当前位置:文档之家› 铁氧体-微晶玻璃纳米复合材料的结构与性能

铁氧体-微晶玻璃纳米复合材料的结构与性能

铁氧体-微晶玻璃纳米复合材料的结构与性能
铁氧体-微晶玻璃纳米复合材料的结构与性能

铁氧体-微晶玻璃纳米复合材料的结构与性能

岳振星周济张洪国李龙土桂治轮

摘要:采用溶胶-凝胶工艺首先合成了NiCuZn铁氧体纳米粉末和

MgO-Al

2O

3

-SiO

2

(MAS)凝胶玻璃粉末,将两种粉末按一定比例均匀混合,烧结后得

到了由NiCuZn铁氧体和堇青石微晶体两相共存的铁氧体-微晶玻璃纳米复合材料,该材料具有可调控的电磁性能,其起始磁导率高于3、介电常数低于6、截止频率高于2GHz, 可望用作特高频多层片式电感介质材料.

关键词:NiCuZn铁氧体, 微晶玻璃, 复合材料, 电磁性能

分类号:TB 323

Structure and Properties of Ferrite/Glass-ceramic Nanocomposites

YUE Zhen-XingZHOU JiZHANG Hong-GuoLI Long-TuGUI Zhi-Lun

(Department of Materials Science and Engineering, Tsinghua

UniversityBeijing 100084China)

Abstract NiCuZn ferrite nanometre powder and MgO-Al

2O

3

-SiO

2

(MAS) gel

powder were first synthesized by sol-gel process. Being mixed and sintered, a series of novel composites with ferrite and MAS glass-ceramic were obtained. XRD resultsrevealed that the composites have diphasic structures of NiCuZn ferrite andcordierite crystallites. No chemical reaction between two constituents duringsintering was detected. The composites have tunable electric and magnetic propertieswith the resonant frequencies higher than 2GHz.

Key words NiCuZn ferrite, glass-ceramic, nanocomposite,

electro-magnetic properties

1 引言

多层片式电感(MLCI)是近年来发展起来的一种重要的表面组装元件,是新一代表面安装技术不可缺少的片式元件之一. 但由于其技术难度大,与其它片式元件相比,发展相对缓慢,从而制约了表面组装技术的进一步发展. 目前作为片式电感发展主流的叠层式片式电感是将磁介质材料和内电极经叠层共烧而成的独石结构,其中低烧介质材料是其技术关键. 目前片式电感用的低烧介质材料主要有两类,一类是应用于300MHz以下的NiCuZn铁氧体[1],另一类是应用于超高频范围的低介电常数陶瓷材料[2]. 近年来随着通信技术的发展,对应用于500MHz2GHz特高频段范围内的片式电感的需求越来越迫切,但目前尚没有适用于该频段合适的MLCI介质材料,该频段内现有的MLCI只能用低介陶瓷为介质材料,因低介陶瓷属非磁性材料,其起始磁导率为1,只能用于制作低电感量的MLCI,因此,为满足大电感、低成本、高可靠MLCI的要求,急需开发特高频MLCI 介质材料.

特高频MLCI介质材料, 除应具有尽量高的起始磁导率外,还应具有低的介电常数以保证高的截止频率. 众所周知,铁氧体的截止频率与晶粒尺寸成反比,

因此纳米铁氧体陶瓷应具有更高的截止频率,但传统方法因晶粒生长难以获得纳米晶粒的陶瓷材料. 如果将纳米晶“镶嵌”于某种材料的基质中,形成纳米复合材料,可望满足高截止频率的要求.有关铁氧体与硼硅玻璃形成纳米复合材料已有报道[3, 4], 但由于非晶玻璃相的存在,难以获得低介电常数、高磁导率、能与电极兼容的复合介质材料.

鉴于NiCuZn铁氧体和堇青石微晶玻璃分别具有优异的磁性能和介电性能,将二者复合可望获得电磁性能优异的特高频MLCI介质材料.本文报道NiCuZn铁氧体与堇青石微晶玻璃复合形成纳米复合材料的相结构和电磁性能.

2 实验过程与结果讨论

2.1 NiCuZn 铁氧体纳米粉的合成与特性

以分析纯金属硝酸盐和柠檬酸为原料,采用柠檬酸盐溶胶-凝胶技术合成

NiCuZn铁氧体纳米粉末,其组成为(Ni

0.25Cu

0.25

Zn

0.50

O)(Fe

2

O

3

)

0.98

, 合成粉末的XRD

结果表明, 粉末为具有尖晶石结构的单相铁氧体,并且X射线衍射峰明显展宽,利用线展宽法并借助谢乐公式计算粉末的一次粒径为42nm(已扣除仪器展宽效应),图1为合成粉末的TEM照片,可见,粉末粒度分布均匀,粒径约在3050nm, 与XRD测得的粒径一致,证明粉末分散均匀,无明显硬团聚存在. TMA试验表明纳米粉的最大致密化速率发生在约800C,表明粉末具有较高的烧结活性,在

900C可实现致密化.

Fig. 1 TEM photograph of synthesized ferrite powders

2.2 MAS凝胶玻璃的制备与特性

以分析纯金属硝酸盐和正硅酸乙酯为原料,采用溶胶-凝胶工艺制备了MgO

-Al

2O

3

-SiO

2

(MAS)凝胶, 将干凝胶在600C热处理后经球磨获得玻璃粉末.DTA

结果表明, 该凝胶玻璃的转变温度T

g

为700C,将玻璃粉末压制成片状试样进行烧结试验, 发现在880C可实现完全致密化.图2为烧结前后试样的XRD图谱, 可见,经880C烧结后试样已完全析晶,形成堇青石微晶玻璃.以上证明, 由溶胶凝胶工艺制备的堇青石微晶玻璃具有低温可烧结特性.

图2 烧结前后试样的XRD图谱

Fig. 2 XRD patterns of samples before and after sintered

2.3纳米复合材料的制备与性能

2.3.1复合材料的制备

将以上所合成的NiCuZn铁氧体纳米粉末与MAS凝胶粉末按3:7 (C3)、5:5 (C5)和7:3 (C7)比例混合,加适量无水乙醇,球磨12h,烘干后压制、烧成片状和环型试样,用于电磁性能测试. 用HP4194A阻抗仪测试介电性能, 用HP4191A LCR以同轴腔夹具测试试样的高频磁性能,频率范围为1MHz1GHz.

