当前位置:文档之家› 化工原理的学习归纳

化工原理的学习归纳

化工原理的学习归纳
化工原理的学习归纳

一1、掌握蒸馏的特点、分类及原理(在双组分溶液的气液相平衡图上进行分析)。 蒸馏概念:是利用液体混合物中各组分挥发性的差异,以热能为媒介使其部分气化,从而在气相富集轻组分,液相富集重组分,使液体混合物得以分离的单元操作。

分离特点(1)蒸馏处理的对象为液体混合物,分离流程简单,可以直接获得所需要的组分.(2)应用广泛、历史悠久;不仅可以分离液体混合物,且可加压分离气体混合物及减压分离固体混合物.(3)以热能为推动力,热能消耗大。

蒸馏分类: (1)按蒸馏方式分简单蒸馏或平衡蒸馏:混合物各组分挥发性相差大,对组分分离程度要求不高。精馏:在混合物组分分离纯度要求很高时采用。特殊精馏:混合物中各组分挥发性相差很小,或形成恒沸液(azeotrope ),不能用普通精馏,借助某些特殊手段进行精馏。

(2)按操作流程分:间歇精馏:多用于小批量生产或某些有特殊要求的场合。连续精馏:多用于大批量工业生产中。

(3)按操作压力分

常压蒸馏:蒸馏在常压下进行。减压蒸馏:常压下物系沸点较高热或具热敏性,

高温加热介质不经济。减压可降低操作温度。加压蒸馏:对常压沸点很低的物系,

蒸气相的冷凝不能采用常温水和空气等廉价冷却剂,或对常温常压下为气体的物

系(如空气)进行精馏分离,可采用加压以提高混合物的沸点。

(4)按混合物组分:多组分精馏:例如原油。双组分精馏:例如乙纯-水体系。

双组分溶液的气液相平衡图上进行分析:将组成为Xf 、温度低于泡点的混合液

加热到泡点以上,其部分汽化,将气、液相分开,得组成为Y1的气相,X1的

液相,继续将Y1汽相部分冷凝,得Y2的气相,X2的液相,将Y2气相沿箭头

方向冷凝,得浓度更高的气相。相反将X1的液相部分汽化,则得X2ˊ和组成

为Y2ˊ的气相,依图中泡点线方向,则会得到浓度更高的液相。最终达到气、

液两相的纯化分离。

一3、掌握恒沸点,恒沸混合液,相平衡常数、挥发度,相对挥发度的概念。

恒沸点:t —x —y 图上液相线与汽相线在某点重合,两相组成相等,常压下该点的组成为恒沸组成.相应的温度即为恒沸点.有最低恒沸点和最高恒沸点两种.

恒沸液: t —x —y 图上液相线与汽相线在某点重合,两相组成相等,常压下该点的组成为恒沸组成,该点溶液称为恒沸液,恒沸组成随压强而变,理论可改变压强来分离,但实际不可行.

相平衡常数K:表示气液平衡时气相组成与液相组成之间的关系与平衡温度之间的关系的常数K, Ki 并非常数,当p 一定时, Ki 随温度而变化。Ki 值越大,组分在气、液两相中的摩尔分数相差越大,分离也越容易。对于易挥发组分,Ki >1,即 yi > xi 。

yi 和 xi 分别表示 i 组分在互为平衡的气、液两相中的摩尔分数。

挥发度VA :组分在气相中的平衡蒸气压(分压)与在液相中的摩尔分数的比值。溶液中各组分的挥发性由挥发度来量衡.

对纯组分液体,其挥发度就等于该温度下液体的饱和蒸气压。 p K p o i i =i i i x y K =

B B B A A A x p x p ==νν

相对挥发度α::溶液中两组分挥发度之比称为相对挥发度α.α 是相平衡时两个组分在气相中的摩尔分数比与液相中摩尔分数比的比值,由其大小可以判断该混合液能否用蒸馏方法加以分离以及分离的难易程度。α >1,表示组分 A 较 B 易挥发;α 值越大,两个组分在两相中相对含量的差别越大,越容易用蒸馏方法将两组分分离;若α =1,此时不能用普通蒸馏方法分离该混合物。

一5、掌握精馏操作流程、精馏段,提馏段的概念及作用。

原料液预热器加热到指定温度后,送入精馏塔的进料板,在进料板上与自塔上部下降的回流液体汇合,逐板溢流,最后流入塔底再沸器中.在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程.操作时连续地从再沸器取出部分液体作为塔底(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板.塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液).

精馏段—加料板以上的塔段: 气相中的重组分向液相(回流液)传递,而液相中的轻组分向气相传递,从而完成上升蒸气的精制。

提馏段—加料板以下的塔段: 下降液体(包括回流液和料液中的液体部分)中的轻组分向气相(回流)传递,而气相中的重组分向液相传递,从而完成下降液体重组分的提浓。

一7、掌握回流比的概念、对精馏塔理论板数的影响及适宜回流比的选择方法。

回流比R :精馏段中下降液体的摩尔流量L 与塔顶产品(馏出液)流量的比值R 。塔所需的理论板数,塔顶冷凝器和塔釜再沸器的热负荷均与回流比有关。精馏过程的投资费用和操作费用都取决于回流比的值。

设备费用影响:R =Rmin 时,需无穷多块塔板数,故设备费用为无穷大。只要 R 稍大于Rmin ,所需理论板数急剧减少,设备费用随之剧减。随 R 的增大,理论板数减小的趋势渐缓。R 进一步增大,上升蒸气 V’ 和 V 增大,塔径、塔板面积、再沸器及冷凝器换热面积增大,设备费用又开始上升。

最适宜的回流比:精馏过程总费用(操作费用与设备费用之和)最低时的回流比。

二1、掌握吸收的概念、基本原理、推动力,吸收的用途。

吸收的概念:使混合气体与适当的液体接触,气体中的一个或几个组分便溶解于液体内而形成溶液,原混合气体的组分就得到分离。这种利用各组分溶解度不同而分离气体混合物的操作称为吸收。

基本原理:气相中溶质的实际分压高于与液相成平衡的溶质分压时,溶质便由气相向液相转移,即发生吸收过程。利用混合气体中各组分在液体中溶解度差异,使某些易溶组分进入液相形成溶液,不溶或难溶组分仍留在气相,从而实现混合气体的分离。

推动力:气体吸收是混合气体中某些组分在气液相界面上溶解、在气相和液相内由浓度差推动的传质过程。实际组成偏离平衡组成的程度越大,推动力就越大。(pA - pA* )

吸收的用途:(1)制备产品。用吸收剂吸收气体中某些组分而获得产品。如硫酸吸收SO3制浓硫酸。 (2) 分离混合气体以回收所需的组分。吸收剂选择性地吸收气体中某些组分以达到分离目的。如从焦炉气或城市煤气中分离苯。 (3) 除去有害组分以净化气体 如原料气的净化,合成氨原料气脱H2S 、脱CO2等;(4)工业尾气处理和废气净化以保护环境,如冶炼废气等脱除SO2。

