用耦合或约束方程的优点是分析还是线性的。

1.3.1 接触问题的一般特性,接触刚度

1 所有的ANSYS接触单元都采用罚刚度(接触刚度)来保证接触界面的协调性。

在数学上为保持平衡,需要有穿透值,然而,物理接触实体是没有穿透的,分析者将面对困难的选择:小的穿透计算精度高,因此接触刚度应该大;然而,太大的接触刚度会产生收敛困难:模型可能会振荡,接触表面互相跳开。接触刚度是同时影响计算精度和收敛的最重要的参数。你必须选定一个合适的接触刚度。除了在表面间传递法向压力外,接触单元还传递切向运动(摩擦)。采用切向罚刚度保证切向的协调性。(图1-2)作为初值,可采用:

Ktangent=0.01Knormal,切向罚刚度与法向罚刚度以同样的方式对收敛性和计算精度产生影响。

2 接触刚度的选取

选定一个合适的接触刚度值需要一些经验。对于面一面接触单元,接触刚度通常指定为基体单元刚度的一个比例因子。开始估计时,选用FKN=1.0大面积实体接触,FKN=0.01-0.1较柔软(弯曲占主导的)部分-另外,也可以指定一个绝对刚度值,单位:(力/长度)/面积。点—点(除CONTA178)和点—面接触单元需要为罚刚度KN输入绝对值:初始估计时:对于大变形:0.1*E

3选取接触刚度的指导:

Step1开始采用较小的刚度值;

Step2对前几个子步进行计算;

Step3检查穿透量和每一个子步中的平衡迭代次数。

在粗略的检查中,如以实际比例显示整个模型时就能观察到穿透,则穿透可能太大了,需要提高刚度重新分析。如果收敛的迭代次数过多(或未收敛),降低刚度重新分析。注意:罚刚度可以在载荷步间改变,并且可以在重启动中调整。牢记:接触刚度是同时影响计算精度和收敛性的最重要的参数。如果收敛有问题,减小刚度值,重新分析,在敏感的分析中,还应该改变罚刚度来验证计算结果的有效性。在分析中减小刚度范围,直到结果(接触压力、最大SEQV等)不再明显改变。

第二章摩擦、自动时间步、控制

2.1 摩擦

1、两个接触体的剪切或滑动行为可以是无摩擦的或有摩擦的,无摩擦时允许物体没有阻力地相互滑动;有摩擦时,物体之间会产生剪切力。

2、摩擦消耗能量,并且是路径相关行为。为获得较高的精度,时间步长必

须小。

3、ANSYS中,摩擦采用库仑模型,并有附加选项可处理复杂的粘着和剪切行为。库仑法则是宏观模型,表述物体间的等效剪力FT不能超过正压力FN的一部分:

FT<=μ×FN

式中:μ摩擦系数,一旦所受剪力超过FT,两物体将发生相对滑动。

4、弹性库仑摩擦模型:允许粘着和滑动。

2.2 自动时间步、控制

接触单元的Keyopt(7)选项控制时间步的预报。

0-无控制:不影响时间步尺寸。当自动时间步开关打开时,对于静态问题通常选此项。

1 自动缩减:如果接触状态改变较大,时间步二分。对于动态问题,自动缩减通常是充分的。

2 合理的:比自动缩减费用更昂贵的算法。为保持一个合理的时间载荷增量,需要在接触预测中选择此项。适用于静态分析和连续接触时瞬态分析。

3 最小值:该选项为下一子步、预报时间增量的最小值(计算费用十分昂贵,建议不用)。这个选项在碰撞和断续接触分析中是有用的。

接触分析中自动时间步的其它注意事项:与所有其它非线性分析一样,对接触问题,时间步长是非常有力的提高收敛性的工具。采用足够小的时间步长以获得收敛。对于瞬态分析,冲击时必须使用足够数量的计算步以描述表面间的动量转移。对于路径相关现象(如接触摩擦),相对较小的最大时间步长对计算精度是必须的。

第三章面—面接触单元

3.1 概述

面-面接触单元,是模拟任意两个表面间接触的方法。表面可以具有任意形状。是ANSYS中最通用的接触单元。精度高、特性丰富还可使用接触向导建模方便。(其它接触单元目前尚不能用向导)。面-面接触单元在面的高斯点处传递压力,这种先进技术使面-面接触单元具有很多优点:与低阶单元和高阶单元都兼容,提供更好的接触结果(于后处理接触压力和摩擦应力),可考虑壳和梁的厚度,以及壳的厚度变化,半自动接触刚度计算,刚性表面由“控制节点”控制,热接触特性,众多的高级选项来处理复杂问题。

具有众多的高级选项(20个可用的实常数、2个材料属性和30个可用的单元选项)提供了丰富的特征库,能够用于模拟特殊的效果和处理困难的收敛情况。然而众多的选项的智能缺省选项可以有效求解许多接触问题而不需要用户介入太多。通常的做法是:开始使用高级选项之前,先试着采用缺省设置:只指定罚刚度,穿透容差和子步数,然后进行分析。只在采用缺省设置遇到困难时才采用高级选项。所有的高级选项也可以通过接触向导来控制。

3.2 面-面接触单元

使用面-面接触单元计算刚-柔、柔-柔接触分析。把一个面指定为目标面(Targe),另一个面指定为接触面(conta),合起来叫接触对。接触单元被约束不能侵入目标面,然而目标单元能侵入接触面。2D目标单元,TARGE169:

