当前位置:文档之家› 电磁场与电磁波标准答案(第四版)谢处方

电磁场与电磁波标准答案(第四版)谢处方

电磁场与电磁波标准答案(第四版)谢处方
电磁场与电磁波标准答案(第四版)谢处方

一章习题解答

1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e

4y z =-+B e e

52x z =-C e e

求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ;

(7)()?A B C

和()?A B

C ;(8)

()??A B

C 和()??A B C 。

解 (1)23A x y z

+-=

==-e e e A a e

e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4

)y z -+=e e -11

(4)由 cos AB θ

=

14==?A B A B ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=17

=-A B B (6)?=A C 1

235

02x

y z

-=-e e e 41310x y z ---e e e (7)由于?=B C 04

1502x y

z

-=-e e e 8520x y z ++e e e ?=A B 123041

x

y

z

-=-e e e 1014x y z ---e e e

所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e

(8)()??=A B C 1014502x y z

---=-e e e 2405x y z -+e e e

()??=A B C 1

238

5

20

x

y z -=e e e 554411x y z --e e e

1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)

P 。

(1)判断123

PP P ?是否为一直角三角形; (2)求三角形的面积。

解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)

P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e ,

311367x y z =-=---R r r e e e

由此可见

1223(4)(28)0x z x y z =-++=R R e e e e e

故123

PP P ?为一直角三角形。 (2)三角形的面积

122312231117.1322S =

?=?==R R R R 1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。

解 34P x y z '=-++r e e e ,223P x y z =-+r e e e ,

则 53P P P P x y z ''=-=--R r r e e e 且P P 'R 与x 、y 、z 轴的夹角分别为

11cos (

)cos 32.31x P P x

P P φ--''===e R R 11cos (

)cos 120.47y P P

y

P P φ'--'===e R R

11cos ()cos (99.73z P P z P P φ--''===e R R

1.4

给定两矢量234x y z =+-A e e e 和456x y z =-+B e e e ,求它们之间的夹角和A 在

B 上的分量。

解 A 与B 之间的夹角为 1

1cos (

)cos 131θ--===AB A B A B A 在B 上的分量为 3.53277

B A ===-B A

B 1.5 给定两矢量234x y z =+-A e e e 和64x y z =--+B e e e ,求?A B 在x y z

=-+C e e e 上的分量。

解 ?=A B 2

3

464

1

x

y z

-=--e e e 132210x y z -++e e e 所以?A B 在C 上的分量为 ()?=

C A B ()14.433

?=-=-A B C C

1.6 证明:如果A B =A C 和?=A B ?A C ,则=B C ; 解 由?=A B ?A C ,则有()()??=??A A B A A C ,即

()()()()-=-A B A A A B A C A A A C

由于A B =A C ,于是得到 ()()=A A B A A C 故 =B C

1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设A 为一已知矢量,p =A X 而=?P A X ,p 和P 已知,试求X 。

解 由=?P A X ,有

()()()()p ?=??=-=-A P A A X A X A A A X A A A X 故得 p -?=

A A P X A A 1.8 在圆柱坐标中,一点的位置由2(4,,3)3

π定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。

解 (1)在直角坐标系中 4cos(23)2x π==-、4sin(23)y π==3z =

故该点的直角坐标为(2,-。

(2)在球坐标系中 5r ==、1tan (43)53.1θ-==、2120φπ== 故该点的球坐标为(5,53.1,120)

1.9 用球坐标表示的场2

25r

r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;

(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。 解 (1)在直角坐标中点(3,4,5)--处,2222(3)4(5)50r =-++-=,故

22512

r

r ==E e

1cos

220

x x rx E θ====-

e E E

(2)在直角坐标中点(3,4,5)--处,345x y z =-+-r e e e ,所以

233452525r r -+-===

e e e r E

故E 与B 构成的夹角为

11cos (

)cos (153.63θ--===EB E B E B 1.10 球坐标中两个点111(,,)r θφ和222(,,)r θφ定出两个位置矢量1R 和2R 。证明1R 和2

R 间夹角的余弦为

121212cos cos cos sin sin cos()γθθθθφφ=+-

解 由 111111111sin cos sin sin cos x y z r r r θφθφθ=++R e e e

222222222sin cos sin sin cos x y z r r r θφθφθ=++R e e e

得到 12

12

cos γ=

=R R R R

1122112212sin cos sin cos sin sin sin sin cos cos θφθφθφθφθθ++=

121211212sin sin (cos cos sin sin )cos cos θθφφφφθθ++= 121212sin sin cos()cos cos θθφφθθ-+

1.11 一球面S 的半径为5,球心在原点上,计算: (3sin )d r S

θ?e S 的值。

解 (3sin )d (3sin )d r r r S

S

S θθ==

??e S e e 22

20

d 3sin 5

sin d 75π

π

φθθθπ?=??