二2、掌握吸收剂、吸收液、解吸(脱吸)、物理吸收、化学吸收的概念。

吸收剂:吸收操作中所用的溶剂,以S 表示。对溶质有较大的溶解度。良好的选择性,其余组分溶解度度小;稳定不易挥发;(4) 粘度低,利于气液接触与分散;(5) 无毒、腐蚀性小、不易燃、价廉等。

吸收液(溶液):吸收操作后得到的溶液,主要成分为溶剂S 和溶质A 。

解吸或脱吸:与吸收相反的过程,气相中溶质的实际分压低于与液相成平衡的溶质分压时,溶质从液相中分离而转移到气相的过程。

物理吸收:吸收过程溶质与溶剂不发生显著的化学反应,可视为单纯的气体溶解于液相的物理过程。如用水吸收二氧化碳、用洗油吸收芳烃等。

化学吸收:溶质与溶剂有显著的化学反应发生。如用氢氧化钠或碳酸钠溶液吸收二氧化碳过程。化学反应能大大提高单位体积液体所能吸收的气体量并加快吸收速率。但溶液解吸再生较难。

三3、掌握液泛、漏液、液沫夹带及汽泡夹带的概念、原因及后果。

漏液:部分液体不是横向流过塔板后经降液管流下,而是从阀孔直接漏下。

原因:气速较小时,气体通过阀孔的速度压头小,不足以抵消塔板上液层的重力;气体在塔板上的不均匀分布也是造成漏液的重要原因。

后果:严重的漏液使塔板上不能形成液层,气液无法进行传热、传质,塔板将失去其基本功能。

()min

opt R R 22.1-=

液沫夹带:气体鼓泡通过板上液层时,将部分液体分散成液滴,而部分液滴被上升气流带入上层塔板。影响的主要因素有空塔速度和板间距。

气泡夹带:液体在降液管中停留时间太短,大量气泡被液体卷进下层塔板。

后果:液沫夹带是液体的返混,气泡夹带是气体的返混,均对传质不利。严重时可诱发液泛,完全破坏塔的正常操作。液沫夹带和气泡夹带是不可避免的,但夹带量必需严格地控制在最大允许值范围内。

三6、掌握填料特性参数(比表面、空隙率、填料因子)的定义,了解常见填料形状类型。

(1)比表面积a:单位体积填料层所具有的表面积(m2/m3)。被液体润湿的填料表面就是气液两相的接触面。大的a 和良好的润湿性能有利于传质速率的提高。对同种填料,填料尺寸越小,a 越大,但气体流动的阻力也要增加。

(2)空隙率ε:单位体积填料所具有的空隙体积(m3/m3)。代表的是气液两相流动的通道,ε大,气、液通过的能力大,气体流动的阻力小。ε = 0.45~0.95。

(3)填料因子φ:填料比表面积与空隙率三次方的比值(1/m),a/ε3,表示填料的流体力学性能,值越小,流动阻力越小。液泛速度可以提高.

拉西环填料鲍尔环填料阶梯环填料弧鞍形、矩鞍形填料金属英特洛克斯填料网体填料

四1、掌握液——液萃取的操作原理、特点(用三角形坐标图及溶解度曲线进行分析说明),对萃取剂的要求。

原理:在液体混合物中加入与其不互溶或部分互溶的液体溶剂(萃取剂),形成液-液两相,利用液体混合物中各组分在两液相中溶解度的差异而达到分离的目的。也称溶剂萃取,简称萃取。

在只含有组分 A 与 B 的原料液 F 中加入一定量的萃取剂S 后,得到新的混合液M,由杠杆规则知F、S 和M 之间

的关系为

静置分层得萃取相 E 和萃余相R,其质量关系为

从萃取相 E E’;从萃余相R 中除去萃取剂S 后得萃余液R’;

达到的最大 A 组分含量为Emax 点的组成,对应的萃取液组成点为E’max。

特点:(1)、萃取过程本身并未完全完成分离任务,而只是将难于分离的混合物转变成易于分离的混合物,要得到纯产品并回收溶剂,必须辅以精馏(或蒸发)等操作。(2)常温操作,适合于热敏物料分离

对萃取剂的要求:萃取剂的选择性好,即对溶质应有较大的溶解能力比对稀释剂的溶解能力大;对于稀释剂则不互溶或互溶度很小;溶剂S与原料液中组分的相对挥发度大,易于加收;萃取剂与被分离混合物有较大的密度差,可加速分层,提高生产能力。

四2、掌握萃取相、萃余相、萃取剂、萃取液、萃余液、共轭相、联结线、分配系数、选择性系数的概念。

萃取相E:萃取分离后,含萃取剂多的一相,主要由溶质和萃取剂组成。

萃余相R:萃取分离后,含稀释剂多的一相,主要由稀释剂和溶质组成。

萃取剂S:萃取过程中加入的溶剂,以S表示。萃取剂对溶质应有较大的溶解能力,对于稀释剂则不互溶或仅部分互溶。萃取液E′:从萃取相E中回收S后得到的液体,主要由溶质组成

萃余液R′:从萃余相R中回收S后得到的液体,主要由稀释剂组成

共轭相:溶解度曲线将三角形分为两个区域,曲线以内的区域为两相区,以外的为均相区。两相区内的混合物分为两个液相,当达到平衡时,两个液层称为共轭相。

联结线:溶解度曲线将三角形分为两个区域,两相区内的混合物分为两个液相,当达到平衡时,两个液层称为共轭相。联结共轭液相组成坐标的直线称为联结线。联结线一般是倾向的,方向一致,但不相互平行。

S

分配系数k A :在一定温度下,当三元混合液的两个液相达到平衡时,溶质在E 相(萃取相)与R 相(萃余相)中的组成之比,k A 值愈大,萃取分离效果愈好,与联结线的斜率有关。

选择性系数β:两相平衡时,萃取相 E 中A (溶质)、B (稀释剂) 组成之比与萃余相 R 中 A 、B 组成之比的比值。β 表示 S(萃取剂) 对 A 、B 组分溶解能力差别,即 A 、B 的分离程度。β 无限大时,分离效果. β=1无分离能力.