2.3.2复合材料的相结构

未经热处理的MAS以无定型凝胶玻璃形式存在,按MAS凝胶玻璃的特性,经880C热处理后析晶得到堇青石微晶玻璃. 图3为900C烧成后复合粉末的XRD,同时给出了在相同温度下烧成的微晶玻璃和NiCuZn铁氧体的XRD谱线,可见,复合粉末经热处理后获得了堇青石微晶相和NiCuZn铁氧体相共存的复合体.

图3900C烧成后复合材料的XRD图谱

Fig. 3XRD patterns of composites sintered at 900 C

图4为经不同温度热处理后复合粉末的XRD图谱, 可见,在低于800C时,MAS凝胶未结晶,以非晶玻璃态存在,当温度高于850C时,MAS析晶形成两晶相共存的复相体系,与单相MAS凝胶相比,铁氧体纳米晶的存在并没有明显改变MAS凝胶的析晶过程.

图4 经不同温度热处理后复合粉末C5的XRD图谱

Fig. 4 XRD patterns of composite (C5) treated at different temperatures

图5 复合材料断面的SEM照片

Fig. 5 SEM photograph of fractured section of composites

以上说明在烧结过程中,复合粉末中的MAS凝胶玻璃相发生熔融,使材料致密化,烧结后期发生析晶. 图3、4的XRD图谱上均未显示出其它异相存在,说明在烧结过程中两相未发生明显化学反应,从而保持两相共存.

图5为复合材料断面的SEM照片,可见烧结后晶粒细小, 晶粒尺寸约<200nm, 说明堇青石微晶相的存在抑制了铁氧体晶粒的生长,有关复合体系显微结构的发展将有另文报道.

2.3.3 复合材料的磁性能

图6为复合材料的磁频谱,可见,随NiCuZn铁氧体含量增加,复合体的磁导率增大,当铁氧体的含量为30%和50%时,在10MHz~1GHz频率范围内磁谱很平坦,表现出优异的频率稳定性,其截止频率高于2GHz,而同组分NiCuZn铁氧体陶瓷(晶粒尺寸为1~2μm)的截止频率为40MHz,可见,将纳米铁氧体粉末分散于微晶玻璃中形成复合材料后,其截止频率明显提高. 截止频率的提高可认为起因于两个方面: 一方面,铁氧体颗粒保持纳米尺寸,截止频率提高; 另一方面, 磁性颗粒被基质隔离, 粒子—粒子相互作用减弱,使磁导率减小, 截止频率提高. 当铁氧体含量达70%时, 由于磁性粒子—粒子间相互作用加强, 磁导率提高,

截止频率降低.

图6 复合材料的磁频谱

Fig. 6 Initial permeability of composites as a function of frequency

2.3.4 复合材料的介电性能

图7为复合材料的介电频谱, 并给出了NiCuZn铁氧体和堇青石微晶玻璃的介电频谱.

可见,将NiCuZn铁氧体复合到堇青石微晶玻璃介质中,其介电常数明显降低,而相对于MAS微晶玻璃,随铁氧体含量增加,介电常数提高,即复合体的介电常数介于两起始组元之间. 实际上,在由导电相和绝缘相构成的复合材料体系

中, 因导电颗粒表面的电荷分布, 会使内电场增大,致使介电常数增大[5],相对堇青石相,铁氧体相的电阻率较低,可视为导电相,因此随铁氧体相含量增多,复合体的介电常数应增大.

图7 复合材料的介电频谱

Fig. 7 Dependence of dielectric constant of composites on

3 结论

1. 将NiCuZn铁氧体纳米粉与MAS凝胶玻璃复合,烧结后得到了铁氧体和堇青石微晶相共存的复合材料,低温烧结过程中两相相容,不发生化学反应,NiCuZn 铁氧体纳米晶的存在不改变MAS凝胶的析晶过程.

2. NiCuZn铁氧体纳米粉与堇青石微晶玻璃复合后,其截止频率明显提高,同时介电常数和磁导率均降低,获得了起始磁导率高于3、介电常数低于6、截止频率高于2GHz的铁氧体复合材料,可望用于特高频MLCl.

国家“863”高技术资助项目(715--Z33--006--0050)