1.12 在由5r =、0z =和4z =围成的圆柱形区域,对矢量22r z r z =+A e e 验证散度定理。

解 在圆柱坐标系中 21()(2)32rr z r r r z

??

?=

+=+??A 所以 4

250

d d d (32)d 1200z r r r π

τ

τφπ?=+=????A 又

2d (2)(d d d )r z r r z z S

S

r z S S S φφ=+++=?

?A S e e e e e

42522

00

00

5

5d d 24d d 1200z r r π

π

φφπ?+?=????

故有

d 1200τ

τπ?=?A d S

=?A S 1.13 求(1)矢量22222324x y z x x y x y z =++A e e e 的散度;(2)求?A 对中心在原点的

一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。

解 (1)222223

2222()()(24)

2272x x y x y z x x y x y z x y z

????=++=++???A

(2)?A 对中心在原点的一个单位立方体的积分为

121212

2222121212

1

d (2272)d d d 24

x x y x y z x y z τ

τ---?=

++=

????

A (3)A 对此立方体表面的积分

1212

112

2212121212

11

d ()d d ()d d 22S

y z y z ----=--+?

????A S

1212

1212

2

22

21212112

112()d d 2()d d 22x x z x x z ------+???? 1212

1212

2

2

322312121212

11124()d d 24()d d 2224x y x y x y x y ------=???? 故有

1d 24

τ

τ?=

?A d S

=

?A S

1.14 计算矢量r 对一个球心在原点、半径为a 的球表面的积分,并求?r 对球体积的积分。

22

30

d d d sin d 4r

S

S

S aa

a π

π

φθθπ==

=????r S r e

又在球坐标系中,2

2

1()3r r r r

??=

=?r ,所以 22

3000

d 3sin d d d 4a

r r a ππτ

τθθφπ?==????r

1.15 求矢量22x y z x x y z =++A e e e 沿xy 平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x 轴和y 轴相重合。再求??A 对此回路所包围的曲面积分,验证斯托

克斯定理。

2

2

2

2

2

d d d 2

d 0d 8C

x x x x y y =-+-=?????A l

又 2

222x

y z

x z yz x x y z x

x y z

???

??=

=+???e e e A e e 所以 22

00

d (22)d d 8x

z

z

S

yz x x y ??=

+=???A S e e e

故有

d 8C

=?A l d S

=???A S

1.16 求矢量2x y x xy =+A e e 沿圆周222x y a +=的线积分,再计算??A 对此圆面积的积分。

2

d d d C

C

x x xy

y =+=

??A l 24

2

422

(cos sin cos sin )d 4

a a

a π

πφφφφφ-+=

?

d ()d y

x z z S S A A S x y ????=-=????A S e e 24222

00

d sin d d 4a S a y S r r r π

πφφ==??? 1.17 证明:(1)3?=R ;(2)??=R 0;(3)()?=A R A 。其中x y z x y z =++R e e e ,

A 为一常矢量。

解 (1)3x y z x y z

????=

++=???R (2) x

y z

x y z x y y

???

??=

=???e e e R 0

(3)设x x y y z z A A A =++A e e e ,则x y z A x A y A z =++A R ,故

()()()x

x y z y x y z A x A y A z A x A y A z x y

??

?=++++++??A R e e

()z

x y z A x A y A z z

?

++=?e x x y y z z A A A ++=e e e A 1.18 一径向矢量场()r f r =F e 表示,如果0?=F ,那么函数()f r 会有什么特点呢?

解 在圆柱坐标系中,由 1d [()]0d rf r r r

?==F 可得到

()C

f r r

=

C 为任意常数。 在球坐标系中,由 2

2

1d [()]0d r f r r r ?==F 可得到 2

()C f r r =

1.19 给定矢量函数x y y x =+E e e ,试求从点1(2,1,1)

P -到点2(8,2,1)P -的线积分d ?

E l :(1)沿抛物线2x y =;(2)沿连接该两点的直线。这个E 是保守场吗? 解 (1) d d d x y C

C

E x E y =+=

??