2D面-面接触单元:CONTA171 2D、2节点低阶单元,可用于二维实体、壳、梁单元的表面;CONTA172 2D、3节点高阶单元,可用于带中间节点的二维实体单元表面。3D目标单元,TARGE170:

3.3 面—面接触分析步骤、实例

Step1建立基体有限元模型,设置基体单元类型、实常数、材料特性,给基体分网:

命令:AMESH

VMESH;

Step2指定接触面和目标面,对于刚—柔接触,目标面总是刚性面,对于柔-柔接触,目标面和接触面的不同选择会产生不同的穿透(图3-1),并且影响求解精度。

接触面和目标面确定准则:如凸面和平面或凹面接触,应指定平面或凹面为目标面;如一个面上的网格较粗而另一个面上的网格较细,应指定粗网格面为目标面;如一个面比另一个面的刚度大,应指定刚度大的面为目标面;如一个面为高阶单元而另一面为低阶单元,应指定低阶单元面为目标面;如一个面比另一个面大,应指定大的面为目标面。

Step3设置单元选项和实常数,接触对由实常数号来定义,接触单元和目标单元必须具有相同的实常数。

Step4建立目标单元(网格),此步中所采用的方法依赖于目标面是刚性的还是柔性的。刚性目标面采用:直接生成(E命令),自动划分(LMESH, AMEAH);可变形目标面采用Main

Menu>Preprocessor>Modeling>Create>Elements>Surf/Contact>Surf to

Surf(ESURF)对于直接生成刚性目标面,在建立目标单元之前需要要指定附加的单元属性TSHAP。

刚性目标面的自动划分不需要TSHAP。ANSYS能根据实体模型确定合适的目标单元形状。划分线(LMESH):2-D刚性目标面;划分面(AMESH):3-D刚性目标面;创建关键点(KMESH)-控制节点(Pilot)。

刚性目标面能与控制点联系起来,Pilot实际上是只有一个节点的单元,通过这个节点的运动可以控制整个目标面的运动。ANSYS只在Pilot节点上检查边界条件而忽略其它节点的约束。

对可变形体目标面建立目标单元的步骤是:1先选择可变形体表面上的节点;2然后在可变形体上建立单元

MainMenu >Preprocessor>Modeling>Create>Elements>Surf/Contact>Surf to Surf。

ANSYS将根据基体的网格确定目标单元形状和外法线方向。检查外法线方向(这在自动划分刚性目标面时非常重要)图3-3,打开单元坐标系标志并重绘单元/PSYMS,ESYS,1,目标单元外法线方向应该指向接触面。如果单元法向不指向接触面,用命令使之反转:ESURF,,REVE。

Step 5.建立接触面单元,设置接触单元属性、选择可变形体表面节点,并在可变形体上建立接触单元(过程与在可变形体上建立目标单元相同)Main Menu > Preprocessor > Modeling > Create > Elements > Surf/Contact > Surf to Surf·这些接触单元与基体有同样的阶数(低阶或高阶)。注意,在壳或梁单元上建立目标单元或接触单元时,可以选择要在梁或壳单元的顶层还是底层建立单元。

在选择柔体表面上的节点时,如果你确定某一部分节点永远不会接触到目标面时,可以忽略它,以减少计算时间。·接触面的外法向应指向目标面。如果发现外法线方向不正确,用下列命令修改之ESURF,,REVE。

Step6在有限元模型上施加边界条件,如果目标面是刚性面,目标面将会自动固定。定义了Pilot点ANSYS只检查该点的边界条件,忽略目标面上其它节点约束。控制点能控制目标面的运动。对Seal.dat施加的边界条。

Step7定义求解选项和载荷步,以下是默认设置,推荐使用N.L求解自动控制,使用不带自适应下降的full Newton-Raphson法求解,时间步必须足够小。使用自动时间步。子步数的最大值(NSBMX)应较大,最小值(NSBMIN)应较小。

Step8求解。

Step9后处理,结果包括位移、应力、应变和接触等信息。接触压力、摩擦应力、总应力、接触侵入、接触间隙距离、滑动距离和接触状态都可以从/POST1或/POST26中得到。

第四章点-面接触单元

4.1 概述

点-面接触单元是90年代普遍使用的接触单元。由于点-面接触单元理论上的限制,使它们被更新更好的面一面接触单元取代。点一面接触单元可以用来模拟一个表面和一个节点的接触;也可以把表面指定为一组节点,用点-面接触单元来模拟面一面的接触。面一面接触单元处理角点接触有困难,因为它们采用高斯点作为接触检查点,在角点处会呈现过渡穿透。在此情况下,可以混合使用面一面接触单元和点-面接触单元见图1。

图1

点-面接触单元不必知道接触面的位置。允许大变形,大的相对滑动,库仑摩擦滑动;接触面间可用不同的网格划分。点—面接触是通过跟踪一个表面(接触面)上的点相对于另一表面(目标面)上的线或面的位置来表示的,程序使用接触单元来跟踪两个面的相对位置。接触单元形状为三角形、四面体或椎体,其底面由目标面上的节点组成,而顶点为接触面上的节点见图2。

图2

点-面接触单元在节点传递力(面-面接触单元在高斯点传递力)此特性使其只能用于低阶单元(角节点)-这是由于中间节点的单元节点上的反力不均匀(图3):·单元不提供偏移功能-用这些单元尚无法模拟梁和壳的厚度效应。