作者单位:岳振星周济张洪国李龙土桂治轮清华大学材料系新型陶瓷与精细工艺国家重点实验室北京100084

参考文献

1 Nakamura T. J. Magn. Mater., 1997, 168: 285--291

2 Hsu Jen-Yan, Liu Hon-Chin, Shen Hon-Dar. IEEE Trans. Magn., 1997, 3

3 (5): 3325--3327

3 Chatterjee A, Das D, Pradhan S K. J. Magn. Magn. Mater., 1993, 127: 214--219

4 Pal M, Brahma P, Chakravorty D. J. Magn. Magn. Mater., 1996, 164: 256--260

5 Fiske T J, Gokturk H S, Kalyon D M. J. Mater. Sci., 1997, 32: 5551--5560

铁氧体吸波材料研究进展

铁氧体吸波材料的研究进展 物理科学与技术学院凝聚态物理罗衡102211013 摘要:铁氧体吸波材料是既具有磁吸收的磁介质又具有电吸收的电介质,是性能极佳的一类吸波材料。本文对铁氧体吸波材料的工作原理、研究进展作了系统的介绍,并指出了铁氧体吸波材料的发展趋势。 关键词:铁氧体吸波材料研究进展 0 引言 近年来,随着电磁技术的快速发展,电磁波辐射也越来越多的充斥于我们的生活空间,电磁波辐射已成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害。如电磁波辐射产生的电磁干扰(EMI)不仅会影响各种电子设备的正常运行,而且对身体健康也有危害。在军事高科技领域,随着世界各国防御体系的探测、跟踪、攻击能力越来越强,陆,海、空各军兵种军事目标的生存力,突防能力日益受到严重威胁;作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段之一的隐身技术,正逐渐成为集陆、海、空、天、电、磁五位一体之立体化现代战争中最重要、最有效的突防战术手段。 目前一般采用的手段是利用电磁屏蔽材料的技术,来进行抗电磁干扰和电磁兼容设计,但是屏蔽材料对电磁波有反射作用,可能造成二次电磁辐射污染和干扰,所以最好的解决办法是采用吸波材料技术,因为吸波材料可以将投射到它表面的电磁波能量吸收,并使电磁波能量转化为热能或其他形式的能量消耗而不反射[1-3]。 用于隐身技术的雷达吸波材料已达十几种之多,与透波材料相比,吸波材料研究得更为成熟,其中应用较广的几类吸波材料有铁氧体、金属微粉、纳米吸波材料、导电高聚物和铁电吸波材料等。在众多吸波材料中,磁性吸波材料具有明显优势,而且将是主要的研究对象。磁性吸波材料主要包括铁氧体、超细金属粉、多晶铁纤维等几类。其中金属吸收剂具有使用温度高、饱和磁化强度和磁损耗能力大等特点,但也存在一些自身的缺点:如频率展宽有一定难度,这主要是由于其磁损耗不够大,磁导率随频率的升高而降低比较慢的缘故;化学稳定性差;耐腐蚀性能不如铁氧体等[4];而对于铁氧体来说,除了具有吸收强、吸收频带宽、成本低廉、制备工艺简单等优点外,还因为具有较好的频率特性(其相对磁导率较大,而相对介电常较小),更适合制作匹配层,相对于高介电常数高磁导率的金属粉,在低频率拓宽频带方面,更具有良好的应用前景[5-8]。

各种液压缸工作原理及结构分析(动画演示)

各种液压缸工作原理及结构分析(动画演示) 什么是液压缸液压缸是将液压能转变为机械 能的、做直线往复运动(或摆动运动)的液压执行元件。它结构简单、工作可靠。用它来实现往复运动时,可免去减速装置,并且没有传动间隙,运动平稳,因此在各种机械的液压系统中得到广泛应用。液压缸输出力和活塞有效面积及其两边的压差成正比;液压缸的结构液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。缸体组件缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。(1)法兰式连接,结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。(2)半环式连接,分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。(3)螺纹式连接,有

外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。(4)拉杆式连接,结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。(5)焊接式连接,强度高,制造简单,但焊接时易引起缸筒变形。液压缸的基本作用形式:标准双作用:动力行程在两个方向并且用于大多数应用场合: 单作用缸:当仅在一个方向需要推力时,可以采用一个单作用缸;双杆缸:当在活塞两侧需要相等的排量时,或者当把一个负载连接于每端在机械有利时采用,附加端可以用来安装操作行程开关等的凸轮.弹簧回程单作用缸:通常限于用来保持和夹紧的很小的短行程缸。容纳回程弹簧所需要的长度使得它们在需要长行程时很讨厌;柱塞式单作用缸:仅有一个流体腔,这种类型的缸通常竖直安装,负载重置使缸内缩,他们又是被成为“排量缸”,并且对长行程是实用的;多级伸缩缸:最多可带4个套简,收拢长度比标准缸短.有单作用或双作用,它们与标准缸相比是比较贵的,通常用于安装空间较小但需要较大行程的场合, 串联缸:一个串联缸足由两个同轴安装的缸组成的,两个缸的活塞由一个公共活塞杆链接,在两缸之前设置杆密封件以便使每个缸都能双作用,当安装宽度或高度受限制时.串联

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,

但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。 ? (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。 3.2.1.2 缸筒、端盖和导向套的基本要求 ?缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要

1纳米铁氧体磁性材料的制备

材料科学前沿 题目:纳米铁氧体磁性材料学院:理学院 班级:Y130802 姓名:陈国红 学号:S1*******

摘要:铁氧体纳米磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了纳米结构铁氧体磁性材料化学制备方法的研究进展,以及它们的应用,分析了其存在的问题,展望了研究和开发纳米结构铁氧体磁性材料的新性能和新技术的应用前景。 关键词:纳米磁性材料;铁氧体;制备;应用

铁氧体是从20世纪40年代迅速发展起来的一种新型的非金属磁性材料。与金属磁性材料相比,铁氧体具有电阻率大、介电性能高、在高频时具有较高的磁导率等优点。随着科学技术的发展,铁氧体不仅在通讯广播、自动控制、计算技术和仪器仪表等电子工业部门应用日益广泛,已经成为不可缺少的组成部分,而且在宇宙航行、卫星通讯、信息显示和污染处理等方面,也开辟了广阔的应用空间。在生产工艺上,铁氧体类似于一般的陶瓷工艺,操作方便易于控制,不像金属磁性材料那样要轧成薄片或制成细粉介质才能应用。由于铁氧体性能好、成本低、工艺简单、又能节约大量贵金属,已成为高频弱电领域中很有发展前途的一种非金属磁性材料 l铁氧体的晶体结构 铁氧体作为一种具有铁磁性的金属氧化物,是由铁和其他一种或多种金属组成的复合氧化物。实用化的铁氧体主要有以下几种晶体类刑 1.1尖晶石型铁氧体 尖晶石型铁氧体的化学分子式为MnFe 20 4 或M0Fe 2 3 ,M是指离子半径与二价 铁离子相近的二价金属离子(Mn2+、Zn2+、Cu2+、Ni2+、Mg2+、Co2+等)或平均化学价为 二价的多种金属离子组(如Li 0.5Fe 0.53 )。以Mn2+替代Fe2+所合成的复合氧化物 MnFe 20 4 称为锰铁氧体,以Zn2+替代Fe2+所合成的复合氧化物ZnFe 2 4 称为锌铁氧体。 通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体称为单组分铁氧体。由两种或两种以上的金属离子替代可以合成出双组 分铁氧体和多组分铁氧体。锰锌铁氧体(Mn—ZnFe 2O 4 )和镍锌铁氧体(Ni—ZnFe 2 4 ) 就是双组分铁氧体,而锰镁锌铁氧体(Mn—Mg—ZnFe 2O 4 )则是多组分铁氧体。 1.2磁铅石型铁氧体 磁铅石型铁氧体是与天然矿物——磁铅石Pb(Fe 7.5Mn 3.5 Al o.5 Ti 0.5 )0 19 有类似晶 体结构的铁氧体,属于六角晶系,分子式为MFe l20 19 或Bao·6Fe 2 3 ,M为二价金 属离子Ba2+、Sr2+、Pb2+等。通过控制替代金属,也可以获得性能改善的多组分铁氧体。 1.3石榴石型铁氧体 石榴石型铁氧体是指一种与天然石榴石(Fe,Mg) 3A1 2 (Si0 4 ) 3 有类似晶体结构

