当前位置:文档之家› 信号口浪涌防护电路设计

信号口浪涌防护电路设计

信号口浪涌防护电路设计
信号口浪涌防护电路设计

信号口浪涌防护电路设计

通讯设备的外连线和接口线都有可能遭受雷击(直接雷击或感应雷击),比如交流供电线、用户线、ISDN接口线、中继线、天馈线等,所以这些外连线和接口线均应采取雷击保护措施。

设计信号口防雷电路应注意以下几点:

1、防雷电路的输出残压值必须比被防护电路自身能够耐受的过电压峰值低,并有

一定裕量。

2、防雷电路应有足够的冲击通流能力和响应速度。

3、信号防雷电路应满足相应接口信号传输速率及带宽的需求,且接口与被保护设

备兼容。

4、信号防雷电路要考虑阻抗匹配的问题。

5、信号防雷电路的插损应满足通信系统的要求。

6、对于信号回路的峰值电压防护电路不应动作,通常在信号回路中,防护电路的

动作电压是信号回路的峰值电压的1.3~1.6倍。

1.1网口防雷电路

网口的防雷可以采用两种思路:一种思路是要给雷电电流以泄放通路,把高压在变压器之前泄放掉,尽可能减少对变压器影响,同时注意减少共模过电压转为差模过电压的可能性。另一种思路是利用变压器的绝缘耐压,通过良好的器件选型与PCB设计将高压隔离在变压器的初级,从而实现对接口的隔离保护。下面的室外走线网口防雷电路和室内走线网口防雷电路就分别采用的是这两种思路。

1.1.1室外走线网口防雷电路

当有可能室外走线时,端口的防护等级要求较高,防护电路可以按图1设计。

a

b

图1 室外走线网口防护电路

图1a 给出的是室外走线网口防护电路的基本原理图,从图中可以看出该电路的结构与室外走线E1口防雷电路类似。共模防护通过气体放电管实现,差模防护通过气体放电管和TVS 管组成的二级防护电路实现。图中G1和G2是三极气体放电管,型号是3R097CXA ,它可以同时起到两信号线间的差模保护和两线对地的共模保护效果。中间的退耦选用2.2Ω/2W 电阻,使前后级防护电路能够相互配合,电阻值在保证信号传输的前提下尽可能往大选取,防雷性能会更好,但电阻值不能小于2.2Ω。后级防护用的TVS 管,因为网口传输速率高,在网口防雷电路中应用的组合式TVS 管需要具有更低的结电容,这里推荐的器件型号为SLVU2.8-4。图

1b TX RX ,低节电容

,低节电容

就是采用上述器件网口部分的详细原理图。

三极气体放电管的中间一极接保护地PGND,要保证设备的工作地GND和保护地PGND通过PCB走线在母板或通过电缆在结构体上汇合(不能通过0Ω电阻或电容),这样才能减小GND 和PGND的电位差,使防雷电路发挥保护作用。

电路设计需要注意RJ45接头到三极气体放电管的PCB走线加粗到40mil,走线布在TOP层或BOTTOM层。若单层不能布这么粗的线,可采取两层或三层走线的方式来满足走线的宽度。退耦电阻到变压器的PCB走线建议采用15mil线宽。

该防雷电路的插入损耗小于0.3dB,对100M以太网口的传输信号质量影响比较小。

1.1.2室内走线网口防雷电路

当只在室内走线时,防护要求较低,因此防雷电路可以简化设计,如图2所示,图2a 是室内走线网口防护电路的基本原理图,图2b是防护器件选用SLVU2.8-4时网口部分的详细原理图。

,低节电容

a

b

图2 室内走线网口防护电路

RJ45接头的以太网信号电缆是平衡双绞线,感应的雷电过电压以共模为主,如果能够对过电压进行有效的防护,差模的防护选用小量级的器件就可以了,通常可以选用SLVU2.8-4,它可以达到差模0.5kV(1.2/50us)的防护能力,但是当产品目标包括北美市场时,差模防护器件推荐选用LC03-3.3,它可以满足NEBS认证的需求。

我们从共模防护的角度对图1和图2这两种电路做一下比较。图1的电路采用气体放电管实现共模的防护,当端口处有共模过电压产生时,通过击穿气体放电管转化成过电流并泄放,从而达到保护的目的。而图2中的网口防护电路只设计了差模的防护电路,没有设计共模的防护电路,它在端口的共模防护上采用就是我们前面说的隔离保护的思路,它利用网口变压器的隔离特性实现端口的共模防护。当端口处有过电压产生时,这个过电压会加到网口变压器的初级,由于变压器有一定的隔离特性,只要过电压不超过变压器初级与次级的耐压能力而被击穿,过电压会完全被隔离在初级侧,从而对次级侧基本不造成影响,达到端口保护的目的。

从上述原理可以看出,图2这种电路的共模防护主要靠变压器前级的PCB走线以及变压器的绝缘耐压实现,因此要严格注意器件的选型和PCB的设计。

首先,在以太网口电路设计时应树立高压线路和低压线路分开的意识。其中变压器接外

线侧的以太网差分信号线、Bob-Smitch电路是直接连接到RJ45接头上的,容易引入外界的过电压(如雷电感应等),是属于高压信号线。而指示灯控制线、电源、GND是由系统内提供,属于低压线路。

根据网口连接器不同,网口电路分为带灯和不带灯两种,其中尤以带灯连接器的网口防雷问题更为突出,因此下面以网口带灯电路为例具体说明如何区分高压线路与低压线路。

网口带灯的典型电路如下图所示:

图3 网口部分电路组成

当网线上遭受感应雷击时,会在8根网线上同时产生过电压。从安全的角度分析,应把网口部分分为高压区和低压区,如上图所示,虚线框内即为高压区。因此网线感应雷电时主要在高压区有比较高的过电压。但是,在高压区仅有8根网线和相连的网络为高压线,而指示灯驱动线、3.3V供电电源、连接器外壳地PGND为低压线,网口电路Bob-Smith电路中匹配电阻属于高压,指示灯限流电阻属于低压范围,变压器线缆侧中间抽头电容一端为高压端,接PGND的一端为低压端。

其次,网口防雷电路在器件选型和PCB设计过程中要注意以下几点:

1、为了保证共模隔离耐压的承受能力,变压器需要满足初级和次级之间的

交流绝缘耐压不小于AC1500V的指标。

2、优先选择不带灯的RJ45,要引灯的话,建议采用导光柱技术在芯片侧将

指示灯的光线引到面板上,避免指示灯控制信号穿越高压信号线和

Bob-Smitch电路所在的区域。

3、指示灯控制电路的限流电阻应放在控制芯片侧,位置靠近控制芯片,防

止过电压直接对控制芯片造成冲击。

4、以太网信号线按照差分线走线规则,保证阻抗匹配,并且一对差分线的

长度尽量一样长。

5、如果变压器前级(靠RJ45接头侧)有中间抽头并且采用Bob-Smith电路,

即75Ω电阻加一个1000pF的接PGND的电容。建议电容选取耐压大于

DC2000V,电阻功率建议选择1/10W的单个电阻,不宜采用排阻。

6、一个以太网接口采用一个Bob-Smith电路,避免将多个以太网接口的

Bob-Smith电路复接在一起。

7、对于PCB层数大于6层的单板,由于相邻层的绝缘材料小于12mil,因此高

压线和低压线不应布在相邻层,更不应交叉或近距离并行走线。

8、由于通过变压器的隔离特性完成共模防护,所以高压信号线(差分线和

Bob-Smith电路走线)和其它信号线(指示灯控制线)、电源线、地线之

间应该保证足够的绝缘,不存在意外的放电途径。

最后,要达到高压区与低压区之间有效的隔离,就要重视二者之间的PCB走线设计。在高压区,带高压的可能有:连接器管脚、布线、过孔、电阻焊盘、电容焊盘。带低压的可能有:布线、过孔、电阻焊盘、螺钉。对于相同的绝缘距离,耐压能力依次为接地螺钉 < 电容、电阻焊盘 < 走线过孔 < 表层走线 < 内层走线,因此当共模防护指标一定时,高压部分与低压部分的绝缘距离应该为接地螺钉 > 电容、电阻焊盘 > 走线过孔 > 表层走线 > 内层走线。这是因为螺钉整个为金属体,暴露面积比较大,容易成为放电通路。电容和电阻焊接两端表面为金属,同时由于形状为长方体,有棱角,很容易形成尖端放电。过孔在网口部分有很多,表面是亮锡的,也容易产生击穿放电,但与电阻和电容焊接两端相比较,金属面积相对就小一些。PCB板的表层走线涂有绝缘绿油,内层的走线有介质包围,相对上面几种,耐压能力就应该高一点。

在设计中,根据具体产品要求的抗浪涌等级,利用表7-1中的数据,就可以推算出PCB 设计需要控制的各种绝缘距离。表7-1给出了在浪涌防护等级是4kV的时候,PCB设计要达到的安全绝缘距离。

表1 PCB设计安全绝缘距离数据(按照4KV耐冲击进行计算)

综上所述,采用图2的防护电路,通过良好的器件选型和PCB设计,可以实现共模2kV (1.2/50us,最高可达4kV),差模0.5kV(1.2/50us)的防护能力。它可以应用于绝大多数室内走线的情况,特别是对于接入和终端设备,在实际使用中以太网线不采用屏蔽电缆,而且安装使用长度大于50米,在网口的防护电路设计过程中宜对以上问题加以重视。

对于网口的防护,除了采用以上的图1和图2中的两种电路外,还有利用RJ45接头管脚前端放电设计、利用变压器中心抽头空气放电设计和利用变压器中心抽头采用放电管放电设计等防护方式,特点均是利用绝缘放电实现防护、成本低、PCB占用空间小。

SFU&HGU网口共模保护

变压器隔离高压电容 SMITH电路走线20mil宽

MDU网口共模保护

线路侧中心抽头对保护地加压敏电阻或放电管

线路侧网线加三端子放电管

网口差模保护

MDU:线路侧GDT+电路侧TVS

SFU&HGU:电路侧TVS

中国电信要求:

MDU设备电源口应具备4KV(差模和共模)防护能力;用户端口应提供1.5KV(差模和共模)防护能力。

SFU/HGU设备的电源端口应具备4KV(差模和共模)防护能力;用户接口应具备0.5KV

(差模和共模)防护能力。

对差模浪涌,不外加保护就依赖于网络接口器件本身的固有防护能力不同的PHY芯片

或SWITCH芯片本身固有的防护能力不同,不能一概而论,有些需要加,有些不需要,需要验证的。

从测试实践中得知:

RTL8204B,不加差模保护的TVS,可以通过1000V、 42欧姆、1.2/50波形浪涌测试RTL8114,则必须加BV03CW,才可以通过1000V、 42欧姆、 1.2/50波形浪涌测试

B50612不加TVS只能过500V,要过1000V需要加TVS:BV03CW

SD5115H, 不加TVS只靠自己的内在保护不能达到500V差模防护,必须加BV03C才能过500V,要过1000V,必须加BV03CL

BCM68380/BCM68380F/BCM68385,需要加BV03CW才能通过差模500V测试。

BV03C 寄生电容较大,只能用于FE;BV03CW用于GE;现已统一采用BV03CW

BV03CL是350W的,与150W的BV03C和BV03CW封装一样,但还没有料号。

网口共模浪涌测试,一般是8线同时对地;但K.21里规定是单线分别对地测试,同时对地还是分别对地测试共模,对普通网口没有差异,对POE有差异,POE防护设计时需要注意这一点。