图3

4.2 接触刚度

点-面接触单元(conta48、49)要求给出罚刚度。可以通过实验来确定一个合适的接触刚度,使求解收敛而且侵入量可以接受。选择接触刚度:对于块状实体,通常赫芝接触刚度适用于罚刚度,可以这样来估算:

K=fE

式中:f=0.1~10系数;

E=较软的接触体材料的弹性模量。

设f=1通常是一个较好的起始值。对于柔性体(梁和壳模型),系统的刚度可以比赫芝接触刚度低很多。此时可以将单位载荷施加到要接触的面上,先运行一个静态分析来确定模型的局部刚度,接触刚度可以这样来估算:上式适用于柔体接触,f=1~100系数,设f=1是一个比较好的起始值。

4.3 点-面接触分析步骤

建模与分网→识别接触对→生成接触单元(生成方法与面一面接触单元完全不同!)→设置单元关键字(Keyopt)和实常数→给定边界条件→定义求解选项→求解→查看结果

Step 1建模并划分网格,建立接触基体的几何形状的模型,设置单元模型(只能用低阶单元)、实常数和材料特性、分网:Amesh或Vmesh

Step 2识别接触对,通过定义接触单元来定义接触面。一般仅定义局部接触区域(能模拟所有必须的接触)以缩短计算时间。由于几何体和变形的多样化,可能有多个目标面和同一个接触面相互作用,在这种情况下必须定义多个接触对。对每个表面,需要建立一个包含表面节点上的组元,然后通过这些表面节点在接触面之间形成所有可能的接触形状。应该包括比实际需要更多的节点。

普通的点-面接触功能通过多个交迭的接触单元来实现。在缺省的情况下,一个单元的每个接触点与每个可能的目标面连接,大表面上生成的单元总数会很快变得非常巨大(图4)。

图4

Step 3生成接触单元,生成接触单元大致分为3步

(1)定义单元类型:Et,1,Contac48(2D);Et,1,Contac49(3D)

(2)定义接触单元的实常数,不同的接触面须有一个不同的实常数号(即便实常数值相同),便于程序区分不同的接触面。即每个接触对都需要指定一个新的实常数。

(3)在对应的接触对之间生成接触单元。生成接触单元使用GCGEN命令或对应菜单:Main Menu > Preprocessor > Modeling > Create > Elements > Surf to Contact > Node to Surf。

综合Step 2和Step 3,可将生成接触单元的标准命令流总结如下:

NSEL,S,NODE, … ! 在接触面上选择一组节点

CM,CONTACT,NODE ! 将所有节点定义成组元“CONTACT”

NSEL,S,NODE, … ! 在目标单元上选择一组节点

CM,TARGET,NODE, ! 将所选节点定义成组元“TARGET”

NSEL,ALL ! 选中所有节点

E,… ! 设置单元类型

R,… ! 选择实常数

! *** 生成接触单元 ***

GCGEN,CONTACT,TARGET ! 对称接触是一种好方法,因为它不需区分哪个面是接触面,哪个面是目标面

GCGEN,TARGET,CONTACT

关于GCGEN中的选项设置:用NUMC或RADC特性减少生成的单元数量,RADC 通过定义以目标面质心为中心的园,并只在其间生成接触单元来限制生成的单元数量(图5)。

图5

NUMC设置一个数值极限值,每个目标面上生成的接触单元数量不能大于此值。

Step 4设置单元关键字和实常数,使用点-面接触单元时,程序使用单元关键字和实常数来控制接触行为。对常用的CONTAC48和49单元,单元关键字含义如下:

KEYOPT(1):选择自由度

KEYOPT(2):选择罚函数的方法,0-Penalty function罚函数法;1-Penalty function + Lagrange multiplier(罚函数+拉格朗日法)

缺省情况下单元采用罚函数法保证接触协调性。也可以选择混合罚函数和拉格朗日法,此方法还要指定一个穿透容差,单位为长度。

KEYOPT(3):选择摩擦类型,0-无摩擦;1-弹性库仑摩擦;2-刚性库仑摩擦

KEYOPT(7):选择接触时间步长预测控制

CONTAC48、49单元对控制接触时间预测提供三种选择:(1)没有预测:当自动时间步长被打开并允许小的时间步长时,大多数静力分析选用此项。然而对加载过程中有不连续接触区域的问题,时间步长预测是必须的。KEYOPT(7) = 0(2)合理的时间步长:为保持一个合理的时间/载荷增量,需要在接触预测中选择此项。适用于静态分析和连续接触的瞬态分析。KEYOPT(7) = 1(建议采用)(3)最小的时间载荷增量预测:这个选项在碰撞和断续接触分析中有用。KEYOPT(7) = 2

CONTAC48和49单元实常数:各实常数含义如下:KN:定义法向刚度;KT:定义粘合接触刚度;TOLN:定义最大穿透容差;FACT:定义静摩擦与动摩擦的比值;CONT:定义接触传导率。

Step 5施加载荷、设定边界条件,建模时使接触体处于恰好的接触位置,使用给定的位移将它移到某个位置,接触分析中加载、设定边界条件方法与步骤和其它非线性分析相同。

Step 6定义求解选项,点面接触分析中常用求解设置及注意事项:时间步长必须足够小,如果时间步长太大,接触力的光滑传递将被破坏。为确保结果的准确性,可以打开自动步长(Autots,on)GUI: Main Menu > Solution > Load Step Opts > Time/Frequency > Time > Time Step。