纳米晶带材简介

铁基纳米晶合金 一、简介: 铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为的,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料。微晶直径10-20 nm, 适用频率范围50Hz-100kHz. 二、背景介绍: 1988年日本的Yoshizawa等人首先发现,在Fe-S-iB非晶合金的基体中加入少量Cu和 M(M=Nb,Ta,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有bcc结构的超细晶粒(D约10nm)软磁合金。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为 Fe7315Cu1Nb3Si1315B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe-M- B(M=Zr,Hf,Ta)系,即Nanoperm系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[2]。由于Co基和Ni基不易于形成K、Ks同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。 三、铁基纳米晶软磁合金的制备方法 纳米晶软磁合金的制备一般采用非晶晶化法。它是在用快淬法、雾化法、溅射法等制得非晶合金的基础上,对非晶合金在一定的条件下(等温、真空、横向或纵向磁场等)进行退火,得到含有一定颗粒大小和体积分数的纳米晶相。近年来,也有一些研究者采用高能球磨法制备纳米晶软磁合金。 四、纳米晶软磁合金的结构与性能 纳米晶软磁合金的典型成份为Fe7315Cu1Nb3Si1315B9。随着研究的不断进行,合金化元素几乎遍及整个元素周期表。从合金的化学成份在合金中的作用看,可以分为4类: (1). 铁磁性元素:Fe、Co、Ni。由于Fe基合金具有高Bs的优势,且纳米晶合金可以实现K和Ks同时为零,因而使L值很高、损耗很低,价格便宜,成为当今研究开发的中心课题。 (2). 非晶形成元素:主要有Si、B、P、C等。对于纳米晶软磁合金带材,一般都是先形成非晶带,然后通过退火使材料出现纳米晶,因而非晶化元素是基本元素。特别是B对形成非晶有利,成为几乎所有纳米晶软磁合金的构成元素,含量在5at%~15at%之间。Si也是

碳基纳米复合材料EDLC超级电容器

摘要 制造并测试了基于活性炭作为主材料电极的超级电容器。MWCNT作为添加剂添加到主体材料中以形成纳米复合材料并且确认MWCNT浓度对改善的影响,研究超级电容器的性能。使用1M TEABF4-PC溶液作为有机电解质。纳米复合材料在改善超级电容的比功率和能量密度方面不同地起作用,测试方法采用阻抗光谱、进行循环伏安法和恒电流充电- 放电测量来表征电容器。 介绍 电化学双层电容器(EDLC)的超级电容器是具有功率密度和能量密度是介于传统电容器和电池之间。随着对具有高功率的能量存储装置的需求长的耐久性增加的提高,超级电容器变得越来越重要。EDLC超级电容器与传统的电容器的区别,是其电极由多孔导体如活性炭组成,其具有巨大的表面积,并且其通过静电力累积并保持电荷/电解质界面的薄层上的电荷或非法拉效应,使得其具有巨大的电容(> 100F / g),并且具有更高的功率和更长的再循环寿命(> 100000个周期)比可充电电池。然而,到目前为止EDLC超级电容器的能量密度不是那么高。 碳质材料如碳气凝胶、粉末和碳纤维是最常用的材料作为超级电容器中的电极,因为碳可具有高表面积,化学和热稳定,成本相对低和环保。提高EDLC性能的方法包括创造新的碳纳米复合材料电极,目的是为了增加电极的导电性和表面积。 在本报告中,探索了一系列用于EDLC的碳基对称电极,使用商用的活性炭粉末作为基本活性材料,碳纳米管作为导电填料。还探讨了在混合溶剂中基于LiPF 6或Et 4 NBF 4的有机电解质的性能,其具有大于3V的电化学窗口。使用VersaSTAT MC分析仪在测试其阻抗谱,循环伏安法和恒电流充电- 放电测试。 实验步骤 1.碳电极 使用表面积为1000m 2 / g的活性炭粉末(AC)作为主体电极材料。在一系列研究中分别以0.15重量%,1重量%和7重量%的重量百分比添加多壁碳纳米管粉末(MWCNT)而没有改性。以5重量%的总固体组分添加PVDF(聚(偏二氟乙烯))作为粘合剂。碳质膜的面密度为4?5mg / cm 2。 2.制作电容器 图1 图1提供了在本研究中制造的超级电容器电池类型的图。电解质为1M Et 4 NBF 4(四氟硼酸四乙铵或TEABF 4)在PC(碳酸亚丙酯)中。盐和溶剂都来自Sigma-Aldrich,Et4NBF4纯度为99%,PC为无水,99.7%纯度。 为了组装电容器电池,切出两个碳质材料涂覆的Al的矩形条并与碳侧面对面组合,将隔膜用电解质溶液浸泡并夹在其间。因此,形成对称电极EDLC单元,其中电极重叠区域被定义为工作区域,其在所有器件中固定为2cm 2。

液压缸结构图示

创作编号:BG7531400019813488897SX 创作者:别如克* 液压缸的结构 · 液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸缸筒6、缸盖10、活塞4、活塞杆7 和导向套8 等组成;缸筒一

焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11 和防 下面对液压缸的结构具体分析。 3.2.1 缸体组件 ·

缸体组件与活塞组件形成的密封容腔承受油压作 用,因此,缸体组件要有足够的强度,较高的表面精 度可靠的密封性。 3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图 3.10 所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要筒端部有足够的壁厚,用以安装螺栓或旋入螺钉, 它是常用的一种连接形式。 (2)半环式连接(见图b),分为外半环连接和内 半环连接两种连接形式,半环连接工艺性好,连 接可靠,结构紧凑,但削弱了缸筒强度。半环连 接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式 用于要求外形尺寸小、重量轻的场合。