灯线隔离问题

带灯的RJ45,灯线走线远离放电管或压敏电阻,远离网线;先保护后滤波

1.2用户口防雷电路

1.2.1模拟用户口(Z口)防雷电路

1.2.1.1有配线架一级保护

对于局端设备,一般前面有配线架的一级保护,使用时向线路输出馈电和铃流信号,选用保护器件的动作电压要考虑馈电和铃流有效值的叠加,同时要满足电力线碰触试验的要求,接口防护电路可参照图3进行设计。

图3 有一级保护的模拟用户口防护电路

PTC采用55Ω的值,放在电路前面用于过流保护。RV是击穿电压为220V的压敏电阻,进行共模保护,压敏电阻要有一定的通流能力,一般选直径为Φ7的器件,能抵抗电力线碰触时的短时过电流(PTC动作之前)。VD用于对音频接口的保护,采用TSS管Tisp61089DR,该芯片为击穿电压可控制TSS管,一般采用馈电电压来作为TSS管的触发参考电平。该防护电路可以满足ITU-T K.20标准的测试指标要求。

1.2.1.2无配线架一级保护

对于远端小型网络设备或终端设备,通常情况前面没有配线架的一级保护,使用时接受局端发送过来的馈电和铃流,此时防雷量级要大,同时也要满足电力线碰触的测试要求,防护电路可以按照图4和图5设计。

(1)使用时向线路输出馈电和铃流信号,接口防护电路可参照图7-18进行设计。

图4 无一级保护的模拟用户口防护电路(向线路输出馈电和铃流信号)由于PTC耐冲击过电压和过电流能力不高,因此此时不能将PTC放在电路的最前面。电路的前级G1可以采用通流能力10kA(8/20us),击穿电压较高的三极气体放电管,也可采用三只直流击穿电压为360V的压敏电阻S14K230进行差模和共模保护。选用比较高击穿电压的保护器件,主要是确保在电力线碰触(最大230Vac)时,过压保护器件不应动作,同时也应考虑保护器件的离散性,而通常气体放电管具有较大的离散性,其波动最高可达到器件手册给出的正常参数的30%。采用放电管的优点是占用PCB板面积小,缺点是残压大,而采用压敏

电阻正好相反。 PTC采用55Ω的值。 VD用于对音频接口的保护,采用TSS管Tisp61089DR,该芯片为击穿电压可控制TSS管,一般采用馈电电压作为TSS管的触发电平。该电路可以满足YD5098-2001标准的3KA(8/20us)冲击电流要求。

(2)使用时接受局端发送过来的馈电和铃流,接口防护电路可参照图7-19进行设计。

图5 无一级保护的模拟用户口防护电路(接受局端发送过来的馈电和铃流)对于设备有保护接地端子,需要考虑差模、共模的防护;若设备是不导电的塑料外壳,没有保护接地端子,共模的绝缘耐压很高,此时只需考虑差模保护。

电路的前级G1可以采用通流能力10kA(8/20us),击穿电压较高的三极气体放电管,也可采用三只击穿电压为360V的压敏电阻S14K230进行差模和共模保护。采用放电管的优点是占用PCB板面积小,缺点是差模残压大,而采用压敏电阻正好相反。 PTC采用10Ω的值。后级RV采用击穿电压为82V的压敏电阻,进行差模保护(铃流检测电路和信号电路是通过摘挂机开关分开的,铃流不会影响后级保护器件动作),该位置的保护器件也可以采用TSS管。该电路可以满足YD5098-2001标准的3KA(8/20us)冲击电流要求,同时也能达到ITU-T K.21标准的测试指标要求。

1.2.2数字用户口(U接口)防雷电路

1.2.2.1有配线架一级保护

对于局端设备,一般前面有配线架的一级保护,使用时向线路输出远供电压,选用保护器件的动作电压要考虑远供的电压要求,同时要满足电力线碰触试验的要求,此时接口的保护可以采用图6所示的电路。

a

b

图6 有一级保护的数字用户口防护电路

PTC放在电路前面用于过流保护。耦合器之前采用TSS管TPI1201IN,该芯片集成了三个TSS管,具有差模和共模的保护功能。耦合器之后接口芯片之前采用TVS稳压二极管(如PSOT05C)进行保护(图a),也可以采用上下拉开关二极管来进行保护(图b)。该电路可以满足ITU-T K.20标准的测试指标要求。

1.2.2.2无配线架一级保护

对于远端小型网络设备或终端设备,通常情况前面没有配线架的一级保护,使用时接受局端发送过来的远供,此时防雷量级要大,同时也要满足电力线碰触的测试要求。接口防护电路应可参照图7进行设计。

图7 无一级保护的数字用户口防护电路

对于设备有保护接地端子,需要考虑差模、共模的防护;若设备是不导电的塑料外壳,没有保护接地端子,共模的绝缘耐压很高,此时只需考虑差模保护。

耦合器之前的前级电路的前级G1可以采用通流能力10kA(8/20us),击穿电压较高的三极气体放电管,也可采用三只击穿电压为360V的压敏电阻S14K230进行差模和共模保护。采用放电管的优点是占用PCB板面积小,缺点是差模残压大,而采用压敏电阻正好相反。后级采用TSS管TPI1201IN,该芯片集成了三个TSS管,具有差模和共模的保护功能,耦合器之后采用TVS管(如PSOT05C)进行保护,也可以采用上下拉开关二极管来进行保护。该电路可以满足YD5098-2001标准的3KA(8/20us)冲击电流要求。