四3、掌握液——液萃取的操作流程,试在三角形坐标图中表示单级萃取的过程及各相的位置。

混合:混合点M 的组成为原料液F 点与S 的连线上,适宜的溶剂用量应在S R 和S E

内。

分层:当F 、S 充分混合传质后,混合液沉降分层得到平衡的E 相和R 相。

脱溶剂:若从E 相和R 相脱除全部溶剂,则得到萃取液E ˊ和萃余液R ˊ。延长SE 和SR 线,分别与AB 边交于点E ˊ及R ˊ,为两液体组成的坐标位置。单级萃取的效果取决于R ˊ和E ˊ的位置,由于温度升高使分层区面积缩小,故萃取操作不宜在高温下进行,但温度过低,液体黏度过大,界面张力增加,扩散系数减小。

四6、掌握超临界流体的概念、定义、超临界流体的有关性质。

超临界流体的概念: 超临界流体(Supercritical Fluid ,SF )是处于临界温度(Tc )和临界压力(Pc )以上,介于气体和液体之间的流体。超临界流体具有气体和液体的双重特性。SF 的密度和液体相近,粘度与气体相近,但扩散系数约比液体大100倍。由于溶解过程包含分子间的相互作用和扩散作用,因而SF 对许多物质有很强的溶解能力。常用的超临界流体:二氧化碳、乙烯、乙烷、丙烯、丙烷和氨、正戊烷、甲苯等。

超临界流体萃取定义:流体(溶剂)在临界点附近某一区域(超过临界区)内,它与待分离混合物中的溶质具有异常相平衡行为和传递性能、且它对溶质溶解能力随压力和温度改变而在相当宽的范围内变动这一特性而达到溶质分离的单元操作。

有关性质: (1)超临界流体的 P -V -T 性质,物质在超临界区压力、温度稍有变好,都会引起密度的较大变化

在高密度(低温、高压)条件下去出萃取溶质组分,然后稍微提高温度或降低压强,使萃取剂与溶质分离。 (2)超临界流体的传递性质,超临界流体密度接近液体,黏度接近气体,具有与液体相近的溶解能力,同时其传质速率远大于液体溶剂并能很快达到萃取平衡。 (3)超临界流体的溶解能力,超临界流体的溶解能力c 与密度有关,密度越大、溶解能力越大。

四7、理解超临界流体萃取的基本原理、常见的3种流程及超临界流体萃取的特点。

基本原理:在较低温度下,不断增加气体的压力时,气体会转化成液体,当温度增高时,液体的体积增大,对于某一特定的物质而言总存在一个临界温度(Tc )和临界压力(Pc ),高于临界温度和临界压力后,物质不会成为液体或气体,这一点就是临界点。再临界点以上的范围内,物质状态处于气体和液体之间,这个范围之内的流体成为超临界流体(SF )。超临界流体具有类似气体的较强穿透力和类似于液体的较大密度和溶解度,具有良好的溶剂特性,可作为溶剂进行萃取、分离单体。

常见的3种流程

等温变压流程:利用不同压力下超临界流体萃取能力(溶解度)的差异,通过改变压力使溶质与超临界流体分离。 特点:T1= T2,p 1> p 2

等压变温流程:利用不同温度下超临界流体萃取能力(溶解度)的差异,通过改变温度使溶质与超临界流体分离。 特点:T1< T2,p 1= p 2

等温等压吸附流程:在分离器内放置仅吸附溶质而不吸超临界流体的吸附剂,通过吸附过程来达到溶质与超临界流体分离的目的。特点:T1= T2,p 1= p 2

超临界流体萃取的特点:A 超临界流体的密度与溶解能力接近于液体,而又保持了气体的传递特性,故传质速率高,可更快达到萃取平衡;B 操作条件接近临界点,压力、温度的微小变化都可改变超临界流体的密度与溶解能力,故溶质与溶剂的分离容易,费用低;C 超临界萃取具有萃取和精馏的双重特性,可分离难分离物质;D 超临界流体一般具有化学性质稳定、无毒无腐蚀性、萃取操作温度不高等特点,故适用于医药、食品等工业;E 超临界萃取一般在高压下进行,设备投资较大。

五1、掌握湿空气的湿度,相对湿度,湿比热,水蒸气分压,湿比容,干球温度,湿球温度,露点,绝热饱和温度的概念及其相互关系,掌握公式:

m k C +=ρln ln s

s

p P p H ??-=622.0

湿度又称湿含量,为空气中水汽的质量与绝干空气体的质量之比,不能反映气体偏离饱和状态的程度(气体的吸湿潜力)。当湿空气达饱和时,相应湿度称饱和湿度。由于饱和蒸气压仅与温度有关,故HS 是温度和总压的函数。

相对湿度? :一定的系统总压和温度下,气体中湿份蒸汽的分压 pV 与系统温度下湿份的饱和蒸汽压 ps 之比。? 值在0~1之间;? 值越低,气体偏离饱和的程度越远,吸湿潜力越大;? =100% 时,p=ps ,气体被湿份蒸汽所饱和,不能再吸湿。

湿比热cH :将湿空气中1kg 绝干气体及所含湿份H kg 水汽温度升高1℃所需要的热量,只是湿度的函数。

cg — 绝干气体的比热,J/(kg 绝干气体·℃);cv — 湿份蒸汽的比热,J/(kg 湿份蒸汽·℃) 水蒸气分压:水蒸气分压力是指湿空气中水蒸气形成的压力。根据道尔顿定律水蒸气分压力与干空气分压力之和等于大气压力。一般常温下大气压中水蒸气分压力所占比例很低。水蒸气分压力随海拔高度的增加而下降,其下降比例比空气压力的比例大。一定温度的空气的水蒸气含量达到饱和时的水蒸气分压力称为该温度的饱和水蒸气分压力。

湿比容νH :1kg 绝干气体及所含H kg 水蒸汽所具有的体积之和称为湿空气的比体积或湿比容。(m3/kg 绝干气体) 干球温度:(dry bulb temperature )暴露于空气中而又不受太阳直接照射的干球温度表上所读取的数值。 湿球温度:某一状态的空气,同湿球温度表的湿润温包接触,发生绝热热湿交换,使其达到饱和状态时的温度。该温度是用温包上裹着湿纱布的温度表,在流速大于2.5m/s 且不受直接辐射的空气中,所测得的纱布表面温度,以此作为空气接近饱和程度的一种度量。周围空气的饱和差愈大,湿球温度表上发生的蒸发愈强,而其示度也就愈低。

露点:将不饱和空气等湿冷却到饱和状态时的温度称露点,用 td 表示。露点时为饱含状态,φ=1。总压一定时,露点仅与空气的湿度有关。因此,可由露点得空气的湿度,或由湿度得露点。

绝热饱和温度

五3掌握物料湿基水分,干基水分,平衡水分(平衡湿度)的定义。

湿基水分w :单位质量的湿物料中所含液态湿分的质量。工业生产中,物料湿含量通常以湿基湿含量表示。

干基水分X :单位质量的绝干物料中所含液态湿分的质量。由于物料的总质量在干燥过程中不断减少,而绝干物料的质量不变,故在干燥计算中以干基湿含量表示。

平衡水分(平衡湿度)的定义:当湿含量为 X 的湿物料与湿份分压为 p 的不饱和湿气体接触时,物料将失去自身的湿份或吸收气体中的湿份,直到湿份在物料表面的蒸汽压等于气体中的湿份分压。平衡状态下物料的湿含量即为平衡水分。不仅取决于气体的状态,还与物料的种类有很大的关系。

五4、掌握影响干燥速度的因素,何谓理论干燥过程。

1)物料尺寸和气固接触方式 :减小物料尺寸,干燥面积增大,干燥速率加快;干燥介质平行掠过物料层表面 (差); 干燥介质自上而下穿过物料层,不能形成流化床 (中);干燥介质自下而上穿过物料层,可形成流化床 (好)。