聚合物无机物纳米复合材料

聚合物/无机物纳米复合材料 张凌燕 牛艳萍 (武汉理工大学资源与环境工程学院,武汉,430070) E-mail:zhly@https://www.doczj.com/doc/6818034645.html,或niuyanping2004@https://www.doczj.com/doc/6818034645.html, 摘 要:本文从聚合物/无机物纳米复合材料的类型、各种制备方法及原理、优异性能及应用等方面,总结了聚合物/无机物纳米复合材料的研究进展。 关键词:聚合物/无机物纳米复合材料;增韧;表面改性 1 前 言 纳米材料是指材料二相显微结构中至少有一相的一维尺度达到纳米级尺寸(100nm以下)的材料。纳米复合材料是指2种或2种以上的吉布斯固相至少在一个方向以纳米级大小(1~100nm)复合而成的复合材料[1]。聚合物/无机物纳米复合材料(简称OINC)是以聚合物为基体(连续相)、无机物以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料[2]。按照无机物纳米粒子形态结构,OINC可分为聚合物/无机粒子纳米复合材料、聚合物/无机纤维纳米复合材料、聚合物/片层状无机物纳米复合材料。用于制备OINC的无机物包括:粘土类如滑石粉、蒙脱土、云母、水辉石等,陶瓷如SiO2、TiO2、Al2O3、AlN、ZrO2、SiC、Si3N4等,聚硅氧烷,CaCO3,分子筛,金属氧化物如V2O5、MoO3、WO3等,层状过渡金属二硫化物或硫代亚磷酸盐如MoS2、TiS2、TaS2、MPS3(M=Mn、Cd等),层状金属盐类化合物、双氢氧化物,以及碳黑、碳纤维等[3]。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物纳米复合材料具有优于相同组分常规聚合物复合材料的力学、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。 2 无机纳米粒子的增韧机理及表面修饰 2.1 增韧机理 (1)在变形中,刚性无机粒子不会产生大的伸长变形,在大的拉应力作用下,基体和无机粒子的界面部分脱粘形成空穴,使裂纹钝化,不致发展成破坏性裂缝;无机粒子的存在产生应力集中效应,引发粒子周围的树脂基体屈服(空化、银纹、剪切带)。这种界面脱粘和屈服都需要消耗更多的能量,从而起到增韧作用。 (2)由于纳米粒子的比表面积大,表面的物理和化学缺陷越多,粒子与高分子链发生物理或化学结合的机会越多,因而与基体接触面积增大,材料受冲击时,会产生更多的微开裂,吸收更多的冲击能[4]。 2.2 表面修饰 刚性无机粒子的粒径越小,与基体接触面积越大,若能均匀分布,增韧增强的效果就越 1

镍铁氧体纳米晶的制备及电磁性能研究(精)

收稿日期:2006206228 基金项目:辽宁省自然科学基金资助项目(2040189)? 作者简介:马瑞廷(1968-),男,辽宁沈阳人,东北大学博士研究生,沈阳理工大学讲师;田彦文(1946-),女,辽宁沈阳人,东北大 学教授,博士生导师? 第28卷第6期2007年6月东北大学学报(自然科学版)Journal of Northeastern University (Natural Science )Vol 128,No.6J un.2007 镍铁氧体纳米晶的制备及电磁性能研究 马瑞廷1,田彦文1,毕韶丹2,张春丽2 (1.东北大学材料与冶金学院,辽宁沈阳 110004; 2.沈阳理工大学材料科学与工程学院,辽宁沈阳 110168) 摘 要:通过高分子凝胶法制备了尖晶石型镍铁氧体(NiFe 2O 4)纳米晶?采用FT 2IR ,X 射线,TEM 和波导等方法对产物以及产物的电磁性能进行了表征?结果表明,干凝胶为无定型状态,当煅烧温度高于400℃时,形成纯相的尖晶石型纳米晶?煅烧温度为400,600和800℃时,由透射电镜照片可知粉体平均粒径分别约为8,25和40nm ,红外光谱显示金属-氧离子(M —O )键的特征吸收峰出现了红移,该峰红移23cm -1;纳米晶在8~12GHz 的测试频率范围内具有介电损耗与磁损耗,随着热处理温度的升高,镍铁氧体纳米晶的介电损耗和磁损耗明显增大?关 键 词:高分子凝胶法;纳米晶体;镍铁氧体;电磁性能;制备中图分类号:TB 383 文献标识码:A 文章编号:100523026(2007)0620847204 Preparation of N anocrystalline Nickel Ferrite and Its E lectrom agnetic Properties M A R ui 2ti ng 1 ,TIA N Y an 2wen 1 ,B I S hao 2dan 2 ,ZHA N G Chun 2li 2 (1.School of Materials &Metallurgy ,Northeastern University ,Shenyang 110004,China ;2.Materials Science &Engineering College ,Shenyang Ligong University ,Shenyang 110168,China.Corres pondent :MA Rui 2ting ,E 2mail :mrt 21118@https://www.doczj.com/doc/6818034645.html, ) Abstract :Nanocrystalline nickel ferrite was prepared by polyacrylamide gel ,taking acrylamide as monomer and N ,N 2methylenediacrylamide as lattice agent.F T 2IR spectrometer ,XRD ,TEM and waveguide were used to characterize the gel ,products and their electromagnetic properties after calcining.XRD patterns showed that the dried gel is amorphous ,the spinel nickel ferrite formed at not lower than 400℃.The grain sizes and M —O characteristic absorption bonds are dependant on heat treatment temperature.When the calcining temperatures are 400,600and 800℃,the grain sizes are 8,25and 40nm ,respectively ,as identified by TEM.The F T 2IR spectra illustrated that the M —O characteristic absorption bonds shift from 590cm -1to 613cm -1.The nanocrystalline presents not only dielectric loss but magnetic loss in the frequency range of measurement ,and both the losses of spinel 2type nanocrystalline increases obviously with increasing heat treatment temperature. K ey w ords :polyacrylamide gel ;nanocrystalline ;nickel ferrite ;electromagnetic property ;preparation 尖晶石型铁氧体的晶体结构属于立方晶系(氧原子为面心立方密堆积),它与天然矿物尖晶石MgAl 2O 4的结构相同?反向尖晶石型NiFe 2O 4纳米晶作为一种各向异性的软磁性材料,具有较高的居里温度和饱和磁化强度,这些特性源于其独特的结构,在反向尖晶石型NiFe 2O 4晶体中,Fe 3+占据四面体的位置,Ni 2+占据八面体的位 置,二者非平行旋转产生了较强的磁力矩[1]?因 此被广泛地应用在高频磁记录、磁共振装置、传感器[2]和电磁波吸收材料[3]等领域?目前,纳米晶NiFe 2O 4的制备方法主要有:共沉淀方法[4],回流 法[5]和电子脉冲法[6]等?这些方法有的可以得到较细的粉体,但对设备要求高,难以大规模生产;有的需要较高的热处理温度,且难以解决纳米粒子的团聚问题? 高分子凝胶法利用丙烯酰胺自由基聚合反