1.2.3ADSL口防雷电路

1.2.3.1有配线架一级保护

对于局端设备,一般前面有配线架(MDF)的一级保护,与模拟用户口(POTS)共同使用一对平衡双绞线,选用保护器件的动作电压要考虑模拟用户口输出的馈电和铃流有效值的叠加,同时要满足电力线碰触试验的要求,此时接口的保护可以采用图8所示的电路。

图8 有一级保护的ADSL口防护电路

PTC采用0.8~2Ω的值,主要是考虑降低PTC的阻值对ADSL信号的衰减。耦合器之前采用三只TSS管TISP4350H3BJR,进行差模和共模保护。由于耦合器部分是带有滤波器的,能有效滤除雷击的低频能量,因此耦合器之后接口芯片之前可以不用保护器件,当然也可以采用上下拉开关二极管进行保护。该电路可以满足ITU-T K.20标准的测试指标要求。

1.2.3.2无配线架一级保护

对于远端小型网络设备或终端设备,通常情况前面没有配线架的一级保护,使用时接受局端发送过来的馈电和铃流信号,此时防雷量级要大,同时也要满足电力线碰触的测试要求。接口防护电路应可参照图9进行设计。

图9 无一级保护的ADSL口防护电路

对于设备有保护接地端子,需要考虑差模、共模的防护;若设备是不导电的塑料外壳,没有保护接地端子,共模的绝缘耐压很高,此时只需考虑差模保护。

最前级电路的前级G1可以采用通流能力10kA(8/20us),击穿电压较高的三极气体放电管,不能采用压敏电阻,这主要是压敏电阻的结电容比较大,会影响ADSL的信号质量。 PTC 采用0.8~2Ω的值。耦合器之前采用三只TSS管TISP4350H3BJR,进行差模和共模保护。后级接口芯片可以采用上下拉开关二极管进行保护。该电路可以满足YD5098-2001标准的3KA (8/20us)冲击电流要求。

1.2.4VDSL口防雷电路

1.2.4.1有配线架一级保护

对于局端设备,一般前面有配线架(MDF)的一级保护,与模拟用户口(POTS)共同使用一对平衡双绞线,选用保护器件的动作电压要考虑模拟用户口输出的馈电和铃流有效值的叠加,同时要满足电力线碰触试验的要求。接口防护电路应按照图10进行设计。

图10 有一级保护的VDSL口防护电路

耦合器之前采用两只TSS管TISP4350H3BJR进行共模保护。由于采用的TSS管结电容约为35pF左右,对VDSL信号来讲电容稍高,同时共模防护电路能满足差模过电压不会造成设备损坏,因此在耦合器前级没有加上差模保护的TSS管。由于耦合器部分是带有滤波器的,能有效滤除雷击的低频能量,因此耦合器之后接口芯片之前采用通流量相对小、结电容相对小的TVS管SM16LC05C-T进行差模保护,当然也可以采用上下拉开关二极管进行保护。 PTC采用0.8~2Ω的值,主要是考虑降低PTC的阻值对VDSL信号的衰减。该电路可以满足ITU-T K.20标准的测试指标要求。

1.2.4.2无配线架一级保护

对于远端小型网络设备或终端设备,通常情况前面没有配线架的一级保护,使用时接受局端发送过来的馈电和铃流信号,此时防雷量级要大,同时也要满足电力线碰触的测试要求。接口防护电路应按照图11进行设计。

图11 无一级保护的VDSL口防护电路

对于设备有保护接地端子,需要考虑差模、共模的防护;若设备是不导电的塑料外壳,

没有保护接地端子,共模的绝缘耐压很高,此时只需考虑差模保护。

最前级G1可以采用通流能力10kA(8/20us),击穿电压较高的三极气体放电管,不能采用压敏电阻,这主要是压敏电阻的结电容比较大,会影响VDSL的信号质量。耦合器之前采用两只TSS管TISP4350H3BJR,进行共模保护。耦合器之后接口芯片之前采用TVS管PSOT05LC 或SM16LC05C-T进行差模保护,也可以采用上下拉开关二极管进行保护。PTC采用0.8~2Ω的值。该电路可以满足YD5098-2001标准的3KA(8/20us)冲击电流要求。

1.2.5G.SHDSL口防雷电路

1.2.5.1有配线架一级保护

对于局端设备,一般前面有配线架(MDF)的一级保护,使用时向线路输出远供电压,选用保护器件的动作电压要考虑远供电压要求,同时要满足电力线碰触试验的要求。此时接口的保护可以采用图12所示的电路。

图12 有一级保护的G.SHDSL口防护电路

耦合器之前采用三只TSS管SMP100LC-160,进行差模和共模的保护。耦合器之后接口芯片之前采用TVS管PSOT05C进行保护,也可以采用上下拉二极管来进行保护。 PTC采用10Ω的值,放在电路前面用于过流保护。该电路可以满足ITU-T K.20标准的测试指标要求。

1.2.5.2无配线架一级保护

对于远端小型网络设备或终端设备,通常情况前面没有配线架的一级保护,使用时接受局端发送过来的远供,此时防雷量级要大,同时也要满足电力线碰触的测试要求。接口防护电路应可参照图7-27进行设计。

图13 无一级保护的G.SHDSL口防护电路

对于设备有保护接地端子,需要考虑差模、共模的防护;若设备是不导电的塑料外壳,没有保护接地端子,共模的绝缘耐压很高,此时只需考虑差模保护。

最前级G1可以采用通流能力10kA(8/20us),击穿电压较高的三极气体放电管,不能采用压敏电阻,这主要是压敏电阻的结电容比较大,会影响G.SHDSL的信号质量。耦合器之前采用三只TSS管SMP100LC-160,进行差模和共模的保护。耦合器之后采用TVS管PSOT05C进行保护,也可以采用上下拉二极管来进行保护。PTC采用10Ω的值。该电路可以满足YD5098-2001标准的3KA(8/20us)冲击电流要求。

