当前位置:文档之家› 最新经典--初中数学三角形专题训练及例题解析

最新经典--初中数学三角形专题训练及例题解析

最新经典--初中数学三角形专题训练及例题解析
最新经典--初中数学三角形专题训练及例题解析

知识点梳理

考点一、三角形

1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

2、三角形的分类.

?????钝角三角形直角三角形锐角三角形

???

????)

(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:

三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段

①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心

②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)

5、三角形具有稳定性

6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。

推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。

7、多边形的外角和恒为360° 8、多边形及多边形的对角线

①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.

②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。

③多边形的对角线的条数:

A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

B.n 边形共有

2

)

3(-n n 条对角线。 9、边形的内角和公式及外角和

①多边形的内角和等于(n-2)×180°(n ≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。

①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。 考点二、全等三角形 1、全等三角形的概念

三角形 (按角分)

三角形 (按边分)

能够完全重合的两个三角形叫做全等三角形。。

2、三角形全等的判定

三角形全等的判定定理:

(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

3、全等变换

只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:

(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

2、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

考点四、直角三角形

1、直角三角形的两个锐角互余

2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半

4直角三角形两直角边a,b的平方和等于斜边c的平方,即

222c b a =+

5、摄影定理

在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项

∠ACB=90° BD AD CD ?=2

? AB AD AC ?=2

CD ⊥AB AB BD BC ?=2 6、常用关系式

由三角形面积公式可得: AB ?CD=AC ?BC

经典例题解析:

例1.如图,BP 平分∠FBC ,CP 平分∠ECB ,∠A=40°求∠BPC 的度数。 分析:可以利用三角形外角的性质及三角形的内角和求解。

解:∵∠1=)4(21∠+∠A )3(2

1

2∠+∠=∠A

∵)21(180∠+∠-?=∠BPC ?=∠40A

∴(()111804)322BPC A A ??∠=?-∠+∠+∠+∠????

()?

=?+?-?=70401802

1

180 例2.如图,求∠A+∠C+∠3+∠F 的度数。

分析:由已知∠B=30°,∠G=80°, ∠BDF=130°,利用四边形内角和,求出 ∠3的度数,再计算要求的值。

解:∵四边形内角和为(4-2)×180°=360°

∴∠3=360°-30°-80°-130°=120° 又∵∠A ∠C ∠F 是三角形的内角 ∴∠A+∠C+∠F+∠3=180°+120°=300°

例3.已知一个多边形的每个外角都是其相邻内角度数的4

1,求这个多边形的边数。

分析:每一个外角的度数都是其相邻内角度数的4

1,而每个外角与其相邻的内角的度数之和为180°。

解:设此多边形的外角为x ,则内角的度数为4x

418036*********

x x x n +=?=?

?

∴=

=?

则解得边数即这个多边形的边数为

例4.用正三角形、正方形和正六边形能否进行镶嵌?

分析:可以进行镶嵌的条件是:一个顶点处各个内角和为360° 解:正三角形的内角为?60 正方形的内角为?90

正六边形的内角为?120

∴可以镶嵌。一个顶点处有1个正三角形、2个正方形和1个正六边形。

例5.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD=

解:在△ABC 中,三边的高交于一点,所以CF ⊥AB , ∵∠BAC=75°,且CF ⊥AB ,∴∠ACF=15°, ∵∠ACB=60°,∴∠BCF=45° 在△CDH 中,

三内角之和为180°, ∴∠CHD=45°, 故答案为∠CHD=45°.

点评:考查三角形中,三条边的高交于一点,且内角和为180°.

例6.如图,AD 、AM 、AH 分别△ABC 的角平分线、中线和高.

(1)因为AD 是△ABC 的角平分线,所以∠ =∠ = 1/2∠ ; (2)因为AM 是△ABC 的中线,所以 = = ;

(3)因为AH是△ABC的高,所以∠ =∠ =90°.

分析:(1)根据三角形角平分线的定义知:角平分线平分该角;

(2)根据三角形的中线的定义知:中线平分该中线所在的线段;

(3)根据三角形的高的定义知,高与高所在的直线垂直.