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

非晶和纳米晶合金的比较

铁基非晶合金在工频和中频领域,正在和硅钢竞争。铁基非晶合金和硅钢相比,有以下优缺点。 1)铁基非晶合金的饱和磁通密度Bs比硅钢低 但是,在同样的Bm下,铁基非晶合金的损耗比0.23mm厚的3%硅钢小。一般人认为损耗小的原因是铁基非晶合金带材厚度薄,电阻率高。这只是一个方面,更主要的原因是铁基非晶合金是非晶态,原子排列是随机的,不存在原子定向排列产生的磁晶各向异性,也不存在产生局部变形和成分偏移的晶粒边界。因此,妨碍畴壁运动和磁矩转动的能量壁垒非常小,具有前所未有的软磁性,所以磁导率高,矫顽力小,损耗低。 2)铁基非晶合金磁芯填充系数为0.84~0.86 3)铁基非晶合金磁芯的工作磁通密度 1.35T~1.40T,硅钢为1.6T~1.7T。铁基非晶合金工频变压器的重量是硅钢工频变压器的重量的130%左右。但是,即使重量重,对同样容量的工频变压器,磁芯采用铁基非晶合金的损耗,比采用硅钢的要低70%~80%。 4)考虑损耗,总的评估价为89% 假定工频变压器的负载损耗(铜损)都一样,负载率也都是50%。那么,要使硅钢工频变压器的铁损和铁基非晶合金工频变压器的一样,则硅钢变压器的重量是铁基非晶合金变压器的1?8倍。因此,国内一般人所认同的抛开变压器的损耗水平,笼统地谈论铁基非晶合金工频变压器的重量、成本和价格,是硅钢工频变压器的130%~150%,并不符合市场要求的性能价格比原则。国外提 出两种比较的方法,一种是在同样损耗的条件下,求出两种工频变压器所用的铜铁材料重量和价格,进行比较。另一种方法是对铁基非晶合金工频变压器的损耗降低瓦数,折合成货币进行补偿。每瓦空载损耗折合成5~11美元,相当于人民币42~92元。每瓦负载损耗折合成0.7~1.0美元,相当于人民币6~8.3元。例如一个50Hz,5kVA单相变压器用硅钢磁芯,报价为1700元/台;空载损耗28W,按60元人民币/W计,为1680元;负载损耗110W,按8元人民币/W计,为880元;则,总的评估价为4260元/台。用铁基非晶合金磁芯,报价为2500元/台;空载损耗6W,折合成人民币360元;负载损耗110W,折合成人民币880元,总的评估价为3740元/台。如果不考虑损耗,单计算报价,5kVA铁基非晶合金工 频变压器为硅钢工频变压器的147%。如果考虑损耗,总的评估价为89%。 5)铁基非晶合金抗电源波形畸变能力比硅钢强 现在测试工频电源变压器磁芯材料损耗,是在畸变小于2%的正弦波电压下进行的。而实际的工频电网畸变为5%。在这种情况下,铁基非晶合金损耗增加到106%,硅钢损耗增加到123%。如果在高次谐波大,畸变为75%的条件下(例如工频整流变压器),铁基非晶合金损耗增加到160%,硅钢损耗增加到300%以上。说明铁基非晶合金抗电源波形畸变能力比硅钢强。 6)铁基非晶合金的磁致伸缩系数大 是硅钢的3~5倍。因此,铁基非晶合金工频变压器的噪声为硅钢工频变压器噪声的120%,要大3~5dB。

几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究 碳基纳米材料是指分散相至少有一维小于100 nm的碳材料。分散相可以由碳原子组成,也可以由其它原子(非碳原子)组成。 到目前为止,发现的碳基纳米材料有富勒烯、碳纳米管、石墨烯、荧光碳点及其复合材料。碳基纳米材料在硬度、耐热性、光学特性、耐辐射特性、电绝缘性、导电性、耐化学药品特性、表面与界面特性等方面都比其它材料优异,可以说碳基纳米材料几乎包括了地球上所有物质所具有的特性,如最硬—最软,全吸光—全透光,绝缘体—半导体—良导体,绝热—良导热等,因此具有广泛的用途。 发展制备这些材料的新方法、新技术,研究这些材料不同的纳米结构对性质的影响,不仅有重要的理论价值,而且对能源和生命分析领域的快速发展也具有重要的实际意义。在本论文工作中,以碳基纳米材料为主体,以微波水热、溶剂热等液相合成策略为手段,从探索纳米材料的结构、表面性质与其性能的关系出发,构建功能化碳基纳米材料,以满足在能源和生命分析应用中的要求。 本论文研究工作主要包括以下几方面的内容:1.微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物及其在超级电容器中的应用本工作中我们报道了一个新颖的微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物的新方法。首先,石墨烯氧化物(GO)和3,4-乙烯二氧噻吩单体(EDOT)通过两者间的吸附作用形成GO/EDOT复合物。 然后,在微波加热条件下,GO表面吸附的EDOT单体被GO氧化聚合为聚3,4-乙烯二氧噻吩,同时GO转化为石墨烯,进而形成石墨烯/聚3,4-乙烯二氧噻吩(G/PEDOT)复合物。产物中不含过量的EDOT或GO,从而保证了复合物的纯度。 本研究还对该复合物的结构进行了表征,利用循环伏安和恒电流充放电技术