2)干燥介质条件 : 通过强化外部干燥条件 (↑t ,↓H ,↑u) 来增加传热传质推动力,减小气膜阻力,可提高恒速段 (表面汽化控制) 的干燥速率,但对降速段 (内部扩散控制) 的改善不大。强化干燥条件将使 Xc 增加,更多水分将在降速段汽化。气体温度的提高受热源条件和物料耐热性的限制。↑u ,↓H ,需使用更大量的气体,干燥过程能耗增加。

3)物料本性 : 物料本性不影响恒速段的干燥速率;物料结构不同,与水分的结合方式、结合力的强弱不同,降速段干燥速率差异很大;强化干燥速率时,须考虑物料本性。若恒速段速率太快,有些物料会变形、开裂或表面结硬壳;而在降速段则应考虑物料的耐热性,如热敏性物料不能采用过高温度的气体作为干燥介质。

理论干燥过程:1)干燥过程的阶段:(1) 预热段(AB 段):初始湿含量 X 1 和温度 θ1 变为 X 和 tw 。物料吸热升温以提高汽化速率,但湿含量变化不大,过程时间较短。

(2)恒速干燥段(BC 段) :物料温度恒定在 tw ,X~τ 变化呈直线关系,

气体传给物料的热量全部用于湿份汽化,干燥速度为常数。

(3)降速干燥段 (CD 段) :物料开始升温,X 变化减慢,气体传给物

料的热量仅部分用于湿份汽化,其余用于物料升温,当 X = X* ,θ = t 。

干燥速度逐级降低。

五8、掌握干燥效率及影响干燥效率的因素.掌握干燥器热效率的计算.

六1、掌握结晶的基本概念,理解在液—固相平衡图上分析结晶操作原理。 H c c c v g H ?+?=1

结晶的基本概念: 结晶是固体物质以晶体状态从蒸气、溶液或熔融物中析出的过程,是获得高纯度固体物质的基本单元操作。结晶过程分类:溶液结晶、熔融结晶、升华结晶、沉淀结晶。

六2、掌握结晶核形成的必要条件,工业上晶核形成(起晶)的方法有哪几种,其原理和特点。

结晶核形成的必要条件:过饱和度

工业上成核(起晶)的方法:(1)晶种起晶法:介稳区晶核不会自动形成,但诱导可以产生,若有晶体存在可以长大。在介稳区投入一定大小和数量的晶种粉体。(2)自然起晶法:在不稳区下均相成核和非均相成核;(3)二次起晶法:晶核形成于结晶液中已经存在的大量晶体。二次起晶因操作稳定、易控制,并可在低饱和读下进行,被广泛应用。

六3、掌握结晶中造成过饱和溶液的方法种类和原理,过饱和度、过冷度大小对晶粒大小有何影响。

造成过饱和溶液的方法种类和原理:1)冷却结晶(不移出溶剂)

(1)间接换热冷却结晶——通过间壁式换热冷却来实现过饱和度(过冷度)。

(2)直接换热冷却结晶——通过冷却介质与母液直接混合冷却来实现过饱和度(过冷度)。没有传热面,避免传热不均及在冷却面晶体结垢等不利。常用冷却介质有乙烯、氟里昂等惰性液体。

2)蒸发结晶(移出部分溶剂)

通过蒸发浓缩来建立过饱和度,蒸发结晶与一般的浓缩蒸发器结构基本相同。

3)绝热蒸发(真空冷却)

在真空下闪急蒸发,既蒸发部分溶剂又冷却降温。

过饱和度、过冷度大小对晶粒大小有何影响:(1)溶液推动力△C:

△C ↑(饱和度高),晶体的成长速度↑因晶核多——得到晶体颗粒多,晶粒小的产品。

△C ↓(饱和度底),晶体的成长速度受抑,——得到晶体颗粒少,晶粒大的产品。

(2)温度的影响:温度通过对扩散速度、溶解度、粘度等的影响来影响结晶,实质还是形成过饱和度,影响大。

七1掌握超滤、微滤、反渗透的概念,操作原理及他们的不同点。

超滤:用孔径10-2~10-3μm的膜过滤含大分子的溶液,如蛋白质。要达到高效的分离,待分离组分的大小要相差10倍以上。目前主要用于高分子物质、胶体物质的浓缩、分离、提纯和净化。尤其是热敏性物料和生物活性物质的分离和浓缩。微滤:用孔径0.1~10μm的膜过滤微细物料,如细菌等。主要用于制药和食品行业的过滤除菌,电子工业用超纯水的制备。反渗透:利用孔径小于1 nm的膜通过优先吸附和毛细管流动等作用选择性透过溶剂的性质,对溶液侧施加超过渗透压的压力,使溶剂分子通过半透膜。如海水淡化。

原理:微滤和超滤可看为用孔径很小的膜作为介质进行过滤的过程。微滤和超滤的机理与常规的过滤相同。反渗透是利用孔径小于1 nm的膜通过优先吸附和毛细管流动等作用选择性透过溶剂的性质,对溶液侧施加压力,克服溶剂的渗透压,使溶剂通过半透膜从溶液中分离出来的过程.

不同点:(1)分离粒径范围不同:微滤膜孔径为0.1~10μm;超滤膜孔径10-2~10-3μm;反渗透用半透膜,孔径小于1 nm。(2)分离机理不同:微滤和超滤分离机理为筛分,决定粒子能否通过完全由孔径决定;反渗透为扩散,决定粒子能否通过不但由孔径决定,还由膜和粒子性质决定(有一定选择性通过)。

(3)压力范围(Mpa):微滤0.01~0.2, 超滤0.1~0.5、反渗透2~10.

(4)生产能力(通水量L/m2.h):微滤约1000、超滤20~200、反渗透4~10

(5)膜结构:微滤膜为多孔膜、不对称膜、复合膜;超滤膜为不对称膜、复合膜;反渗透膜为不对称膜、复合膜(致密膜)。

七2、掌握膜渗透过程中浓度极化现象的概念,它对膜渗透有何影响,影响浓度极化的主要因素及缓和浓度极化措施。

浓度极化现象的概念:膜分离过程中,通常膜表面附近被脱出物质的浓度逐渐增加,其结果是膜表面附近浓度高于浓缩液主体的浓度,该现象称浓度极化现象。浓度极化现象实际为被脱出物质在溶液和膜表面上积累,产生一个动态平衡的过程。产生三种消极作用:(1)容质透过率增加;(2)在膜上形成沉淀或凝胶,由此减少了有效膜面积或形成串联的二次膜,使透水率减少;(3)使界面渗透压升高,推动力降低,透水率减少。

影响浓度极化的因素及缓和措施:①透水率↑,浓度极化↑;②粘度↑,浓度极化↑;③溶质扩散系数K ↑,浓度极化↓;④膜表面流动条件:湍流、快速,浓度极化↓。常常以此来改善浓度极化。