解答:解:(1)∵AD是△ABC的角平分线,

∴∠BAD=∠CAD=1/2∠BAC;

(2)∵AM是△ABC的中线,

∴BM=CM=1/2BC;

(3)∵AH是△ABC的高,∴AH⊥BC,

∴∠AHB=∠AHC=90°;

故答案是:(1)BAD、CAD、BAC;(2)BM、CM、BC;(3)AHB、AHC.

例8.如图,AP平分∠BAC交BC于点P,∠ABC=90°,且PB=3cm,AC=8cm,则△APC 的面积是 cm2.

解:∵AP平分∠BAC交BC于点P,∠ABC=90°,PB=3cm,∴点P到AC的距离等于3,∵

AC=8cm,∴△APC的面积=8×3÷2=12cm2.

例9. 已知:点P是等边⊿ABC内的一点,∠BPC=150°,PB=2,PC=3,求P A的长。

分析:将⊿BAP绕点B顺时针方向旋转60°至⊿BCD,即可证得⊿BPD为等边三角形,⊿PCD为直角三角形。

解:∵BC=BA,

∴将⊿BAP绕点B顺时针方向旋转60°,使BA与BC重合,得⊿BCD,连结PD。

∴BD=BP=2,P A=DC。∴⊿BPD是等边三角形。∴∠BPD=60°。

∴∠DPC=∠BPC-∠BPD=150°-60°=90°。

∴DC

=P A=DC=13。

例10. 两个全等的含30o,60o角的三角板ADE和ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连结ME,MC。试判断△EMC是什么样的三角形,并说明理由。

分析:判断一个三角形的形状,可以结合所给出的图形作出假设,或许是等腰三角形。这样就可以转化为另一个问题:尝试去证明EM=MC,要证线段相等可以寻找全等三角形来解决,然而图中没有形状大小一样的两个三角形。这时思考的问题就可以转化为这样一个新问题:如何构造一对全等三角形?根据已知点M是直角三角形斜边的中点,产生联想:直角三角形斜边上的中点是斜边的一半,得:MD=MB=MA。连结M A 后,可以证明△MDE≌△MAC。

答:△EMC是等腰直角三角形。

证明:连接AM,由题意得,

DE=AC,AD=AB,∠DAE+∠BAC=90o。∴∠DAB=90o。

∴△DAB为等腰直角三角形。

又∵MD=MB,

∴MA=MD=MB,AM⊥DB,∠MAD=∠M AB=45o。

∴∠MDE=∠MAC=105o,∠DMA=90o。

∴△MDE≌△MAC。

∴∠DME=∠AMC,ME=MC。

又∠DME+∠EMA=90o,

∴∠AMC+∠EMA=90o。

∴MC⊥EM。

∴△EMC是等腰直角三角形。

说明:构造全等三角形是解决这个问题的关键,那么构造全等又如何进行的呢?对条件的充分认识和对知识点的联想可以找到添加辅助线的途径。构造过程中要不断地转化问题或转化思维的角度。会转化,善于转化,更能体现思维的灵活性。在问题中创设以三角板为情境也是考题的一个热点。

例11.如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.

提示:

作CF ⊥AB 于F ,则∠ACF =45°, 在△ABC 中,∠ACB =90°,CE ⊥AD ,

于是,由∠ACG =∠B =45°,AB =AC ,

且易证∠1=∠2,

由此得△AGC ≌△CEB (ASA ).

再由CD =DB ,CG =BE ,∠GCD =∠B , 又可得△CGD ≌△BED (SAS ),

则可证∠CDA =∠EDB .

例12.如图,△ABC 中,∠1=∠2,∠3=∠4,∠5=∠6.∠A =60°.求∠ECF 、∠FEC 的度数. 略解:因为 ∠A =60°,

所以 ∠2+∠3=2

1

(180°-60°)=60°;

又因为 B 、C 、D 是直线, 所以 ∠4+∠5=90°;

于是 ∠FEC =∠2+∠3=60°,

∠FCE =∠4+∠5=90°, ∠FEC =60°.

例13. 在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .

略解:作EH ⊥BC 于H ,

由于E 是角平分线上的点,可证 AE =EH ;

且又由 ∠AEC =∠B +∠ECB =∠CAD +∠ECA =∠AFE 可证 AE =AF ,

于是由 AF =EH ,∠AFG =∠EHB =90°,∠B =∠AGF . 可得 △AFG ≌△EHB ; 所以 AG =EB ,

即 AE +EG =BG +GE , 所以 AE =BG .

反馈练习

1.如图,AD 是△ABC 的中线,如果△ABC 的面积是18cm 2,则△ADC 的面积是 cm 2.

1 2

A

B F C

D

E A B

C D F

G E 1 2 3 4 5 6

A B

C D E F G H

2.如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别

为D,E,已知DC=2,则BE= .

3.(2009?宜宾)已知:如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的

延长线于点F.(1)则AM DM;(2)若

DF=2,则菱形ABCD的周长为.

4.已知BD,CE是△ABC的两条高,M、N分别为BC、DE的中点,勇敢猜一猜:

(1)线段EM与DM的大小有什么关系?EM DM;

(2)线段MN与DE的位置有什么关系?.

5.如图,一块长方体砖宽AN=5cm ,长ND=10cm ,CD 上的点B 距地面的高BD=8cm ,地面上A 处的一只蚂蚁到B 处吃食,需要爬行的最短路径是 cm .

6、已知:如图,P 是正方形ABCD 内点,∠P AD =∠PDA =150. 求证:△PBC 是正三角形.

7、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.

A P

C

D

B

A

C

B P

D

三角形中作辅助线的常用方法举例

常见辅助线的作法有以下几种:

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.

2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知

识点常常是角平分线的性质定理或逆定理.

4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,

再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.

一、在利用三角形三边关系证明线段不等关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:

例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM +AN > MD +DE +NE;(1) 在△BDM 中,MB +MD >BD ; (2) 在△CEN 中,CN +NE >CE ; (3) 由(1)+(2)+(3)得:

AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC

(法二:)如图1-2, 延长BD 交 AC 于F ,延长CE 交BF 于G ,

在△ABF 和△GFC 和△GDE 中有:

AB +AF > BD +DG +GF (三角形两边之和大于第三边)(1) GF +FC >GE +CE (同上)………………………………(2) DG +GE >DE (同上)……………………………………(3) 由(1)+(2)+(3)得:

AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +EC 。

二、在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,

A B C D E N

M 1

1-图A B C D E F G

21-图

构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:

2-1:已知D为△ABC内的任一点,求证:∠BDC>∠BAC。

因为∠BDC与∠BAC不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于BAC处于在内角的位置;

证法一:延长BD交AC于点E,这时∠BDC是△EDC的外角,

∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC

证法二:连接AD,并延长交BC于F

∵∠BDF是△ABD的外角

∴∠BDF>∠BAD,同理,∠CDF>∠CAD

∴∠BDF+∠CDF>∠BAD+∠CAD

即:∠BDC>∠BAC。

注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明。

三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:

3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。

BE+CF>EF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠24,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同一个三角形中。

证明:在DA上截取DN=DB,连接NE,NF,则DN=DC,

在△DBE和△DNE中:

?

?

?

?

?

=

=

=

)

(

)

(2

1

)

(

公共边

已知

辅助线的作法

ED

ED

DB

DN

∴△DBE≌△DNE (SAS)

∴BE=NE(全等三角形对应边相等)

同理可得:CF=NF

在△EFN中EN+FN>EF(三角形两边之和大于第三边)

∴BE+CF>EF。

注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等。

四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。

例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF

证明:延长ED至M,使DM=DE,连接

CM,MF。在△BDE和△CDM中,

?

?

?

?

?

=

=

=

)

(

)

(

1

)

(

辅助线的作法

对顶角相等

中点的定义

MD

ED

CDM

CD

BD

∴△BDE≌△CDM (SAS)

又∵∠1=∠2,∠3=∠4 (已知)

∠1+∠2+∠3+∠4=180°(平角的定义)

∴∠3+∠2=90°

即:∠EDF=90°

∴∠FDM=∠EDF =90°

在△EDF和△MDF中

?

?

?

?

?