设置一个合适的平衡迭代次数:NEQIT, 25~75,GUI: Main Menu > Solution > Analysis Type > Solˊn Controls或Solution > Load Step Opts > Nonlinear > Equilibrium Iter打开时间步长预测(大转动分析除外)PRED, on:设置full Newton-Raphson选项,同时打开自适应下降;NROPT, full:许多接触分析不收敛是因为设置的接触刚度太大(实常数KN取值太大)造成的,这时需要减小接触刚度重新进行分析。

Step 7求解solve

Step 8后处理,接触分析的结果主要包括位移、应力、应变和接触信息。

接触信息包括:接触压力、单元的现在和过去状态:分开(没有接触);接触粘合状态;接触滑动状态;粘合=1;滑动=2或-2;分开=3或4;两个表面间的距离,如果是正值,两表面是分开的(STAT=3或4),如果是负值代表穿透量(STAT=1或2);法向力Fn;滑动力Fs;通过动画显示接触结果随时间的变化规律是接触分析有效的、常用的处理方法。点—接触单元接触结果后处理需要使用ETABLE。

第五章点-点接触单元

5.1 概述

点—点接触单元是ANSYS早期开发的单元,但改进工作一直在进行。点—点接触单元是最简单也是最高效的接触单元。当模型可以使用此类单元时,它们可以高效地模拟广泛的接触问题。

1、常用的点—点接触单元

如果将Contac52和Contac178所有UZ自由度约束住,也可用于2D分析。三种点—点接触单元中CONTA178单元提供最强的功能:更多的接触算法,精确的接触约束协调性(“0”穿透),更多的接触行为选项,定义接触法向更灵活

2、点—点接触单元可以模拟面—面接触问题,如果:相对滑动变形量可以忽略,两个面的偏移(转动)保持很小

3、点—点接触单元在节点处传递力,此特性限制它们只能用低能单元(角节点),因为带中间节点的单元节点上约束反力不均匀。

5.2 点—点接触单元的生成方法

有三种方法生成点—点接触单元:

1、直接生成;

2、在重合节点(或接近重合)上生成单元Step 1.在表面上选择节点,Step 2.为点—点接触单元设置单元属性,Step 3生成单元Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > At Coincid Nd;

3、在偏移节点上生成单元:对非重合节点很方便Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > offset Nodes。

注意:此特性要求面间的分离必须小于重合容差,且必须小于每个面上节点间的距离。

5.3 点—点接触单元选项

1 接触协调性,CONTA178提供不同的接触算法:K2:纯拉格朗日乘子法,几乎0穿透和滑移,不需要接触刚度,更多的自由度出现震颤问题,用PCG求解器时不要使用,修正的拉格朗日方法,需要FKN和TOLN,纯罚函数方法,法向拉格朗日乘子法和切向罚函数法,CONTAC12和ConTAC52只限于罚函数法,指定接触刚度,单位:力/长度。

2 摩擦和接触行为,三种单元都支持摩擦,可为MU指定非0值,Conta178支持与面—面接触单元同样类型的接触行为:

标准-粗糙-不分离(滑动)-绑定-不分离(永远)-绑定接触(永远)-绑定接触(初始接触),Contac12和Contac52只限于标准摩擦行为。

3 初始穿透,Conta178允许渐近化初始穿透,Contac12和Contac52支持初始间隙或初始穿透,但不能是渐进化的。

4 后处理,这些单元接触结果后处理需要采用ETABLE操作。

5.4 以下接触分析用GUI与命令流做

Step 1.恢复数据库文件Utility Menu > File > Resume from,

Node-to-node.db

Step 2.添加3D点—点接触单元/prep7 et,3,conta178

Step 3.为接触单元定义实常数,Main Menu > preprocessor > Add/

Edit/Delete

Step 4. 设置单元属性Type,3 ! Conta178 Mat,1 Real,1

Step 5. 在重合节点建立点-点接触单元Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > At Coincid Nd Tolerance of Coincidence = 0.0001 Nodal number Ordering = “Low to high”【OK】【pick all】或命令: EINTF, 0.0001

Step 6. 求解接触分析/Solu solve

注意:如果Conta178节点重合,则必须通过实常数NX,NY,NZ(间隙方向矢量的全局笛卡尔坐标X,Y,Z的分量)指定间隙方向。对本模型、接触方向平行于Y轴,因此矢量坐标为= <0,1,0 >。

Step 7指定接触法向方向矢量GUI: Main Menu > Preprocessor > Real Constants > Add/Edit/Delete→选set 1→【Edit】→Type 3 CONTA 178→【OK】→Defined gap normal_X comp. NX = 0→Defined gap normal_Y comp. NY = 1→Defined ga p normal_Z comp. NZ = 0或命令: RMODIF, 1, 6, 0, 1, 0。

Step 8求解小位移接触分析(注意:conta178单元不支持大变形)无论小变形还是大变形分析中单元保持其初始方向。/Solu solve。

Step 9.后处理Esel,s,Ename,,solid185→/POST1→PLNSOL,S,EQV→或Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Sol u→Stress Von Mises SEQV→【OK】。

Step 10.选择接触单元进行后处理,Utility Menu > Select >

Entities→Elements→By Elem NameElement NAME = Conta178→或命令: ESEL, S, Ename,, Conta178。