八1、微胶囊的概念,微胶囊的主要功能。

微胶囊是指一种具有聚合物壁壳的微型容器或包装物。微胶囊形状:球形、肾形、粒形、谷粒状、絮状、块状等

微胶囊粒子大小在5~200 μm较好,实际可能达0.25~1000 μm,微胶囊壁厚0.2~10μm;微胶囊内部装载的材料称为心材(或称囊心物质);微胶囊外部包囊的壁膜称为壁材(或称包囊材料)

微胶囊的主要功能:(1)改变物料的存在状态、物料的质量和体积;(2)隔离物料间的相互作用,保护敏感性物料;(3)掩盖不良风味、降低挥发性;(4)控制释放;(5)降低食品添加剂的毒理作用。

八2、微胶囊造粒技术的分类。

微胶囊造粒技术就是将固体、液体或气体物质包埋、封存在一种微型胶囊内成为固体微粒的技术。

按微胶囊造粒的原理不同,可将微胶囊造粒分为三类:

(1)属物理方法的微胶囊造粒技术:如喷雾干燥法、喷雾凝动法、空气悬浮法、多空离心法等

(2)属物理化学方法的微胶囊造粒技术:如水相分离法、油相分离法、锐孔法、挤压法、熔化分散法等。

(3)属化学方法的微胶囊造粒技术:如界面聚合法、原位聚合法、分子包囊法、辐射包囊法等。

工业上膜组件主要有:板框式、圆管式、螺旋式和中空纤维。

晶体的成长过程,分三步:(1)扩散过程:溶质质点主流体晶体表面扩散

(2)表面反应过程:溶质质点从晶体表面嵌入晶面,放出热量。

(3)传热过程:结晶热传向主流体

塔设备的基本类型:泡罩塔板、筛孔塔板、浮阀塔板

膜分离特点:(1)混合物组分通常是互溶的;(2)分离过程无相变,不加热;(3)分离物料的风味、香味、功能不易损失;(4)分离剂为半透膜;(5)往往难于实现组分间的清晰分离。

化工原理下复习小结

蒸 馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。这种分离操作是通过液相和气相之间的质量传递过程来实现的。 对于均相物系,必须造成一个两相物系才能将均相混合物分离。蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。 一、两组分溶液的气液平衡 1. 拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律: p A =p A 0x A p B =p B 0x B =p B 0(1-x A ) 根据道尔顿分压定律:p A =Py A 而P =p A +p B 则两组分理想物系的气液相平衡关系: B A A B P p x p p -= -———泡点方程 0A A A p x y P = ———露点方程 对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。 2. 用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v 可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即 B A B B =A A p p x x υυ= 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。其表达式有: A A B A B A B B B A y x p p x x y x υαυ= == 对于理想溶液: 0 A B p p α= 气液平衡方程:1(1)x y x αα= +- α值的大小可用来判断蒸馏分离的难易程度。α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。 3. 气液平衡相图 (1)温度—组成(t -x -y )图 该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。 气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。 (2)x -y 图 x -y 图表示液相组成x 与之平衡的气相组成y 之间的关系曲线图,平衡线位于对角线的上方。平衡线偏

化工原理终极总结

第一章流体与输送机械 1、基本研究方法:实验研究法、数学模型法 2、牛顿粘性定理: 应用条件: 3、阻力平方区:管内阻力与流速平方成正比的流动区域; 原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。 4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。 流动边界层分离的弊端:增加流动阻力。 优点:增加湍动程度。 5、流体黏性是造成管内流动机械能损失的原因。 6、压差计: 文丘里 孔板 转子 7、离心泵工作原理: 离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能

量,使叶轮外缘的液体静压强提高。液体离开叶轮进入泵壳后,部分动能转变成为静压能。当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。 8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。 9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。 10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能) 11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。 12、大型泵的效率通常高于小型泵是由于:容积效率大。 13、叶轮后弯的优缺点 优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。 缺点:产生同样的理论压头所需泵的体积大。 14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关; b 压头仅取决于管路特性。(耐压强度) c 不能在关死点运转。 d 很好的自吸

化工原理主要知识点

化工原理(上)各章主要知识点 绪论「 三个传递:动量传递、热量传递和质量传递 三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算 第一节流体静止的基本方程 、密度 1. 气体密度: m pM V RT 2. 液体均相混合物密度: 1 a 1 a 2 a n -(m —混合液体的密度, a —各组分质量分数, n — 各组 分密度) m 1 2 n 3. 气体混合物密度: m 1 1 2 2 n n ( m —混合气体的密度, —各组分体积分数) 4. 压力或温度改变时, 密度随之改变很小的流体成为不可压缩流体 (液体);若有显著的改变则称为可压缩流体 (气体)。 、.压力表示方法 1、常见压力单位及其换算关系: 1atm 101300 Pa 101.3kPa 0.1013MPa 10.33mH 2O 760mmHg 2 、压力的两种基准表示:绝压(以绝对真空为基准) 、表压(真空度)(以当地大气压为基准,由压力表或真空表测岀) 表压=绝压一当地大气厂 真空度=当地大气 三、流体静力学方程 1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1) 从各方向作用于某点上的静压力相等; (2) 静压力的方向垂直于任一通过该点的作用平面; (3) 在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。 2 、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体) P 1 g (z 1 Z 2) d (Z 1 Z 2) g z p (容器内盛液体,上部与大气相通, p/ g —静压头,"头"一液位高度,z p —位压头 或位头) 上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。 四、流体静力学方程的应用 1 、 U 形管压差计 指示液要与被测流体不互溶,且其密度比被测流体的大。 测量液体:P 1 p 2 ( 0 )gR g (z 2乙) 测量气体:p 1 p 2 0gR 2、双液体U 形管压差计 p 1 p 2 ( 2 第二节流体流动的基本方程 一、基本概念 3 1 1 、体积流量(流量 V s ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。单位为 m s 2 、质量流量( m s ):单位时间内流过任意流通截面积的质量。单位为 kg s 1 m s V s P 2 P 1 g p g 1 )gR

化工原理公式及各个章节总结汇总

第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ222212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ ρ ρ2 22212112121+ 5. 雷诺数: μ ρ du = Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?= =??=2 2322 7. 哈根-泊谡叶方程:2 32d lu p f μ= ? 8. 局部阻力计算:流道突然扩大:2 211?? ? ?? -=A A ξ流产突然缩小:??? ??- =2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 2 22=+ 令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 2 21r r t t l Q λπ-= 或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +- =ln 2λ π(由公式4推导)

6. 三层圆筒壁定态热传导方程:3 4 12321214 1ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λ μ Cp =Pr 格拉晓夫数2 23μρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ? ????? ??=λμμρλα8 .0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+= 无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数: 2 1 211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数方程: 2 12121 211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率方程:t KA Q ?= 14. 两流体在换热器中逆流不发生相变的计算方程:???? ??-=--22111112211ln p m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:??? ? ??+=--2 2111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2 221ln p m c q KA t T t T = -- 第四章 蒸发 1. 蒸发水量的计算:110)(Lx x W F Fx =-= 2. 水的蒸发量:)1(1 x x F W - = 3. 完成时的溶液浓度:W F F x -= 4. 单位蒸气消耗量: r r D W ' =,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热