完整版信号口浪涌防护电路设计

信号口浪涌防护电路设计 通讯设备的外连线和接口线都有可能遭受雷击(直接雷击或感应雷击),比如交流供电线、用户线、ISDN接口线、中继线、天馈线等,所以这些外连线和接口线均应采取雷击保护措施。 设计信号口防雷电路应注意以下几点: 1、防雷电路的输出残压值必须比被防护电路自身能够耐受的过电压峰值低,并有一定裕量。 2、防雷电路应有足够的冲击通流能力和响应速度。 3、信号防雷电路应满足相应接口信号传输速率及带宽的需求,且接口与被保护设备兼容。 4、信号防雷电路要考虑阻抗匹配的问题。 5、信号防雷电路的插损应满足通信系统的要求。 6、对于信号回路的峰值电压防护电路不应动作,通常在信号回路中,防护电路的动作电压是信号回路的峰值电压的1.3~1.6倍。 1.1网口防雷电路 网口的防雷可以采用两种思路:一种思路是要给雷电电流以泄放通路,把高压在变压器之前泄放掉,尽可能减少对变压器影响,同时注意减少共模过电压转为差模过电压的可能性。另一种思路是利用变压器的绝缘耐压,通过良好的器件选型与PCB设计将高压隔离在变压器的初级,从而实现对接口的隔离保护。下面的室外走线网口防雷电路和室内走线网口防雷电路就分别采用的是这两种思路。 1.1.1室外走线网口防雷电路 设计。1当有可能室外走线时,端口的防护等级要求较高,防护电路可以按图 R1TX组合式G1PE,低节电容TVS R2 R3组合式RXG2PE,低节电容TVS R4a 变/22.23R097CXTXUNUSESLVU2.8-UNUSE10/10TXTXENTERNERX PH RXUNUSETXUNUSERX RJ47777RXVCVCCGND b 1 室外走线网口防护电路图从图中可以看出该电路的结构与室给出的是室外走线网口防护电路的基本原理图,图1aTVS口防雷电路类似。共模防护通过气体放电管实现,差模防护通过气体放电管和外走线E1它可以同时是三极气体放电管,,型号是3R097CXAG1管组成的二级防护电路实现。图中和G2使电阻,/2W起到两信号线间的差模保护和两线对地的共模保护效果。中间的退耦选用2.2Ω防雷性能电阻值在保证信号传输的前提下尽可能往大选取,前后级防护电路能够相互配合,因为网口传输速率高,在网口防雷TVS后级防护用的管,Ω。会更好,但电阻值不能小于2.21b图。SLVU2.8-4这里推荐的器件型号为管需要具有更低的结电容,TVS电路中应用的组合式 就是采用上述器件网口部分的详细原理图。 三极气体放电管的中间一极接保护地PGND,要保证设备的工作地GND和保护地PGND通过PCB走线在母板或通过电缆在结构体上汇合(不能通过0Ω电阻或电容),这样才能减小GND和PGND的电位差,使防雷电路发挥保护作用。 电路设计需要注意RJ45接头到三极气体放电管的PCB走线加粗到40mil,走线布在TOP层或BOTTOM层。若单层不能布这么粗的线,可采取两层或三层走线的方式来满足走线的宽度。退耦

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

浪涌保护器的安装

浪涌保护器的有关知识和安装 电涌保护器(SPD)工作原理和结构 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 一、SPD的分类 1、按工作原理分: 1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。 2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。 3.分流型或扼流型 分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。 扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。按用途分: (1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。 (2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。 二、SPD的基本元器件及其工作原理 1.放电间隙(又称保护间隙): 它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

浪涌保护器的安装

欢迎阅读 浪涌保护器的有关知识和安装 电涌保护器(SPD )工作原理和结构 电涌保护器(SurgeprotectionDevice )是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。 11.2.3.(1.过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F 作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管: 它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar )的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,

气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF) 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压) 在交流条件下使用:Udc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻: 它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压 , ; Ub 4. 9 ( ( ( (4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。 (5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。(6)响应时间:10-11s 5.扼流线圈:扼流线圈是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作

信号发生器的设计实现

电子电路综合设计 总结报告 设计选题 ——信号发生器的设计实现 姓名:*** 学号:*** 班级:*** 指导老师:*** 2012

摘要 本综合实验利用555芯片、CD4518、MF10和LM324等集成电路来产生各种信号的数据,利用555芯片与电阻、电容组成无稳态多谐振荡电路,其产生脉冲信号由CD4518做分频实现方波信号,再经低通滤波成为正弦信号,再有积分电路变为锯齿波。此所形成的信号发生器,信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。在此过程中,综合的运用多科学相关知识进行了初步工程设计。

设计选题: 信号发生器的设计实现 设计任务要求: 信号发生器形成的信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T 或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。 正文 方案设计与论证 做本设计时考虑了三种设计方案,具体如下: 方案一 实现首先由单片机通过I/O输出波形的数字信号,之后DA变换器接受数字信号后将其变换为模拟信号,再由运算放大器将DA输出的信号进行放大。利用单片机的I/O接收按键信号,实现波形变换、频率转换功能。

基本设计原理框图(图1) 时钟电路 系统的时钟采用内部时钟产生的方式。单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。晶振频率为11.0592MHz,两个配合晶振的电容为33pF。 复位电路 复位电路通常采用上电自动复位的方式。上电自动复位是通过外部复位电路的电容充电来实现的。 程序下载电路 STC89C51系列单片机支持ISP程序下载,为此,需要为系统设计ISP下载电路。系统采用MAX232来实现单片机的I/O口电平与RS232接口电平之间的转换,从而使系统与计算机串行接口直接通信,实现程序下载。 方案一的特点: 方案一实现系统既涉及到单片机及DA、运放的硬件系统设计,