Step 11为接触法向力(FN)和间隙尺寸(USEP)定义单元表(ETABLE)→Conta178单元输出定义表→命令:ETABLE,FN,SMISC,1;ETABLE,GAP,NMISC,3。

Step 12选择附于单元上的全部节点Utility Menu > Select >

Entities→Nodes→Attached to →Elements→选From Full→【Apply】 plot (画节点) →或命令:NSLE→NPLOT。

Step 13打开数值等值线标识Utility Menu> PlotCtrls > Numbering→SVAL numeric Contour Values=on→【OK】→或命令:/pnum, sval, 1

Step 14.画接触法向力Main Menu > General Postproc > Element Table > Plot Elem Table→Item to plotted = FN→Average at common nodes =

yes-average→【OK】→或命令:PLETAB,FN,AVG。

Step 15.列表显示接触法向力和间隙尺寸Main Menu > General Postproc > Element Table > List Elem Table选:FN→GAP→【OK】

注意:检查GAP的极限值,负值表示干涉和闭合的间隙,此处最大穿透值为0。

ANSYS中的接触

ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。 使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。 Contact48和Contact49都是点─面的接触单元,Contact26用来模拟柔性点─刚性面的接触,对有不连续的刚性面的问题,不推荐采用Contact26因为可能导致接触的丢失,在这种情况下,Contact48通过使用伪单元算法能提供较好的建模能力。 面─面的接触单元 ANSYS支持刚体─柔体的面─面的接触单元,刚性面被当作“目标”面,分别用Targe169和Targe170来模拟2─D和3—D的“目标”面,柔性体的表面被当作“接触”面,用Conta171,Conta172,Conta173,Conta174来模拟。一个目标单元

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ANSYS高级分析-子结构

1 引言 在ANSYS平台上,所谓子结构技术就是将一组单元用矩阵凝聚为一个单元过程的技术,切吧这个单一的矩阵单元称为超单元。在ANSYS分析中,超单元可以象其他单元类型一样使用。唯一的区别就是必须先进行结构生成分析以生成能够利用的超单元。但子结构并非在所有ANSYS模块中都能利用,目前ANSYS子结构技术可以在ANSYS/Mutiphysics,ANSYS/Mechanical和ANSYS/Structural中使用。 在ANSYS平台上,使用子结构的目的主要是为了节省机时,并且允许在比较有限的计算机设备资源的基础上求解超大规模的问题。比如进行非线性分析和带有大量重复几何结构的分析。在非线性分析中,可以将模型线性部分作成子结构,这部分的单元矩阵就不用在非线性迭代过程中重复计算。而在有重复几何结构的模型中(如有四条腿的桌子),可以对于重复的部分生成超单元,然后将它拷贝到不同的位置,这样做可以节省大量的计算时间和计算机资源。 子结构还用于模型有大转动的情况下。对于这些模型,ANSYS假定每个结构都是围绕其质心转动的。在三维情况下,子结构有三个转动自由度和三个平动自由度。在大转动模型中,用户在使用部分之前无须对子结构施加约束,因为每个子结构都是作为一个单元进行处理,是允许刚体位移的。 对于大型三维问题的分析而言,需用磁盘空间相对于一个普通计算机系统来说太庞大了,在这种情况下,用户可以通过子结构将问题分块进行分析,从而使得每一块对于计算机系统来说都是可以计算和承受的。 2 ANSYS子结构使用步骤 ANSYS子结构使用过程分为以下三个步骤: 1)ANSYS子结构生成部分 生成部分就是将普通的有限元单元凝聚为一个超单元。凝聚是通过定义一组主自由度来实现的。主自由度用于定义超单元与模型中其他单元的边界,提取模型的动力学特性。图1是一个板状构件用接触单元分析的示意。由于接触单元需要迭代计算,将板状构件形成子结构将显著地节省机时。本例中,主自由度是板与接触单元相连的自由度。 图1 子结构使用示例 2)ANSYS子结构使用部分 用部分就是将超单元与模型整体相连进行分析的部分。整个模型可以是一个超单元,也可以象上例一样是超单元与非超单元相连的。使用部分的计算只是超单元的凝聚(自由度计算仅限于主自由度)和非超单元的全部计算。

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

ANSYS中文翻译官方手册_接触分析

一般的接触分类 (2) ANSYS接触能力 (2) 点─点接触单元 (2) 点─面接触单元 (2) 面─面的接触单元 (3) 执行接触分析 (4) 面─面的接触分析 (4) 接触分析的步骤: (4) 步骤1:建立模型,并划分网格 (4) 步骤二:识别接触对 (4) 步骤三:定义刚性目标面 (5) 步骤4:定义柔性体的接触面 (8) 步骤5:设置实常数和单元关键字 (10) 步骤六: (21) 步骤7:给变形体单元加必要的边界条件 (21) 步骤8:定义求解和载步选项 (22) 第十步:检查结果 (23) 点─面接触分析 (25) 点─面接触分析的步骤 (26) 点-点的接触 (35) 接触分析实例(GUI方法) (38) 非线性静态实例分析(命令流方式) (42) 接触分析 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。

一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触,另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSTS使用的接触单元和使用它们的过程,下面分类详述。 点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组结点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是插头到插座里。

ansys面与面接触分析实例

面与面接触实例:插销拨拉问题分析 定义单元类型 Element/add/edit/delete 定义材料属性 Material Props/Material Models Structural/Linear/Elastic/Isotropic 定义材料的摩擦系数 … 建立几何模型 Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=,Z2=

Modeling/Create/Volumes/Cylinder/By Dimensions Modeling/Operate/Booleans/Subtract/Volumes 先拾取长方体,再拾取圆柱体。 Modeling/Create/Volumes/Cylinder/By Dimensions 、 划分掠扫网格 Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3再拾取插座前端的曲线,输入NDIV=4

PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge 建立接触单元 : Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。 单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。

单击Pick Target,选择目标面。 选择接触面 定义位移约束 施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric On Areas,选择对称面。 再固定插座的左侧面。 ) 设置求解选项 Analysis Type/Sol’s Control

ansys接触问题!牛人的经验之谈!