(完整版)化工原理下册习题及章节总结(陈敏恒版).doc

第八章课堂练习: 1、吸收操作的基本依据是什么?答:混合气体各组分溶解度不同 2、吸收溶剂的选择性指的是什么:对被分离组分溶解度高,对其它组分溶解度低 3、若某气体在水中的亨利系数 E 值很大,说明该气体为难溶气体。 4、易溶气体溶液上方的分压低,难溶气体溶液上方的分压高。 5、解吸时溶质由液相向气相传递;压力低,温度高,将有利于解吸的进行。 6、接近常压的低浓度气液平衡系统,当总压增加时,亨利常数 E 不变, H 不变,相平衡常数 m 减小 1、①实验室用水吸收空气中的O2 ,过程属于( B ) A 、气膜控制B、液膜控制C、两相扩散控制 ② 其气膜阻力(C)液膜阻力 A 、大于B、等于C、小于 2、溶解度很大的气体,属于气膜控制 3、当平衡线在所涉及的范围内是斜率为m 的直线时,则 1/Ky=1/ky+ m /kx 4、若某气体在水中的亨利常数 E 值很大,则说明该气体为难溶气体 5 、总传质系数与分传质系数之间的关系为l/KL=l/kL+1/HkG ,当(气膜阻力 1/HkG) 项可忽略时,表示该吸收过程为液膜控制。 1、低含量气体吸收的特点是L 、 G 、Ky 、 Kx 、T 可按常量处理 2、传质单元高度HOG 分离任表征设备效能高低特性,传质单元数NOG 表征了(分离任务的难易)特性。 3、吸收因子 A 的定义式为 L/ ( Gm ),它的几何意义表示操作线斜率与平衡线斜率之比 4、当 A<1 时,塔高 H= ∞,则气液两相将于塔底达到平衡 5、增加吸收剂用量,操作线的斜率增大,吸收推动力增大,则操作线向(远离)平衡线的方向偏移。 6、液气比低于(L/G ) min 时,吸收操作能否进行?能 此时将会出现吸收效果达不到要求现象。 7、在逆流操作的吸收塔中,若其他操作条件不变而系统温度增加,则塔的气相总传质单元 高度 HOG 将↑,总传质单元数NOG将↓,操作线斜率(L/G )将不变。 8、若吸收剂入塔浓度 x2 降低,其它操作条件不变,吸收结果将使吸收率↑,出口气体浓度↓。 x2 增大,其它条件不变,则 9、在逆流吸收塔中,吸收过程为气膜控制,若进塔液体组 成气相总传质单元高度将( A )。 A. 不变 B.不确定 C.减小 D. 增大 吸收小结: 1、亨利定律、费克定律表达式 及温度而异,单位与压强的 2、亨利系数与温度、压力的关系; E 值随物系的特性单 位一致; m 与物系特性、温度、压力有关(无因次) 3、 E 、 H 、 m 之间的换算关系 4、吸收塔在最小液气比以下能否正常工作。 5、操作线方程(并、逆流时)及在y~x 图上的画法 6、出塔气体有一最小值,出塔液体有一最大值,及各自的计算式 7、气膜控制、液膜控制的特点 8、最小液气比(L/G)min 、适宜液气比的计算 9、加压和降温溶解度高,有利于吸收 减压和升温溶解度低,有利于解吸

化工原理知识点总结

一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。 6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率?v:考虑流量泄漏所造成的能量损失;水力效率?H:考虑流动阻力所造成的能量损失;机械效率?m:考虑轴承、密

封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m3 1atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置 离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体 12. 往复泵的流量调节 ? (1)正位移泵 ? 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑∑∑∑∑∑ζλλζλ

化工原理(上)主要知识点

化工原理(上)各章主要知识点 三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算 第一节 流体静止的基本方程 一、密度 1. 气体密度:RT pM V m = = ρ 2. 液体均相混合物密度: n m a a a ρρρρn 22111+++=Λ (m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组 分密度) 3. 气体混合物密度:n n m ρ?ρ?ρ?ρ+++=Λ2211(m ρ—混合气体的密度,?—各组分体积分数) 4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。 二、.压力表示方法 1、常见压力单位及其换算关系: mmHg O mH MPa kPa Pa atm 76033.101013.03.10110130012===== 2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压 三、流体静力学方程 1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等; (2)静压力的方向垂直于任一通过该点的作用平面; (3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。 2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体) )(2112z z g p p -+=ρ )(2121z z g p g p -+=ρρ p z g p =ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头) 上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。 四、流体静力学方程的应用 1、U 形管压差计 指示液要与被测流体不互溶,且其密度比被测流体的大。 测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体: gR p p 021ρ=- 2、双液体U 形管压差计 gR p p )(1221ρρ-=- 第二节 流体流动的基本方程 一、基本概念 1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。单位为13 -?s m 2、质量流量(s m ):单位时间内流过任意流通截面积的质量。单位为1 -?s kg s s V m ρ=

(完整版)化工原理概念汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

(完整版)化工原理基本知识点

第一章 流体流动 一、压强 1、单位之间的换算关系: 221101.3310330/10.33760atm kPa kgf m mH O mmHg ==== 2、压力的表示 (1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。 (2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。 表压=绝压-大气压 (3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少 真空度=大气压-绝压 3、流体静力学方程式 0p p gh ρ=+ 二、牛顿粘性定律 F du A dy τμ= = τ为剪应力; du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp 111Pa s P cP ==g 液体的粘度随温度升高而减小,气体粘度随温度升高而增大。 三、连续性方程 若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。 111222u A u A ρρ= 对不可压缩流体 1122u A u A = 即体积流量为常数。 四、柏努利方程式 单位质量流体的柏努利方程式: 22u p g z We hf ρ???++=-∑ 22u p gz E ρ ++=称为流体的机械能 单位重量流体的能量衡算方程: Hf He g p g u z -=?+?+?ρ22

z :位压头(位头);22u g :动压头(速度头) ;p g ρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η = 五、流动类型 雷诺数:Re du ρ μ = Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。 (1)层流: Re 2000≤:层流(滞流) ,流体质点间不发生互混,流体成层的向前流动。圆管内层流时的速度分布方程: 2 max 2(1)r r u u R =- 层流时速度分布侧型为抛物线型 (2)湍流 Re 4000≥:湍流(紊流) ,流体质点间发生互混,特点为存在横向脉动。 即,由几个物理量组成的这种数称为准数。 六、流动阻力 1、直管阻力——范宁公式 2 2 f l u h d λ= f f f p h H g g ρ?== (1)层流时的磨擦系数:64 Re λ=,层流时阻力损失与速度的一次方成正比,层流区又称为阻力一次方区。 (2)湍流时的摩擦系数 ①(Re,)f d ελ=(莫狄图虚线以下):给定Re ,λ随d ε增大而增大;给定d ε ,λ 随Re 增大而减小。(2f p u λ?∝,虽然u 增大时, Re 增大, λ减小,但总的f p ?是增大的) ②()f d ελ=(莫狄图虚线以上),λ仅与d ε 有关,2f p u ?∝,这一区域称为阻力 平方区或完全湍流区。 2、局部阻力 (1)阻力系数法