=

=

=

)

(

)

(

)

(

公共边

已证

辅助线的作法

DF

DF

FDM

EDF

MD

ED

∴△EDF≌△

MDF (SAS)

∴EF=MF (全等三角形对应边相等)

∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边)

∴BE+CF>EF

FD,证法同上。

A

B C

D

E

F

G

1

2-

A

B

C

D

E F

N

1

3-

1

234

1

4-

A

B

C

D

E F

M

1

23

4

5-1:AD为△ABC的中线,求证:AB+AC>2AD。

要证AB+AC>2AD,由图想到: AB+BD>AD,AC+CD>AD,所以有AB+AC+ BD+CD>AD+AD=2AD,左边比要证

CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去。

证明:延长AD至E,使DE=AD,连接BE,则AE=2AD

∵AD为△ABC的中线(已知)

∴BD=CD (中线定义)

在△ACD和△EBD中

?

?

?

?

?

=

=

=

)

(

)

(

)

(

辅助线的作法

对顶角相等

已证

ED

AD

EDB

ADC

CD

BD

∴△ACD≌△EBD (SAS)

∴BE=CA(全等三角形对应边相等)

∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)

分别以AB边、

AC边为直角边各向形外作等六、截长补短法作辅助线。

例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点。

AB-AC>PB-PC。

AB-AC>PB-PC,想到利用三角形三边关系定理证之,因为欲证的是线

从而想到构造第三边AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB中,PB-PN<BN,即:AB-AC>PB-PC。

证明:(截长法)

在AB上截取AN=AC连接PN , 在△APN和△APC中

?

?

?

?

?

=

=

=

)

(

)

(2

1

)

(

公共边

已知

辅助线的作法

AP

AP

AC

AN

∴△APN≌△APC (SAS)

∴PC=PN (全等三角形对应边相等)

∵在△BPN中,有 PB-PN<BN (三角形两边之差小于第三边)

∴BP-PC<AB-AC

证明:(补短法)延长AC至M,使AM=AB,连接PM,

在△ABP和△AMP中

?

?

?

?

?

=

=

=

)

(

)

(2

1

)

(

公共边

已知

辅助线的作法

AP

AP

AM

AB

∴△ABP≌△AMP (SAS)

∴PB=PM (全等三角形对应边相等)

又∵在△PCM中有:CM>PM-PC(三角形两边之差小于第三边)

∴AB-AC>

PB-PC。

七、延长已知边构造三角形:

7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC

AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,

新的角,且让此角作为两个三角形的公共角。

证明:分别延长DA,CB,它们的延长交于E点,

∵AD⊥AC BC⊥BD (已知)

∴∠CAE=∠DBE =90°(垂直的定义)

在△DBE与△CAE中

A

B C

D

E

1

5-

A

B C

D

E

F

2

5-

A

B

C

D

N

M

P

1

6-

1

2

A B

E

O

∵??

???=∠=∠∠=∠)()()

(已知已证公共角AC BD CAE DBE E E

∴△DBE ≌△CAE (AAS )

∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。)

八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

8-1:AB ∥CD ,AD ∥BC 求证:AB=CD 。

AC (或BD )

∥CD AD ∥BC (已知)

∴∠1=∠2,∠3=∠4 (两直线平行,内错角相等) 在△ABC 与△CDA 中 ∵ ?????∠=∠=∠=∠)(43)()(21已证公共边已证CA AC ∴△ABC ≌△CDA (ASA ) ∴AB =CD (全等三角形对应边相等)

九、有和角平分线垂直的线段时,通常把这条线段延长。

9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE

要证BD =2CE ,想到要构造线段2CE ,同时CE 与∠ABC 的平分线垂直,想到 要将其延长。 BA ,CE 交于点F 。

BE ⊥CF (已知)

∴∠BEF =∠BEC =90° (垂直的定义)

在△BEF 与△BEC 中,

∵ ??

???∠=∠=∠=∠)()()

(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=2

1

CF (全等

三角形对应边相等)

∵∠BAC=90° BE ⊥CF (已知)

∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC

在△ABD 与△ACF 中

??

?

??∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC

∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE

十、连接已知点,构造全等三角形。

例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。

分析:要证∠A =∠D ,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC ,AC =BD ,若连接BC ,则△ABC 和△DCB 全等,所以,证得∠A =∠D 。

证明:连接BC ,在△ABC 和△DCB 中 1

9-图D

A E F 1

2

D A

O

A B

C D

18-图1

234

∵ ??

???===)()()

(公共边已知已知CB BC DB AC DC AB

∴△ABC ≌△DCB (SSS)

∴∠A =∠D (全等三角形对应边相等)

十一、取线段中点构造全等三有形。

例如:如图11-1:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。

分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,连接NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN 。下面只需证∠NBC =∠NCB ,再取BC 的中点M ,连接MN ,则由SSS 公理有△NBM ≌△NCM ,所以∠NBC =∠NCB 。问题得证。

证明:取AD ,BC 的中点N 、M ,连接NB ,NM ,NC 。则AN=DN ,BM=CM ,在△ABN 和△DCN 中 ∵ ??

???=∠=∠=)()

()

(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN (SAS )

∴∠ABN =∠DCN NB =NC (全等三角形对应边、角相等)

在△NBM 与△NCM 中

∵??

???)()()

(公共边=辅助线的作法=已证=NM NM CM BM NC NB

∴△NMB ≌△NCM ,(SSS) ∴∠NBC =∠NCB (全等三角形对应角相等)∴∠NBC +∠ABN =∠NCB +

∠DCN

即∠ABC =∠DCB 。

111-图D C B A M N

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=5cm ,BD=3cm , 则点D 到AB 的距离为( ) 2.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ACD 和等边△BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论: ①AE=BD ②CN=CM ③MN ∥AB 其中正确结论的个数是( ) 二.填空题(共1小题) 3.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于_________ . 三.解答题(共15小题) 4.在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且 ∠EDF+∠EAF=180°,求证DE=DF . 5.在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .请说明DE=BD+EC . 6.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AB ,DF ⊥ AC , 垂足分别为 E ,F ,且DE=DF .请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC 是等边三角形,BD 是AC 边上的高,延长BC 至E ,使CE=CD .连接DE . (1)∠E 等于多少度? (2)△DBE 是什么三角形?为什么? 8.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠A=30°.求证:AB=4BD . 9.如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 的延长线上,且BD=CE ,DE 与BC 相交于点F .求证:DF=EF . A . 5cm B . 3cm C . 2cm D . 不能确定 A . 0 B . 1 C . 2 D . 3

三角形经典习题(必看)

三角形复习卷 一、选择题 1.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm 2. 1.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B ,④∠A=∠B= 2 1 ∠C 中,能确定△ABC 是直角三角形的条件有( ) A 、1个; B 、2个; C 、3个; D 、4个 3.对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小600 4. 如图,∠BAC=90°,AD⊥BC,则图中互余的角有( ) A 、2对; B 、3对; C 、4对; D 、5对; 5. 下列说法错误的是( ) A. 三角形三条中线交于三角形内一点; B. 三角形三条角平分线交于三角形内一点 C. 三角形三条高交于三角形内一点; D. 三角形的中线、角平分线、高都是线段 6、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B、120° C、125° D、130° 7、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 相交于一点P ,若∠A=50°,则∠BPC=( ) A 、150° B、130° C、120° D、100° 8、7.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A.5 B.6 C.7 D.8 9如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB 为( )A. 80° B. 72° C. 48° D. 36° 10.在△ABC 中,∠A=2∠B=4∠C ,则△ABC 为( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.都有可能 11.直角三角形两锐角的平分线相交所夹的钝角为( ) A 、125° B 、135° C 、145° D 、150° 12.等腰△ABC 的底边为5cm ,一腰上的中线把周长分为差为3cm 的两部分,则△ABC 的腰长是( )cm 。 A B C D E P 第7题 第9题

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

经典初中数学三角形专题训练及例题解析

知 识点梳理 考点一、三角形 1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2、三角形的分类. ?????钝角三角形直角三角形锐角三角形 ??? ????) (等边三角形等腰三角形不等边三角形 3、三角形的三边关系: 三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段 ①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心 ②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同) 5、三角形具有稳定性 6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。 7、多边形的外角和恒为360° 8、多边形及多边形的对角线 ①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形. ②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。 ③多边形的对角线的条数: A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。 三角形 (按角分) 三角形 (按边分)