基于LDH的核壳结构纳米复合材料的研究进展

Journal of Advances in Physical Chemistry 物理化学进展, 2017, 6(1), 1-8 Published Online February 2017 in Hans. https://www.doczj.com/doc/6818034645.html,/journal/japc https://https://www.doczj.com/doc/6818034645.html,/10.12677/japc.2017.61001 文章引用: 朱亚彤, 刘东, 刘沙, 唐晓妍, 刘建强. 基于LDH 的核壳结构纳米复合材料的研究进展[J]. 物理化学进展, Research Progress of the Core-Shell Structure Nanocomposite Based on LDH Yatong Zhu, Dong Liu, Sha Liu, Xiaoyan Tang, Jianqiang Liu School of Physics, Shandong University, Jinan Shandong Received: Jan. 12th , 2017; accepted: Feb. 1st , 2017; published: Feb. 6th , 2017 Abstract Layered double hydroxide (LDH) is a novel functional material with layered structure. With all the excellent properties including diverse composition structures, synergistic effect between the components and highly controllable performance, the study of preparation and applications of the LDH-based core-shell structure nanocomposite has been widely considered for their attractive properties in recent years. At first, the common preparation methods of the LDH-based core-shell structure nanocomposite were summarized, mainly including co-precipitation, self-assembly and in situ growth methods. The advantages as well as disadvantages of these methods were also compared and analyzed. Secondly, the application status of the LDH-based core-shell nanocompo-site was focused on their applications in adsorption, catalysis, supercapacitor and biomedicine. The problems and trends of this nanocomposite were concluded and discussed finally. Keywords Layered Double Hydroxide, Core-Shell Structure, Nanocomposite 基于LDH 的核壳结构纳米复合材料的研究进展 朱亚彤,刘 东,刘 沙,唐晓妍,刘建强 山东大学,物理学院,山东 济南 收稿日期:2017年1月12日;录用日期:2017年2月1日;发布日期:2017年2月6日 摘 要 层状双金属氢氧化物(LDH)是一类具有层状结构的新型功能材料,近年来基于LDH 的核壳结构纳米复合

液压缩管机的结构及其工作原理

液压缩管机的结构及其工作原理 1液压缩管机的结构 1.1液压缩管机的主机结构 本设计为径向压块压缩式缩管机设计,所以主要介绍径向压块压缩式缩管机的结构。该缩管机主机和液压系统设计为集中组装箱体式结构,在箱体上留有可与液压站管路相连的胶管管接头插孔。箱体内可存放备用模具、常用工具及其它零配件等。图2.1为主机结构图。 该缩管机的主机为液压缸1,锥套8和活塞杆5用背帽6联接为一体,冲块9和中心套10用螺母与后定位板11联为一体,工作时液压系统的高压液体从口进入活塞腔,推动活塞杆向外伸出,通过锥套8的内锥面压迫冲块的外锥面,使模具弹性径向收缩,压缩金属接头使其产生一定量的径向塑性变形,达到金属接头与液压胶管相连接的目的。反向油口供油时,活塞杆回缩,锥套解除对冲块的压缩,冲块因弹簧弹性恢复,完成接头的一个压接循环。 图2.1液压缩管机的主机结构图 1-外缸体; 2-活塞杆;3-定位伴;4-缸套;5-活塞杆;6-背帽; 7-定位栓;8-锥套;9-冲块;10-中心套;11-定位板;12-螺帽

1.2缩管机的液压系统 为便于说明其液压系统,将其液压系统中的工作元件—主机,用机构简图的形式表示出来。图2.2为该缩管机的工作原理及液压系统图。缩管机由主机和液压站2部分组成,其中主机由缸体1,活塞杆2.锥套3及冲块5等构成;液压站由液泵9、过滤器11和液箱12等组成。为适应井下工作面作业的配套要求,液压站设计初选齿轮泵站提供液压动力。也可根据现场作业情 况,匹配其他液压站。[8] 图2.2缩管机工作原理与液压系统图 1-外缸体; 2-活塞杆;3-锥套;4-管接头;5-冲块;6-液压胶管; 7-操作阀;8-压力表;9-溢流阀;10-油泵;11-滤油器;12-油箱;13-电动机 2液压缩管机的工作原理 工作时,先将液压胶管的端头与金属管接头4套装好,插人冲块内孔预