化工原理公式总结

化工原理公式总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示:)21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ2 22212112121p u g z p u g z + +=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρ ρ2 22 212112121+ 5. 雷诺数:λ μ ρ64 Re = =du 6. 范宁公式:ρρμλf p d lu u d l Wf ?==??=2 2322 7. 哈根-泊谡叶方程:2 32d lu p f μ=? 8. 局部阻力计算:流道突然扩大:2211??? ??-=A A ξ流产突然缩小:??? ? ? -=2115.0A A ξ 9. 混合液体密度的计算:n wn B wB A wA m x x x ρρρρ+ ++=....1ρ液体混合物中个组分得密度, 10. Kg/m 3,x--液体混合物中各组分的质量分数。 10。表压强=绝对压强-大气压强真空度=大气压强-绝对压强 11. 体积流量和质量流量的关系:w s =v s ρm 3/skg/s 整个管横截面上的平均流速: A Vs = μA--与流动方向垂直管道的横截面积,m 2 流量与流速的关系: 质量流量:μρ ===A v A w G s s G 的单位为:kg/ 12. 一般圆形管道内径:πμs v d 4= 13. 管内定态流动的连续性方程: 常数 =====ρμρμρμA A A s w (222111) 表示在定态流动系统中,流体流经各截面的质量流量不变,而流速u 随管道截面积A 及流体的密度ρ而变化。 对于不可压缩流体的连续性方程: 常数=====A A A s v μμμ (2211) 体积流量一定时流速与管径的平方成反比:() 2 2 121d d = μμ 14.牛顿黏性定律表达式:dy du μ τ=μ为液体的黏度=1000cP 15平板上边界层的厚度可用下式进行评估:

化工原理重要公式(总结精选)

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μ τ= 静力学方程 g z p g z p 22 11 +=+ρρ 机械能守恒式 f e h u g z p h u g z p +++=+++2 222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 232d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η 最大允许安装高度 100][-∑--= f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体)(饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+

恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑= V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μ ρρ18)(2 g d u p p t -=, 2Re

广东工业大学化工原理下册总结

一、填空与选择题试题范围(30分) 1、蒸馏定义及概念,实现精馏的理论依据(国庆+李军PPT ) 定义:利用液体混合物中各组分挥发性的差异来分离液体混合物的传质过程。 概念:是质量传递过程(传质过程),即由浓度差引起的物质转移过程 精馏的理论依据(13~14):即多次蒸馏。液体混合物经过多次部分汽化和多次部分冷凝后,几乎被完全分离。 2、进料热状况的种类,q 值大小与进料状况的关系;q 线的物理意义,不同进料状况下 q 线的变化(国庆+李军PPT ) 进料的汽化潜热 需的热量 进料汽化为饱和蒸汽所饱和液体焓饱和蒸汽焓原料焓饱和蒸汽焓=--=--=-= L V F V I I I I F L L q ' 对于饱和液体、气液混合物以及饱和蒸汽而言,q 值就等于进料的液相分率。 进料焓值(温度)增加,q 值减小, 则 q 线与精馏操作线的交点(相应加料热状态下两操作线的交点)沿着精馏操作线朝 x 、y 减小的方向移动。从塔设备的角度,这意味着加料板位置下移。 3、精馏塔计算时,塔内上升蒸汽量与R 的关系 回流比D L R = L ——精馏段下降液体的摩尔流量,kmol/h ;D ——馏出液摩尔流量,kmol/h 4、相对挥发度与饱和蒸气压的关系(国庆PPT ) 00B A p p =α 0 0,B A p p —分别为组分A 、B 的液体蒸汽压,Pa ,即纯液体的饱和蒸汽压; 5、在y -x 相图上,相对挥发度α大小与平衡线、对角线、组分的分离难易程度等之间的关系(李军PPT ) y y x x x y )1(, )1(1--= ?-+?= αααα 1=α时,x y = ; 对于大多数溶液,两相平衡时,y 总是大于 x ,故平衡线位于对角线上方。平衡线偏离对角线越远,表示该溶液越易分离。恒沸点时,x-y 线与对角线相交,该点处汽液相组成相等。 α越大,组分在汽、液两相中的摩尔分数相差越大,分离也越容易 6、精馏塔实际板数计算(李军PPT ) 全塔板效率 ET (总板效率)为完成一定分离任务所需的理论塔板数 N 和实际塔板数 NT 之比

化工原理知识点总结复习重点(完美版).doc

第一章、流体流动 一、流体静力学 二、流体动力学 三、流体流动现象 四、流动阻力、复杂管路、流量计 一、流体静力学: 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。 表压强(力)=绝对压强(力)- 大气压强(力)真空度=大气压强- 绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 流体静力学方程式及应用: 压力形式p2 p1 g( z1 z2 ) 备注: 1) 在静止的、连续的同一液体内,处于同一 能量形式p1 z1 g p2 z2 g 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。应用: U型压差计p1p2( 0) gR 倾斜液柱压差计 微差压差计 二、流体动力学 流量 m kg/s m=Vρ 质量流量 S SS 体积流量S 3 m S=GA= π /4d2G V m /s V S=uA= π /4d2u 质量流速G kg/m 2s (平均)流速u m/s G=uρ 连续性方程及重要引论: u2( d1) 2 u1d2 一实际流体的柏努利方程及应用(例题作业题)

以单位质量流体为基准: 1 2 p1 1 2 p2 J/kg z1 g 2 u1 W e z2 g 2 u2 W f 以单位重量流体为基准: 1 2 p1 1 2 p2 J/N=m z1 2g u1 g H e z2 2g u2 g h f 输送机械的有效功率:N e m s W e 输送机械的轴功率:N N e (运算效率进行简单数学变换) 应用解题要点: 1、作图与确定衡算范围: 指明流体流动方向,定出上、下游界面; 2、截面的选取:两截面均应与流动方向垂直; 3、基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、两截面上的压力:单位一致、表示方法一致; 5、单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: 流体流动类型及雷诺准数: ( 1)层流区Re<2000 (2)过渡区2000< Re<4000 ( 3)湍流区Re>4000 本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。 流体在管内作层流流动时,其质点沿管轴作有规则的平行运动,各质点互不碰撞,互不混合流体在管内作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的旋涡。 由于质点碰撞而产生的附加阻力较自黏性所产生的阻力大得多,所以碰撞将使流体前进阻力急剧 加大。 管截面速度大小分布: 无论是层流或揣流,在管道任意截面上,流体质点的速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大。 层流: 1、呈抛物线分布;2、管中心最大速度为平均速度的2倍。 湍流: 1、层流内层; 2、过渡区或缓冲区;3、湍流主体 湍流时管壁处的速度也等于零,靠近管壁的流体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非 完全端流流动的区域,这区域称为缓冲层或过渡层,再往中心才是揣流主体。层流内层的厚度随 Re 值的增加而减小。 层流时的速度分布 u 1 u max 2 湍流时的速度分布u 0.8u max 四、流动阻力、复杂管路、流量计: 计算管道阻力的通式:(伯努利方程损失能)