接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:    接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到接触,此时接触力有个突变,产生chattering(接触状态的振动式交替改变)。如何控制这种chattering,是纯粹拉格朗日法所难以解决的。

Ansys接触问题处理方法与参数设置

Ansys接触问题处理方法 接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系: 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。 2)由于增加了额外的自由度,刚度阵变大了。 3)一个可能发生的严重问题,就是在接触状态发生变化时,例如从接触到分离,从分离到

ANSYS接触分析_学习手记

◆前提: ◇有限元模型。 ◇已识别接触面及目标面。(*可应用自由度耦合来替代接触。) 选择目标面和接触面的准则: 1.凸面和凹面或平面接触是,选平面或凹面为目标面。2、接触的两个面网格划分有粗细的话,选粗网格所在面为目标面。3两个面刚度不同时,选择刚度大的面为目标面4如果两个面为一个高阶单元,一个为低阶单元,选低阶单元为目标面 5.如果一个面比另一个面大选大的面为目标面。 2. ◆定义接触单元及实常数

◇(刚性)目标单元—— TARGE169 TARGE170 ; ◇(柔性)接触单元—— CONTA171~CONTA172。 ***Commands*** ET,K,169 !K - 指定的单元编号 ET,K+1,172 *** **** ◇实常数——一个接触对对应同一个实常数号。 TARGE单元的实常数包括:R1、R2 —定义目标单元几何形状 CONTA单元的实常数包括: No. Name Description 1 R1 Target circle radius(刚性环半径) 2 R2 Superelement thickness(单元厚度) *3 FKN Normal penalty stiffness factor(法向接触刚度因子) *4 FTOLN Penetration tolerance factor(最大允许的穿透) *5 ICONT Initial contact closure(初始闭合因子) 6 PINB Pinball region(“Pinball”区域) *7 PMAX Upper limit of initial allowable penetration(初始穿透的最大值)*8 PMIN Lower limit of initial allowable penetration(初始穿透的最小值)*9 TAUMAX Maximum friction stress(最大的接触摩擦) *10 CNOF Contact surface offset(施加于接触面的正或负的偏移值) 11 FKOP Contact opening stiffness or contact damping *12 FKT Tangent penalty stiffness factor(切向接触刚度) 13 COHE Contact cohesion(滑动抗力粘聚力) 14 TCC Thermal contact conductance(热接触传导系数) 15 FHTG Frictional heating factor(摩擦耗散能量的热转换率) 16 SBCT Stefan-Boltzmann constant 17 RDVF Radiation view factor 18 FWGT Heat distribution weighing factor 19 ECC Electric contact conductance 20 FHEG Joule dissipation weight factor 21 FACT Static/dynamic ratio(静摩擦系数和动摩擦系数的比率) 22 DC Exponential decay coefficient(摩擦衰减系数) 23 SLTO Allowable elastic slip 24 TNOP Maximum allowable tensile contact pressure 25 TOLS Target edge extension factor 附注: +值作为比例因子,-值作为绝对值; 带*号的实常数比较重要,关乎接触分析的收敛; 一般实常数可为缺省值。

ANSYS 中使用接触向导定义多个接触对详细实例(图文)

ANSYS 中如何使用接触向导定义接触对 在ANSYS 中定义接触通常有两种方法: 1. 用户自己手工创建接触单元和目标单元。这种方法,在定义接触和目标单元时还比较简单,但是在设置或修改单元属性和定义实常数时却比较复杂。需要用户对接触有较深刻的理解和通过实践积累丰富的经验。 2. 使用接触管理器中的接触向导定义接触对:使用接触管理器 (接触向导) 定义接触对(即接触单元和目标单元) 时,可以定义除了点-点接触以外的各种接触类型;它可以自动生成接触单元和目标单元,并提供了一组默认的单元属性和实常数值。使用这些默认的设置,加上适当的求解设置,对于多数接触问题都能够获得收敛的结果。而且,如果使用默认设置时,计算不收敛或对结果不太满意,也可以通过接触管理器(接触向导) 对单元属性和实常数方便的进行修改和调整。 因此,我们推荐,在可能的情况下,尽量使用接触管理器(接触向导) 来定义接触。本文将通过一个实例介绍接触管理器的基本使用方法。 所使用的例子如下: 两块平板,中间夹一个圆球。上面平板的上表面承受压力,分析模型的变形和应力随压力的变化。 两块平板,尺寸都是(100*100*20),相距100。中间夹一个半径50 的圆球。两个平板分别与圆球的上下边缘接触。尺寸单位为mm。几何模型如图1。

图 1 中,为了能够划分映射网格,分别对体积进行了切割材料属性为:两块平板: E = 201000 Mpa;μ= 0.3 圆球: E = 70100 Mpa;μ= 0.33 接下来对各个Volumes 划分网格,单元类型采用solid186 (20 节点六面体),单元边长统一取 6 mm。网格划分结果如图 2 所示:

ANSYS接触问题的计算方法

ANSYS接触问题的计算方法 接触问题的关键在于接触体间的相互关系(废话,),此关系又可分为在接触前后的法向关系与切向关系。 法向关系: 在法向,必须实现两点:1)接触力的传递。2)两接触面间没有穿透。 ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。 1.罚函数法 是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移=法向接触力 对面面接触单元17*,接触刚度由实常数FKN来定义。穿透值在程序中通过分离的接触体上节点间的距离来计算。接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。 以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。并不改变总刚K的大小。这种罚函数法有以下几个问题必须解决: 1)接触刚度FKN应该取多大? 2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。 3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适? 因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN取0.1到1中间的值。当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。 对于接近病态的刚度阵,不要使用迭代求解器,例如PCG等。它们会需要更多的迭代次数,并有可能不收敛。可以使用直接法求解器,例如稀疏求解器等。这些求解器可以有效求解病态问题。 穿透的大小影响结果的精度。用户可以用PLESOL,CONT,PENE来在后处理中查看穿透的数值大小。如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。因为较小的FKN有助于收敛,然后再逐步增加FKN值进行一系列计算,最后得到一个满意的穿透值。 FKN的收敛性要求和穿透太大产生的计算误差总会是一对矛盾。解决此矛盾的办法是在接触算法中采用扩展拉格朗日乘子法。此方法在接触问题的求解控制中可以有更多更灵活的控制。可以更快的实现一个需要的穿透极限。 2.拉格朗日乘子法与扩展拉格朗日乘子法 拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是把接触力作为一个独立自由度。因此这里不需要进行迭代,而是在方程里直接求出接触力(接触压力)来。Kx=F+Fcontact 从而,拉格朗日乘子法不需要定义人为的接触刚度去满足接触面间不可穿透的条件,可以直接实现穿透为零的真实接触条件,这是罚函数法所不可能实现的。使用拉格朗日乘子法有下列注意事项: 1)刚度矩阵中将有零对角元,使有些求解器不克使用。只能使用直接法求解器,例如波前法或系数求解器。而PCG之类迭代求解器是不能用于有零主元问题的。

ansys workbench接触分析

Workbench -Mechanical Introduction Introduction 作业3.1 31 接触控制

作业3.1 –目标 Workshop Supplement ?作业3.1调查了一个简单组件的接触行为。目的是为了说明由于不适当接触导致的刚体运动是怎么产生的。 ?问题描述: 问题描述 –模型从一个简单Parasolid组件文件获得 –我们的目标是在组件的各部件中建立接触,查看非对称加载对结果有何影响 我们的目标是在组件的各部件中建接触,查看非对称加载对结果有何影响

作业3.1 –假设 Workshop Supplement ?假设arm shaft 和side plate上的孔间的摩擦忽略不计,同样arm shaft 和stop shaft 之间的接触也忽略不计。最后假设stop shaft固定在两个side plate之间。 之间 Arm Shaft Side Plate Side Plate p Stop Shaft

作业3.1 –Project Schematic Workshop Supplement ?打开Project page(项目页) ?通过“Units” 菜单确定: –Project单位设置为“US Customary (lbm, in, s, F, A, lbf, V). –选择“Display Values in Project Units”

. . .作业3.1 –Project Schematic Workshop Supplement 1.在Toolbox(工具箱)中双击 Static Structural建立新的分析系 统 1. 2.Geometry上点击鼠标右键选择 2在 Import Geometry导入 2. Contact_Arm.x_t文件

ANSYS高级接触问题

ANSYS高级接触问题 第一章接触问题概述 在工程中会遇到大量的接触问题,如齿轮的啮合、法兰联接、机电轴承接触、卡头与卡座、密封、板成形、冲击等等。接触是典型的状态非线性问题,它是一种高度非线性行为。接触例子如图1: 分析中常常需要确定两个或多个相互接触物体的位移、接触区域的大小和接触面上的应力分布。 接触分析存在两大难点: 在求解之前,你不知道接触区域、表面之间是接触或分开是未知的,表面之间突然接触或突然不接触会导致系统刚度的突然变化。 大多数接触问题需要计算摩擦。摩擦是与路径有关的现象,摩擦响应还可能是杂乱的,使问题求解难以收敛。 1.1 接触分类 1.1.1 刚-柔 一个表面是完全刚性的—除刚体运动外无应变、应力和变形,另一表面为软材料构成是可变形的。 只在一个表面特别刚硬并且不关心刚硬物体的应力时有效。 1.1.2 柔-柔

两个接触体都可以变形。 1.2 接触单元 ANSYS采用接触单元来模拟接触问题:跟踪接触位置;保证接触协调性(防止接触表面相互穿透);在接触表面之间传递接触应力(正压力和摩擦)。 接触单元就是覆盖在分析模型接触面上的一层单元。在ANSYS中可以采用三种不同的单元来模拟接触:面—面接触单元;点—面接触单元;点—点接触单元。 不同的单元类型具有完全不同的单元特性和分析过程。 1.2.1 面—面接触单元 用于任意形状的两个表面接触,不必事先知道接触的准确位置;两个面可以具有不同的网格;支持大的相对滑动;支持大应变和大转动。例如:面一面接触可以模拟金属成型,如轧制过程。 1.2.2 点—面接触单元 用于某一点和任意形状的面的接触,可使用多个点-面接触单元模拟棱边和面的接触;不必事先知道接触的准确位置;两个面可以具有不同的网格;支持大的相对滑动;支持大应变和大转动。例:点面接触可以模拟棱边和面之间的接触。 1.2.3 点-点接触单元 用于模拟单点和另一个确定点之间的接触。建立模型时必须事先知道确切的接触位置;多个点-点接触单元可以模拟两个具有多个单元表面间的接触;每个