浪涌防护

电子设备的浪涌防护 浪涌 浪涌顾名思义就是瞬间出现超出稳定值的峰值,它包括浪涌电压和浪涌电流。 浪涌电压是指的超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲。可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。 浪涌电流是指电源接通瞬间或是在电路出现异常情况下产生的远大于稳态电流的峰值电流或过载电流。 在电子设计中,浪涌主要指的是电源(只是主要指电源)刚开通的那一瞬息产生的强力脉冲,由于电路本身的非线性有可能高于电源本身的脉冲;或者由于电源或电路中其它部分受到本身或外来尖脉冲干扰叫做浪涌.它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等等. 而浪涌保护就是利用非线性元器件对高频(浪涌)的敏感设计的保护电路,简单而常用的是并联大小电容和串联电感. 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。供电系统浪涌的产生 供电系统浪涌的来源分为外部(雷电原因)和内部(电气设备启停和故障等)。 外部原因: 雷击对地闪电可能以两种途径作用在低压供电系统上: (1)直接雷击:雷电放电直接击中电力系统的部件,注入很大的脉冲电流。发生的概率相对较低。 (2)间接雷击:雷电放电击中设备附近的大地,在电力线上感应中等程度的电流和电压。 直接雷击是最严重的事件,尤其是如果雷击击中靠近用户进线口架空输电线。在发生这些事件时,架空输电线电压将上升到几十万伏特,通常引起绝缘闪络。雷电电流在电力线上传输的距离为一公里或更远,在雷击点附近的峰值电流可达 100kA或以上。在用户进线口处低压线路的电流每相可达到5kA到10kA。在雷电活动频繁的区域,电力设施每年可能有好几次遭受雷电直击事件引起严重雷电电流。而对于采用地下电力电缆供电或在雷电活动不频繁的地区,上述事件是很少发生的。 间接雷击和内部浪涌发生的概率较高,绝大部分的用电设备损坏与其有关。所以电源防浪涌的重点是对这部分浪涌能量的吸收和抑制。 内部原因: 内部浪涌发生的原因同供电系统内部的设备启停和供电网络运行的故障有关:供电系统内部由于大功率设备的启停、线路故障、投切动作和变频设备的运行等原因,都会带来内部浪涌,给用电设备带来不利影响。特别是计算机、通讯等微电子设备带来致命的冲击。即便是没有造成永久的设备损坏,但系统运行的异常和

一种新型信号调理电路的设计

一种新型信号调理电路的设计 娄莹1,王雪洁2 (1鞍山科技大学电子信息工程学院,辽宁鞍山114044;2浙江大学城市学院信息与 电子学院,杭州310015) 摘要:介绍一种能对各种不同的标准信号、非标准信号进行采集的通用电路。采用一种很新颖的设计方法,在不改变硬件情况下,使用软件进行简单的设定,通过单片机完成对光继电器的控制及数字电位器的调节从而实现对不同信号的采集。 关键词:单片机;光继电器;数字电位器 中图分类号:TP212文献标识码:B文章编号:1001-1390(2005)08-0043-03 !LOUYing1JWANGXue-jie2 (1.CollegeofElectrical&InformationJAnshanScienceandTechnologyUniversityJ Anshan114044JLiaoningJChinaZ2.SchoolofInformation&ElectricalEngineering,ZhejiangUniversityCityCollegeJHangzhou310015JChina) Abstract_Describesageneralcircuitusedtosampleforallkindofdifferentstandardandnon-standardsignals.AnewtypedesignmethodisusedJitdoesnotchangehardwareandonlycarriesoutsimplesetting-upbysoftwareJcouldfinishcontrollightmicrorelayandadjustdigitalpotentiometerthroughSCMJanddifferentsignalcouldbesampled. Keywords_SCMZlightmicrorelayZdigitalpotentiometer DesignofaSignalAdjustCircuit 0引言 在实际生产中往往需要对多种物理信号进行检测以便实现计量和控制,针对不同的信号往往需要不同的采集电路[1-5],这样一来在设计、安装与调试方面就存在很多不便之处。本文提出一种通用的可对多种信号进行采集的信号调理电路。若将此电路应用于仪器仪表中,则不必开箱,只需通过软件设定即可接收工业现场常见的各种信号,并可同时对八个通道模拟量进行采样记录,各个通道完全隔离。本电路适用于精密物理量测量的场合,如煤气、水、蒸汽、重油等资源流量的测量。 1硬件设计 信号调理电路单路输入的硬件结构如图1所示,包括信号输入、放大、单片机控制等几大部分。 信号输入电路由精密基准电源MAX872、光继电器AQW212E、运放4502及精密仪表开关电容模块LTC1043等组成。其中精密基准电源的使用一方面提升输入信号的电位,避免低电位测量时的干扰误差;另一方面作为一路检测电路,其测量结果可以修正其它回路的检测结果,实现系统的在线自校正。MAX872具有较宽的电压输入范围(2.7~20V),输出精度可达2.500V±0.2%。LTC1043CN是双精密仪表开关电容,电容外接,多用于精密仪表放大电路、压频转换电路和采样保持电路等。当内部开关频率被设定在额定值300Hz时,LTC1043CN的传输精确度最高,此时电容器CS和CH大小均为1μF。LTC1043CN和运放LT1013组成差分单端放大器,采用LTC1043CN为差分输入的电压采样值,电压保持在电容器CS上并送到接地参考电容器CH中,而CH的电压送到LT1013的非反相输入端放大。LTC1043CN是通过电容完成电压的传输,使电压由差分输入变为单端输入,并起到了很好的信号隔离作用,在本设计中双电容的巧妙 43 --