化工原理知识点总结复习重点完美版

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: ● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 +=+ρρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 ● 流量 质量流量 m S kg/s

m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论: ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρ ρ222212112121 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηe N N = (运算效率进行简单数学变换) 应用解题要点: 1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面; 2、 截面的选取:两截面均应与流动方向垂直; 3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、 两截面上的压力:单位一致、表示方法一致; 5、 单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: ● 流体流动类型及雷诺准数: (1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000

化工原理少学时知识点整理

1吸收分离的依据是什么?如何分类? 答:依据是组分在溶剂中的溶解度差异。 (1 )按过程有无化学反应:分为物理吸收、化学吸收 (2)按被吸收组分数:分为单组分吸收、多组分吸收 (3 )按过程有无温度变化:分为等温吸收、非等温吸收 (4)按溶质组成高低:分为低组成吸收、高组成吸收 2、吸收操作在化工生产中有何应用? 答:吸收是分离气体混合物的重要方法,它在化工生产中有以下应用。 ①分离混合气体以回收所需组分,如用洗油处理焦炉气以回收其中的芳烃等。 ②净化或精制气体,如用水或碱液脱除合成氨原料气中的二氧化碳等。 ③制备液相产品,如用水吸收氯化氢以制备盐酸等。 ④工业废气的治理,如工业生产中排放废气中含有NOSO等有毒气体,则需用吸收方法 除去,以保护大气环境。 3、吸收与蒸馏操作有何区别? 答:吸收和蒸馏都是分离均相物系的气一液传质操作,但是,两者有以下主要差别。 ①蒸馏是通过加热或冷却的办法,使混合物系产生第二个物相;吸收则是从外界引入另一相物质(吸收 剂)形成两相系统。因此,通过蒸馏操作可以获得较纯的组分,而在吸收操作中因溶质进入溶剂,故不能得到纯净组分。 ②传质机理不同,蒸馏液相部分气化和其相部分冷凝同时发生,即易挥发组分和难挥发组分同时向着彼此 相反方向传递。吸收进行的是单向扩散过程,也就是说只有溶质组分由气相进入液相的单向传递。 ③依据不同。 4、实现吸收分离气相混合物必须解决的问题? 答:(1 )选择合适的溶剂 (2)选择适当的传质设备 (3)溶剂的再生 5、简述吸收操作线方程的推导、物理意义、应用条件和操作线的图示方法。 答:对塔顶或塔底与塔中任意截面间列溶质的物料衡算,可整理得 L X亿存2)或丫V X M V X i) 上式皆为逆流吸收塔的操作线方程。该式表示塔内任一截面上的气液相组成之间的关系。式中L/V为液气比,其值反映单位气体处理量的吸收剂用量,是吸收塔重要的操作参数。 上述讨论的操作线方程和操作线,仅适用于气液逆流操作,在并流操作时,可用相似方 法求得操作线方程和操作线。 应予指出,无论是逆流还是并流操作,其操作线方程和操作线都是通过物料衡算得到的,它们与物系的平衡关系、操作温度与压强及塔的结构等因素无关。 6、亨利定律有哪些表达式?应用条件是什么?答:亨利定律表达气液平衡时两相组成间的关系。由于相组成由多种有多种表示方法,因此亨利定律有多种表达式,可据使用情况予以选择。 ①气相组成用分压,液相组成用摩尔分数表示时,亨利定律表达式为 P Ex

化工原理知识点总结整理

化工原理知识点总结整理 一、流体力学及其输送 1、单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。 2、四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。 3、牛顿粘性定律:F=τA=μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。 4、两种流动形态:层流和湍流。流动形态的判据雷诺数 Re=duρ/μ;层流过渡湍流。当流体层流时,其平均速度是最大流速的1/2。 5、连续性方程:A1u1=A2u2;伯努力方程: gz+p/ρ+1/2u2=C。 6、流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同) 7、流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较

大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。转子流量计的特点恒压差、变截面。 8、离心泵主要参数:流量、压头、效率(容积效率hv:考虑流量泄漏所造成的能量损失;水力效率hH:考虑流动阻力所造成的能量损失;机械效率hm:考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9、常温下水的密度1000kg/m3,标准状态下空气密度 1、29 kg/m31atm =Pa=101、3kPa=0、1013MPa= 10、33mH2O=760mmHg(1)被测流体的压力 > 大气压表压 = 绝压-大气压(2)被测流体的压力 < 大气压真空度 = 大气压-绝压= -表压 10、管路总阻力损失的计算1 1、离心泵的构件: 叶轮、泵壳(蜗壳形)和轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体

化工原理知识点总结复习重点(完美版)

第一章、流体流动 一、 流体静力学 二、 流体动力学 三、 流体流动现象 四、 流动阻力、复杂管路、流量计 一、流体静力学: ● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力, 俗称压强。 表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用: 压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式 g z p g z p 22 11 += +ρ ρ 水平面上各点压力都相等。 此方程式只适用于静止的连通着的同一种连续的流体。 应用: U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计 二、流体动力学 ● 流量 质量流量 m S kg/s m S =V S ρ 体积流量 V S m 3/s 质量流速 G kg/m 2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论: 22 112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) m S =GA=π/4d 2G V S =uA=π/4d 2u

以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ ρ ρ222212112121 J/kg 以单位重量流体为基准:f e h g p u g z H g p u g z ∑+++=+++ ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: η e N N = (运算效率进行简单数学变换) 应用解题要点: 1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面; 2、 截面的选取:两截面均应与流动方向垂直; 3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小; 4、 两截面上的压力:单位一致、表示方法一致; 5、 单位必须一致:有关物理量的单位必须一致相匹配。 三、流体流动现象: ● 流体流动类型及雷诺准数: (1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000 本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。 流体在管内作层流流动时,其质点沿管轴作有规则的平行运动,各质点互不碰撞,互不混合 流体在管内作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的旋涡。由于质点碰撞而产生的附加阻力较自黏性所产生的阻力大得多,所以碰撞将使流体前进阻力急剧加大。 管截面速度大小分布: 无论是层流或揣流,在管道任意截面上,流体质点的速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大。 层流:1、呈抛物线分布;2、管中心最大速度为平均速度的2倍。 湍流:1、层流内层;2、过渡区或缓冲区;3、湍流主体 湍流时管壁处的速度也等于零,靠近管壁的流体仍作层流流动,这-作层流流动的流体薄层称为层流内层或层流底层。自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非完全端流流动的区域,这区域称为缓冲层或过渡层,再往中心才是揣流主体。层流 内层的厚度随Re 值的增加而减小。 层流时的速度分布 max 2 1 u u = 湍流时的速度分布 max 8.0u u ≈ 四、流动阻力、复杂管路、流量计: ● 计算管道阻力的通式:(伯努利方程损失能)

相关主题
文本预览
相关文档 最新文档