边形共有 2)3 ( n n 条对角线。 9、边形的内角和公式及外角和 ①多边形的内角和等于(n-2)×180°(n≥3)。 ②多边形的外角和等于360°。 10、平面镶嵌及平面镶嵌的条件。 ①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。 ②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。考点二、全等三角形 1、全等三角形的概念 能够完全重合的两个三角形叫做全等三角形。。 2、三角形全等的判定 三角形全等的判定定理: (1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”) (2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”) (3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”) 3、全等变换 只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的性质定理及推论: 定理:等腰三角形的两个底角相等(简称:等边对等角) 推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。 推论2:等边三角形的各个角都相等,并且每个角都等于60°。 2、三角形中的中位线

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

等腰三角形经典练习题(有难度)

等腰三角形练习题 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160° C F D A B

4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x ∠A= 7 180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15 B A B 2x x -15°

6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1, 求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt △DBF 中, BD=2 1,DF=1 所以∠F =∠1=30° 7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED 由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1 F A B C D E

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

三角形经典题50道附答案解析

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:1 2CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A D B C

证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) ∴△EFD ≌△CGD EF =CG B A C D F 2 1 E

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

初中三角形总复习专题典型例题经典测试题2套

三角形资料 一、三角形相关概念 1.三角形的概念 由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形的表示 通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角. 3.三角形中的三种重要线段 三角形的角平分线、中线、高线是三角形中的三种重要线段. (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线. ②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部. ③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点. ②画三角形中线时只需连结顶点及对边的中点即可. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 注意:①三角形的三条高是线段 ②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 三角形内角和性质的推理方法有多种,常见的有以下几种: (四)三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° (1)构造平角 ①可过A点作MN∥BC(如图) ②可过一边上任一点,作另两边的平行线(如图) (2)构造邻补角,可延长任一边得邻补角(如图) 构造同旁内角,过任一顶点作射线平行于对边(如图)

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

三角形培优经典题型

《三角形》练习题 班级_________ 姓名__________ 分数__________一、选择题(每题4分) 1.等腰三角形的两边长分别是3和7,那么它的周长是() A、13 B、16 C、17 D、13或17 2、如图1,图中三角形的个数为() A.17 B.18 C.19 D.20 3、在△ABC中,∠A-∠C=25°,∠B-∠A=10°,则∠B=() A、28° B、35° C、15° D、21° 4、如图2,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点, ∠A=50°,则∠D=() A.15°B.20°C.25°D.30° 5、已知一个多边形的每一个内角都等于135°,则这个多边形是() A. 五边形 B. 六边形 C. 七边形 D. 八边形 6、如图3,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°, 则∠P的度数为() A.15°B.20°C.25°D.30° 7、一个多边形截去一个内角后,形成另一个多边形,它的内角和为2520°, 则原来多边形的边数不可能是() A、15条 B、16条 C、17条 D、18条 8、已知三条线段分别是a、b、c且a<b<c(a、b、c均为整数), 若c=6,则线段a、b、c能组成三角形的个数为() A、3个 B、4个 C、5个 D、6个

图1 图2 图3 二、填空题(每题4分) 9、若△ABC的三边长分别是4,X,9,则X的取值范围是_____, 周长L的取值范围是_____;当周长为奇数时,X=_____ 10、一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,则a 的取值范围__________. 11、等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分, 则此等腰三角形的腰长是_____ 12、如图4,小亮从A点出发,沿直线前进100m后向左转30°,再沿直线前进100m, 又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了________m 13、如图5,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,S△ABC=12, 则S△ADF -S△BEF=_____. 14、如图6,∠A+∠B+∠C+∠D+∠E+∠F的度数是______° 15、如图7,DC平分∠AD B,E C平分∠AEB,若∠DAE=α, ∠D BE=β,则∠D CE=______ (用α、β表示). 16、如图8,DO平分∠CDA,BO平分∠CBA,∠A=20°,∠C=30°,∠O=______°.

全等三角形经典例题(含答案)

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长.

3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC.

5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.

7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.