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

浪涌保护器参数含义

防雷击保护的选用,分为4个等级,IEC61312-1规定:10/350μs是首次雷击波型,用于电源的第一级(A级)保护,值得注意的是这只是雷击波的测试波型,而不是雷电的实际波型;8/20μs是用在首次后的B级、C级、D级雷击保护,二者在本质上是没有区别,只是反映了保护器件能分流雷电流能量大小而已! TDS(TDX)浪涌保护器 浪涌保护器作为低压配电系统的元件之一,所涉及到很多的参数指标都与其他的空气开关是相同的。但是每一种空气开关都有其不同于其他空气开关的参数与指标。当然,并不是所有的空气开关都如此。只是一些特殊作用的空气开关才会涉及到很多不同的参数。例如双电源自动转换开关、浪涌保护器和隔离开关等。 以下是浪涌保护器的各种参数含义的解析; 1.最大放电电流Imax:给浪涌保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 2.额定放电电流Isn:给浪涌保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 3.标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。

4.电压保护级别Up:浪涌保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 5.额定电压Uc:能长久施加在浪涌保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 6.数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用浪涌保护器的参考值,浪涌保护器的数据传输速率取决于系统的传输方式。 7.最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。 8.漏电流:指在75或80标称电压Un下流经浪涌保护器的直流电流。 9.最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。 10.峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。 11.响应时间tA:主要反应在浪涌保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。 12.在线阻抗:指在标称电压Un下流经浪涌保护器的回路阻抗和感抗的和。通常称为“系统阻抗”。

信号调理电路概论

摘要 信号调理简单的说就是将待测信号通过放大、滤波等操作转换成采集设备能够识别的标准信号。是指利用内部的电路(如滤波器、转换器、放大器等…)来改变输入的讯号类型并输出之。把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。但由于传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字信号之前必须进行调理。调理就是放大,缓冲或定标模拟信号等。信号调理将把数据采集设备转换成一套完整的数据采集系统,这是通过直接连接到广泛的传感器和信号类型来实现的。信号调理简单的说就是将待测信号通过放大、滤波等操作转换成采集设备能够识别的标准信号。若信号很小,则要经过放大将信号调理到采集卡能够识别的范围,若信号干扰较大,就要考虑采集之前作滤波了。 关键词:放大器,传感器,滤波,信号采集

1设计任务描述1.1设计题目:信号调理电路 1.2设计要求 1.2.1设计目的 (1)掌握传感器信号调理电路的构成,原理与设计方法(2)熟悉模拟元件的选择,使用方法 1.2.2基本要求 (1)输出幅度在0-3V,线性反应输入信号的幅值 (2)信号的频率范围在50Hz-10KHz (3)匹配的信号源一般复读在100mv,内阻10KΩ左右(4)匹配的负载在100kΩ左右,信号传输的损失尽量小 1.2.3发挥部分 (1)超出上下限的保护电路及指示 (2)电桥信号采集 (3)其他

2设计思路 这次我们小组课程设计的题目是信号调理电路。 信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。 在初始阶段用一个电压跟随器来发出信号,利用一个电桥收集信号并发出差分电压,选择放大器与传感器正确接口,使放大器与传感器特性匹配,测量应变片传感器通常要通过桥网络,用高精度和非常低漂移(随温度)的精密电压基准驱动放大器A1。这可为桥提供非常精确、稳定的激励源。因为共模电压大约为激励电压的一半,所以被测信号仅仅是桥臂之间小的差分电压。放大器A2、A3、A4必须提供高共模抑制比,所以仅测量差分电压。这些放大器也必须具有低值输入失调电压漂移和输入偏置电流,以使得从传感器能精确地读数。 在电路的输出端接入一个小绿灯,来判定电路的电压是否超出题目要求范围,并由示波器显示激励源的波形

(Proteus数电仿真)序列信号发生器电路设计

实验8 序列信号发生器电路设计 一、实验目的: 1.熟悉序列信号发生器的工作原理。 2.学会序列信号发生器的设计方法。 3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。 二、实验仪器设备: 仿真计算机及软件Proteus 。 74LS161、74LS194、74LS151 三、实验原理: 1、反馈移位型序列信号发生器 反馈移位型序列信号发生器的结构框图如右图 所示,它由移位寄存器和组合反馈网络组成, 从寄存器的某一输出端可以得到周期性的序列 码。设计按一下步骤进行: (1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。 CP 将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。 若M 个状态中出现重复现象,则应增加移位寄存器的位数。用n+1位再重复上述过程,直到划分为M 个独立状态为止。 (2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。 (3)检查自启动性能。 (4)画逻辑图。 2、计数型序列信号发生器 计数型序列信号发生器和组合的结构框图 如图 所示。它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。设计 过程分为以下两步: (1)根据序列码的长度M 设计模M (2)按计数器的状态转移关系和序列码的要求组合输出网络。由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。 四、计算机仿真实验内容及步骤、结果: 1、设计一个产生100111序列的反馈移位型序列信号发生器。 1、根据电路图在protuse 中搭建电路图

SPD浪涌保护器

SPD浪涌保护器 编辑词条 编辑摘要 摘要 浪涌保护器 浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。基本与特点 保护通流量大,残压极低,响应时间快;· 采用最新灭弧技术,彻底避免火灾;;· 采用温控保护电路,内置热保护;· 带有电源状态指示,指示浪涌保护器工作状态;· 结构严谨,工作稳定可靠。 目录 1电涌保护器SPD… 2浪涌保护器也称… 3浪涌保护器的分类 目录 1电涌保护器SPD… 2浪涌保护器也称… 3浪涌保护器的分类 收起 编辑本段电涌保护器SPD工作原理