E l d d C

y x x y +=?

2

22

1

d(2)2d y y y y +=?

221

6d 14y y =? (2)连接点1(2,1,1)P -到点2(8,2,1)P -直线方程为

28

12

x x y y --=-- 即 640x y -+= 故

2

1

d d d d(64)(64)d x

y C

C

E

x E y y y y y =+=-+-=???E l 2

1

(124)d 14y y -=?

由此可见积分与路径无关,故是保守场。

1.20 求标量函数2x

yz ψ=的梯度及ψ

在一个指定方向的方向导数,此方向由单位矢量

x

y z

+e e e 定出;求(2,3,1)点的方向导数值。 解 222()()()x y z x yz x yz x yz x y z

ψ???

?=++=???e e e

222x y z

xyz x z x y +

+e e e

故沿方向l x

y z

=+e e e

e 的方向导数为

22

50l l ψψ?

=?=++?

e 点

(2,3,1)处沿l e 的方向导数值为

l ψ?=++=

? 1.21

试坐标中

题1.21图

y x z

A A A x y z

????=++

???A 相似的方法推导圆柱坐标下的公式 1()z r A A rA r r r z

φφ???

?=++

???A 。 解 在圆柱坐标中,取小体积元如题1.21图所示。矢量场A 沿r e 方向穿出该六面体的表面

的通量为

()d d d d z z

z z

r r

r r

r r z

z

A r r r A r r φφφφφ

φ

ψφφ+?+?+?+?+?=

+?-

≈????

[()(,,)(,,)]r r r r A r r z rA r z z φφφ+?+?-??≈

()()

1r r rA rA r z r r r

φτ?????=??? 同理

d d d d r r z z

r r z z

r

z

r

z

A r z A r z φφ

φφ

φφψ+?+?+?+?+?=

-

≈??

??

[(,,)(,,)]A r z A r z r z φφφφφ+?-??≈

A A r z r φφφτφ

φ

?????=

???

d d d d r r r r z z

z z

z z r

r

A r r A r r φφ

φφ

φ

φ

ψφφ+?+?+?+?+?=

-

≈????

[(,,)(,,)]z z A r z z A r z r r z φφφ+?-???≈

z z A A

r r z z z

φτ?????=??? 因此,矢量场A 穿出该六面体的表面的通量为

()1[

]r z

r z A rA A ΨΨΨΨr r r z

φφτφ???=++≈++????

故得到圆柱坐标下的散度表达式

0()1lim r z

A rA A r r r z

φτψτφ?→?????==++????A 1.22 方程222

222x y z u a b c

=++给出一椭球族。求椭球表面上任意点的单位法向矢量。 解 由于 222

222x y

z

x y z u a b c ?=++e e e

u ?=

故椭球表面上任意点的单位法向矢量为222(x y z u x y z a b c u

?=

=++?n e e e 1.23 现有三个矢量A 、B 、C 为

sin cos cos cos sin r θφθφθφφ=+-A e e e

22sin cos 2sin r z z z rz φφφφ=++B e e e 22(32)2x y z y x x z =-++C e e e

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波课后习题答案全-杨儒贵

第一章 矢量分析 第一章 题 解 1-1 已知三个矢量分别为 z y e e e A x 32-+=; z y e e e B x 23++=;z e e C x -=2。试求①|| |,| |,|C B A ;②单 位矢量c b a e e e , ,;③B A ?;④B A ?;⑤C B A ??)(及 B C A ??)(;⑥B C A ??)(及C B A ??)(。 解 ① ()143212 22222=-++=++= z y x A A A A 1421322222 2=++=++=z y x B B B B ()51022 22222=-++=++=z y x C C C C ② ()z y e e e A A A e x a 32141 14-+= == ()z y e e e B B B e x b 23141 14++= == ()z e e C C C e x c -= == 25 1 5 ③ 1623-=-+=++=?z z y y x x B A B A B A B A ④ z y z y z y x z y x z y B B B A A A e e e e e e e e e B A x x x 51172 1 3 321 --=-==? ⑤ ()z y z y e e e e e e C B A x x 22311102 5117 +-=---=?? 因 z y z y z y x z y x C C C A A A e e e e e e e e e C A x x x x x 4521 2 321---=--==?