移相器

移相器 移相器是实现相扫的关键器件,其重点参数是移相精度、带宽、功率容量、插入损耗和稳定性等指标。移相器的种类有多种,经典的移相器包括PIN二极管移相器和铁氧体移相器,新近应用的移相器有矢量调制移相器、光纤移相器、微机电(MEMS)移相器、“块移相器”和基于视频处理的数字移相。移相技术和移相器的选取主要依据雷达工作频段、相控阵天线类型、移相精度要求、插入损耗、技术成熟性和实现成本等因素综合考虑。 1.1 PIN二极管移相器 以PIN二极管为开关控制单元,控制信号的传输路径差,从而得到对应的差相移。该移相器的特点是开关时间短、体积小、重量轻、便于集成,缺点是带宽窄、功率容限小。由于受移相精度和插损的限制,目前在毫米波雷达射频移相中采用不多,多见于毫米波通信。 1.2 铁氧体移相器 通过外加直流磁场改波导内的铁氧体导磁系数,从而改变电磁波的相速,得到不同的相移。该移相器的优点是承受功率高、带宽较宽,缺点是激励功率大、开关时间长、较为笨重。在毫米波无源相控阵雷达中具有应用,但插损和体积重量限制了其应用范围。 PIN二极管移相器和铁氧体移相器通过串联,采用二进制多位态控制可以构成n位数字移相器,如n=6的最小移相值为3600/26=5.6250。数字移相量不连续,将引起天线阵面的量化误差,将会降低天线增益、增大天线副瓣电平、使主瓣波束偏移。合理选择和设计移相器的位数,可控制量化误差的影响,满足系统指标的要求。 1.3 矢量调制移相器 矢量调制移相器通过信号正交分解的2个分量和其反相分量共4个信号分量进行幅度调制,根据相移量的大小分选出两路相加,从而获得满足需要相移的输出信号。矢量调制移相器为有源器件,适合于MMIC集成于T/R组件,可同时提供4种相位状态,在获得相移的同时也获得了幅度调制。矢量调制器在微波频段已有成熟产品,毫米波频段的矢量调制器已有试验样件。目前,美国Triquint公司采用0.5 um PHEMT GaAs技术已经开发出Ka频段、相对线性相位偏移±10、插入损耗10dB的毫米波矢量调制器。因此,矢量调制移相器在毫米波相控阵雷达中将具有良好的应用前景。 1.4 微机电(MEMS)移相器 微机电系统是采用集成电路批量生产工艺在半导体材料上制作的微型器件与器件阵列,它应用静电场、磁场使MEMS微型结构完成吸动、移动或转动,实现要求的功能。采用MEMS 技术可以完成移相器的相移功能,实现宽带相控阵雷达的实时延迟线和时间延迟单元。MEMS移相器与传统FET、PIN相比,有工作频率带宽、损耗小、驱动功率小(1 uW)、成本低、超小型化、易于与IC或MMIC集成的特点。目前国外在研的MEMS移相器主要有两类:一是相位连续可调的分布式移相器,缺点是不易控制移相量、损耗,控制电压的起伏会引起相位噪声;另一类是数字移相器,特点是可靠性高,可精确控制相移量,缺点是由于材料等原因,不能兼顾性能,使用频率有限。目前MEMS移相器研究主要集中在x频段、K频段。国外研制的低损耗Ka频段四位数字移相器样件在35±1GHz频率,平均插入损耗小于2.25 dB。 1.5 整体移相器(Bulk Phase Shifter) 也称为“块移相器”,依靠在方位或俯仰向的M或N个独立移相器使整个线阵获得相同的移相量,对M×N个单元的面阵仅需要M+N个移相器便可完成二维相控扫描,明显降低了移相器数量,但无法实施对单个阵元的相位控制。铁电透镜和Randant透镜是实现整体移相的主要方法。前者利用导电平板间铁电材料的介电常数取决于加在板间直流电压的原理,控制板间多组直流偏压,改变通过该区域多组信号的相位,达到对所有天线单元的同时移相。研制可承受高功率并具有低损耗的铁电材料是铁电体移相器的关键。Randant透镜由多个平行的导电板组成,在每对导电板之间接人多层PIN二极管(或MEMS开关)。改变相邻导电板

【CN109772419A】在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910178756.8 (22)申请日 2019.03.11 (71)申请人 辽宁石油化工大学 地址 113001 辽宁省抚顺市望花区丹东路 西段1号 (72)发明人 杨占旭 王崇泽 谭文 崔博洋  (74)专利代理机构 沈阳亚泰专利商标代理有限 公司 21107 代理人 郭元艺 (51)Int.Cl. B01J 27/24(2006.01) B01J 37/08(2006.01) B82Y 30/00(2011.01) B82Y 40/00(2011.01) C01B 3/04(2006.01) (54)发明名称 在限域空间构筑氮化碳基超薄纳米片复合 材料的制备方法 (57)摘要 本发明属于光催化领域,尤其涉及一种在限 域空间构筑氮化碳基超薄纳米片复合材料的制 备方法,按如下步骤实施:(1)将氰胺与蛭石混 合,程序升温至300~400℃,再缓慢冷却至室温, 得到氰胺插层蛭石前体:(2)将所述氰胺插层蛭 石前体与有机溶液搅拌反应,抽滤洗涤后烘干; 在空气中加热至500~650℃,再缓慢冷却至室 温;(3)将所得产物与强酸反应,抽滤洗涤滤饼后 烘干。本发明成本低,易于工业化生产,目的产物 分散性好且具有优良光催化性能。权利要求书1页 说明书4页 附图3页CN 109772419 A 2019.05.21 C N 109772419 A

权 利 要 求 书1/1页CN 109772419 A 1.一种在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于,按如下步骤实施: (1)将氰胺与蛭石混合,程序升温至300~400℃,再缓慢冷却至室温,得到氰胺插层蛭石前体; (2)将步骤(1)所述氰胺插层蛭石前体与有机溶液搅拌反应,抽滤洗涤后烘干;在空气中加热至500~650℃,再缓慢冷却至室温; (3)将步骤(2)所得产物与强酸反应,抽滤洗涤滤饼后烘干。 2.根据权利要求1所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(1)中,氰胺与蛭石混合均匀后置于氧化铝坩埚中,在空气中以1~10℃/min加热至300~400℃,维持1~4h后,再缓慢冷却至室温。 3.根据权利要求2所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(2)中,将氰胺插层蛭石前体与1~40mL有机溶液在40~90℃下搅拌反应2~60h,抽滤洗涤后40~80℃烘干;在空气中加热至500~650℃,维持1~4h后,再缓慢冷却至室温。 4.根据权利要求3所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(3)中,将所得产物与强酸在40~90℃下搅拌反应2~60 h,抽滤并用去离子水洗涤滤饼后40~80℃烘干。 5.根据权利要求4所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(1)中,所述氰胺为单氰胺、二氢二氨或三聚氰胺中的一种或两种以上的混合物。 6.根据权利要求5所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述氰胺与蛭石的质量比为1:1~20。 7.根据权利要求6所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(2)中,有机溶液为醛溶剂。 8.根据权利要求7所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述醛溶剂为甲醛溶剂、乙醛溶剂或丁醛溶剂中的一种或两种以上的混合物。 9.根据权利要求8所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:在空气中加热升温速率为1~10 ℃/min。 10.根据权利要求9所述的在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法,其特征在于:所述步骤(3)中,强酸为盐酸、硫酸或氢氟酸中的一种或两种以上的混合物。 2

相关主题
文本预览
相关文档 最新文档