电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD.电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。电涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于电涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。 浪涌保护器的基本元器件 1.放电间隙(又称保护间隙):它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。 2.气体放电管:它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频耐受电流In;冲击耐受电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值) 3.压敏电阻:它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。压敏电阻的技术参数主要有:压敏电压(即开关电压)UN,参考电压Ulma;残压Ures;残压比K(K=Ures/UN);最大通流容量Imax;泄漏电流;响应时间。压敏电阻的使用条件有:压敏电压:UN≥[(√2×1.2)/0.7]U0(U0为工频电源额定电压)最小参考电压:Ulma≥(1.8~2)Uac (直流条件下使用)Ulma≥(2.2~2.5)Uac(在交流条件下使用,Uac为交流工作电压)压敏电阻的最大参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。 4.抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优

基于运放的信号发生器设计

北京工业大学课程设计报告 模电课设题目基于运放的信号发生器设计 班级:1302421 学号:13024219 姓名:吕迪 组号:7 2015年 6月

一、设计题目 基于运放的信号发生器设计 二、设计任务及设计要求 (一)设计任务 本课题要求使用集成运算放大器制作正弦波发生器,在没有外加输入信号的情况下,依靠电路自激震荡而产生正弦波输出的电路。经过波形变换可以产生同频三角波、方波信号。(二)设计要求 基本要求:使用LM324,采用经典振荡电路,产生正弦信号,频率范围,360Hz~100kHz。输出信号幅度可调,使用单电源供电以及增加功率。 (三)扩展要求 (1)扩大信号频率的范围; (2)增加输出功率 (3)具有输出频率的显示功能。 三、设计方案 (一)设计框图 (二)设计方案选择思路 我们在模电课上学过几种正弦波振荡器的基本电路,包括RC串并联正弦波振荡器、电容三点式正弦波振荡器以及电感三点式正弦波振荡器。因为题目要求设计基于运放的正弦波发生器,我们就确定将RC串并联网络正弦波振荡器作为我们设计的基础电路,因为此振荡器适用于频率在1MHz一下的低频正弦波振荡器而且频率调节方便,我们打算先通过计算搭建RC 正弦波振荡电路,测试基本电路达到的频率及幅值范围,再在这一基础上进行放大,使频率及幅值与设计要求相符合,因此设计出了二级反向放大这一模块。最后,为了提高电路的输出功率,减小电路的输出阻抗,再设计电压跟随器这一模块来完善整个电路。由此,我们确定出三个模块:RC正弦波振荡电路,二级反向放大电路,电压跟随器,并准备从基础模块入手,分模块实现,并根据实际情况不断调整改进原先的设计方案。 (三)元器件清单 芯片:LM324*2 40106*1 二极管:1N4148*2 电容:10μF*1、10nf *4 电阻:2k*1 、10k*4、51k*1 、82k*1 、91k*1 、100k滑动变阻器*1、220k*1 电位器:50k双联*1、10k*2、50k*1 (四)芯片资料

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

信号浪涌保护器

信号浪涌保护器 要推介一种产品,肯定要对这种产品有个系统性的了解,它是什么?它能做什么?它为什么能起到那作用?它有什么特点?它的使用范围与注意事项.作为一个营销人员要至少对这些有个简单的了解,有个清晰的轮廓,这才有利于自己介绍产品。当然它的费用方面也要简单了解下。 信号浪涌保护器也是我们防雷系列的一种类型的产品,它也是对浪涌过压、过流进行保护的一种产品。 信号浪涌保护器主要用在下列系统中,有工业控制系统,网络音频通信系统,安防监控系统,火灾报警系统,考勤系统。 首先要对他们那个地方的雷电情况进行了解,了解雷暴日情况,如果情况适合使用我们的防雷类信号浪涌保护器,而他们却没有注意到信号防雷的重要性,也没有进行这种信号保护,那要根据情况向他们叙述防雷的重要性,让他们认识到投资到防雷防护对企业有很大重要性。 具体参考资料如下(电源浪涌中的雷电知识介绍,具体情况可自行增减选择)。 由于集成电路大规模的广泛应用,IC电路的工作电压越來越低了,承受浪涌的能力也越來越低. 雷电灾害呈上升趋势 保险公司统计:数据通讯及数据传输处理设备损失比例

根据德国某保险公司9000例损失报告的分析 设备防雷的迫切性 1、随着微电子的广泛应用,元器件的浪涌承受能力减弱; 2、网络的普及,使线路中的关联设备增加很多,雷击的损失也越来越严重; 3、全球气候的变化,使雷电的发生更频繁; 上面资料主要是作为叙述防雷重要性的一个概述,要根据资料进行自行筛选组织语言。 详细叙述了信号防雷迫切性之后,就要介绍下我们公司的产品或者有目的性的向他们多介绍几家产品,然后让他们在对比中了解我们公司产品的优势。具体采取什么方式要看具体情况选择。那这一步必须做的就是介绍我们公司的产品的具体情况。(如下)信号浪涌保护器它是什么? 它是在信号线路上对其可能产生的过压进行限制,过流进行泄放,保护信号设备正常工作的装置。 它的作用是什么:能对信号线路上产生的过压进行限制,过流进行泄放,从而保护设备正常工作。 使用场合:JLSP-S系列浪涌保护器适合于弱电控制系统(主要有工业控制系统,网络通讯系统,火灾报警系统,闭路电视安防监控及考勤系统等)的浪涌保护。 主要特点 1)多级保护,通流容量大2)核心器件选取用国际名牌产品,性能优越3)内置半导体器件,响应速度快4)低电容设计、传递性能优异5)残压水平低6)运用先进的生产工艺制造,外形美观7)安装维护方便 产品分类 工业控制信号浪涌保护器,卡接式控制信号浪涌保护器,视频信号浪涌保护器,视频监控多功能信号浪涌保护器,天馈信号浪涌保护器,数字/语音信号浪涌保护器,DB系列控制信号浪涌保护器,多口集成信号浪涌保护器,这几大类产品都有不同的使用范围,具体请参考内部资料。

热电偶温度传感器信号调理电路设计与仿真

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

相关主题
文本预览
相关文档 最新文档