ANSYS接触属性

接触属性 以下为ANSYS 中用于创建接触对的接触属性对话框中的标签: ?Basic –基本属性 ?Friction –摩擦 ?Initial Adjustment –初始调整 ?Misc –杂项 ?Rigid target –刚性目标 ?Thermal –热 ?Electric –电 ?Magnetic –磁 ?Constraint –约束 ?ID –标识符 注解: 上述标签不是任何时候都是可用的。在GUI 方式中出现的标签和每个标签显示的选项取决于所定义的接触对的种类,以及访问接触属性对话框的位置(从Contact Wizard 或Contact Manager)。 接触属性:基本属性 基本属性标签包含有关接触行为和收敛的一般属性。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一

个常数比例因子。

有关单元: CONTA171, CONTA172, CONTA173, CONTA174, CONTA175 接触属性:摩擦 摩擦(Friction) 标签包含有关接触界面上的静摩擦和动摩擦的参数。 首先应该尝试使用默认设置执行接触分析,然后根据分析中遇到的具体困难和特殊情况修改设置。 使用如下问题和解答帮助确定是否需要根据特殊情况修改任何默认的设置。 这些问题只是作为一种提示,引导用户确定如何调整接触属性的设置,但并不包含这些参数的所有可能的应用。建议用户阅读有关的章节(后面列出),即使该问题并未直接用于你的情况。有关的章节给出了如何使用相关参数的更完整的说明。 在这一对话框中, 选项表示选择一个默认值;the factor radio 按钮表示设置一个比例因子;the constant radio 按钮表示设置一个常数比例因子。 材料编号(Material ID) 和摩擦系数(Friction Coefficient) 参数来自Contact Properties: Set Parameters and Create 对话框。 使用Friction 标签上的ID 参数可以创建一个新的材料ID,或输入新的摩擦系数以覆盖已有的值。 (注意:使用这一对话框,只能定义各向同性的摩擦系数。关于如何定义正交异性摩擦的问题,参见Choosing a Friction Model,它只能用于三维接触分析)。

ansys接触分析实例52266

第20章接触分析实例 在这个实例中,将对一个盘轴紧配合结构进行接触分析。第一个载荷步分析轴和盘在过盈配合时的应力,第二个载荷步分析将该轴从盘心拔出时轴和盘的接触应力情况。 20.1 问题描述: 在旋转机械中通常会遇到轴与轴承、轴与齿轮、轴与盘连接的问题,根据各自的不同情况可能有不同的连接形式。但大多数连接形式中存在过盈配合,也就是涉及到接触问题的分析。这里我们以某转子中轴和盘的连接为例,分析轴和盘的配合应力以及将轴从盘中拔处时盘轴连接处的应力情况。 本实例的轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图20.1所示。由于模型和载荷都是轴对称的,可以用轴对称方法进行分析。这里为了后处理时观察结果更直观,我们采用整个模型的四分之一进行建模分析,最后将其进行扩展,来观察整个结构的变形及应力分布、变化情况。盘和轴用同一种材料,其性质如下: 弹性模量:EX=2.1E5 泊松比:NUXY=0.3 接触摩擦系数:MU=0.2 20.1 盘轴结构图

20.2 建立有限元模型 在ANSYS6.1中,首先我们通过完成如下工作来建立本实例的有限元模型,需要完成的工作有:指定分析标题,定义单元类型,定义材料性能,建立结构几何模型、进行网格划分等。根据本实例的结构特点,我们将首先建立代表盘和轴的两个1/4圆环面,然后对其进行网格划分,得到有限元模型。 20.2.1设置分析标题 本实例为进行如图20.1所示的盘轴结构的接触分析,属于非线性结构分析范畴。跟前面实例一样,为了在后面进行菜单方式操作时的方便,需要在开始分析时就指定本实例分析范畴为“Structural”。本实例的标题可以命名为:“Analysis of a Axis Contacting a hole in a Disc”,具体的操作过程如下: 1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框,如图20.2所示。在Enter new jobname (输入新文件名)文本框中输入文字“CH20”,为本分析实例的数据库文件名。并单击New log and error files (新的日志和错误 文件)单选框,使其变为“Yes ”,为本实例的分析过程创建新的日志。单击按钮关 闭对话框,完成文件名的修改。 图20.2 修改文件名对话框 2.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框,如图20.3所示。在Enter new title (输入新标题)文本框中输入文字“Analysis of a Axis Contacting a hole in a Disc ”,为本分析实例的标题名。单击按钮,完成对标题名的指定。 图20.3 修改标题对话框 3.选取菜单路径Utility Menu | Plot | Replot,指定的标题“Analysis of a Axis Contacting a hole in a Disc”将显示在图形窗口的左下角(图略)。 4.选取菜单路径Main Menu | Preference,将弹出Preference of GUI Filtering (菜单过滤参数选择)对话框。单击Structual(结构)选项使之被选中,以将菜单设置为与结构分析相关

相关主题
文本预览
相关文档 最新文档