11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

等腰三角形知识点+经典例题

第一讲等腰三角形 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一 边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线. (4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B,∠B=∠C=180 2A ?-∠. (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。

等边三角形经典习题

等边三角形练习题 一、选择题 1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150° 2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;?④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④ 3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF?的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形 C .直角三角形 D .不等边三角形 题3 题5 4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm 5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准确的判断是( ) A .等腰三角形 B .等边三角形 C .不等边三角形 D .不能确定形状 二、填空题 1.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______. 2.在直角三角形ABC 中,?=∠90C ,如果A B ∠=∠2,那么=∠A ______,=AB ________BC . 3.如图,已知:ABC ?是等边三角形,cm AB 5=,BC AD ⊥,AB DE ⊥,AD AF =, 则=∠BAD ________,=∠ADF _______,=BD _________cm ,=∠FDC _____. 3题图 10题图 11题图 4.一辆汽车沿?30角的山坡从山底开到山顶,共走了4000米,那么这座山的高度是____ _米. 5.一等腰三角形的一个底角为?30,底边上的高为cm 9,则这个等腰三角形的腰长是________cm , 顶角是_______. 6.ABC ?为等边三角形,D 为BC 边上的一点,AB DE //,交AC 于点E ,则EDC ?为______三角形. 7.在ABC ?中,?=∠30B ,?=∠45C , 若BC AD ⊥,D 为垂足,1=CD ,则=AB ______. 8.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,?则CD?的长度是_______. 10. 如图,ΔABC 是等边三角形,D 为BA 的中点,DE ⊥AC ,垂足为点E ,EF ∥AB ,AE=1,则AD= ,ΔEFC 的周长= 。 11.如图,已知:在ABC ?中,cm AC AB 4==,?=∠15ABC ,AC BD ⊥于点D ,则=BD ______. 三、解答题 1.如图,△ABC 中,AB=AC ,∠BAC=120°,AD ⊥AC 交BC?于点D ,?求证:?BC=3AD. 2. 如图,已知:在ABC ?中,?=∠=120,BAC AC AB ,D 是BC 上的一点,AB DE ⊥, AC DF ⊥,垂足分别为E 、F 。求证:BC DF DE 2 1= +。 3. 如图,已知:在ABC ?中,AC AB =,?=∠120BAC ,P 为BC 边的中点,AC PD ⊥。 E D C A B F

等边三角形的证明例题

F E D C B A F E D C B A 1:如图,△ABC 是等边三角形,D 、E 、F 分别是各边上的一点,且DE ⊥BC 、EF ⊥AC 、FD ⊥AB ,则△DEF 是等边三角形.请说明理由. 变式1:已知△ABC 是等边三角形,D 、E 、F 分别是各边上的一点,且AD=BE=CF.试说明△DEF 是等边三角形. 变式2:△ABC 为正三角形,∠1=∠2=∠3,△DEF 为等边三角形吗?说明理由.

A C B A ′ C ′ B ′ https://www.doczj.com/doc/6f2447305.html,.c B A D C E 变式3:如图,△ABC 是等边三角形.分别延长CA 、AB 、 BC 到A ′、B ′、C ′,使AA ′=BB ′=CC ′,则△A ′B ′C ′是等边三角形.请说明理由. 2:如图所示,已知:AB=BC=AC ,CD=DE=EC ,求证:AD=BE . 1:如图,等边△ABD 和等边△CBD 的长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE+CF =a . (1)E 、F 移动时,△BEF 的形状如何? (2)当E 、F 运动到什么位置时,△BEF 面积的最

小? 2:如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F . (1)求证:AN=BM ; (2)求证:△CEF 是等边三角形; 1.如图,已知正方形ABCD ,点E 是BC 上一点,点F 是CD 延长线上一点,连接EF ,若BE =DF ,点P 是EF 的中点. (1) 求证:AE = AF ; (2) 若75AEB ∠=?, 求CPD ∠的度数. 2. 如图,正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,且PE=PC ,过点P 作PF ⊥AE 于F ,直线PF 分别交AB 、CD 于G 、H , (1)求证: DH =AG+BE ; P G F D A

相关主题
文本预览
相关文档 最新文档