则 ()z y z y e e e e e e B C A x x 13862 1 3 452 +--=---=?? ⑥ ()()()152131532=?+?-+?-=??B C A ()()()1915027=-?-++?=??C B A 。 1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证 βαβαβαsin sin cos cos )cos(+=- 证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为 ααsin cos A A y e e A x += ββsin cos B B y e e B x += 已知()βα-=?cos B A B A ,求得 ()B A B A B A β αβαβαsin sin cos cos cos += - 即 βαβαβαsin sin cos cos )cos(+=- 1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P , )3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。试问:①该三角形是否是直角三 角形;②该三角形的面积是多少? 解 由题意知,三角形三个顶点的位置矢量分别为 z y e e P 21-=; z y x e e e P 342-+=; z y x e e e P 5263++= 那么,由顶点P 1指向P 2的边矢量为 z e e P P x -=-412 同理,由顶点P 2指向P 3的边矢量由顶点P 3指向P 1的边矢量分别为 z y e e e P P x 8223++=- z y e e e P P x 7631---=-

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答 第1章习题 习题1.1 给定三个矢量A 、B 和C 如下: 23 x y z =+-A e e e . 4y z =-+B e e , 52x z =-C e e , 解: (1 )22323) 12(3)A x y z e e e A a e e e A +-= = = +-++- (2 )2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e ?=+-?-+=- (4)arccos 135.5A B AB θ?===? (5)1711 cos -=?=??==B B A A B B A A A A AB B θ (6)1 2341310502 x y z x Y Z e e e A C e e e ?=-=---- (7)0 4185205 02 x y z x Y Z e e e B C e e e ?=-=++- ()(23)(8520)42x Y Z x Y Z A B C e e e e e e ??=+-?++=- 1 23104041 x y z x Y Z e e e A B e e e ?=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ??=---?-=- (8)()10142405502 x y z x Y Z e e e A B C e e e ??=---=-+-

()1 235544118520 x y z x Y Z e e e A B C e e e ??=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。 解: 29)4(32222=-++=A 776)5(4222=+-+=B 31)654()432(-=+-?-+=?z y x z y x e e e e e e B A 则A 与B 之间的夹角为 131772931cos =???? ???-=???? ? ? ???=ar B A B A arcis AB θ A 在B 上的分量为 532.37731cos -=-=?=???==B B A B A B A A A A AB B θ 习题1.9用球坐标表示的场2 25r r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ; (2)求在直角坐标中点(3,4,5) --处E 与矢量2 2x y z = -+B e e e 构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, r ===2 2525 0.550 E r = == 2 105 43252532z y x r e e e r r r e E -+-===

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

2-2 已知真空中有三个点电荷,其电量及位置分别为: ) 0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。 解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则 21=r ,32=r ,23=r 。 利用点电荷的场强公式r e E 2 04r q πε= ,其中r e 为点电荷q 指向场点 P 的单位矢量。那么, 1q 在P 点的场强大小为0 2 1 011814πεπε= = r q E ,方向为 ()z y r e e e +- =2 11。 2q 在P 点的场强大小为0 2 2 022121 4πεπε= = r q E ,方向为 ()z y x r e e e e ++- =3 12。 3q 在P 点的场强大小为0 2 3 033414πεπε= = r q E ,方向为y r e e -=3 则P 点的合成电场强度为 ?? ???????? ??++???? ??+++- =++=z e e e E E E E y x 312128141312128131211 0321πε 2-4 已知真空中两个点电荷的电量均为6102-?C ,相距为2cm , 如习题图2-4所示。试求:①P 点的电位;②将电量为6102-?C 的点电荷由无限远

处缓慢地移至P 点时,外力必须作的功。 解 根据叠加原理,P 点的合成电位为 ()V 105.24260?=? =r q πε? 因此,将电量为C 1026 -?的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ? 2-6 已知分布在半径为a 的半圆周上的电荷线密度 πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。 解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即 习题图2-4 习题图2-6

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波课后答案(杨儒贵第二版)-2

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ?= ?S S E 0 d εq ?=?l l E 0d 微分形式: 0 ερ= ??E 0=??E 已知电荷分布求解电场强度: 1,)()(r r E ?-?=; ? ' '-'= V V 0 d ) (41)(| r r |r r ρπε ? 2,? ' ''-'-'= V V 3 d |4) )(()(| r r r r r r E πε ρ 3, ? = ?S S E 0 d εq 高斯定律 介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E

线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1,t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2,s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ?S n - =?? 静电场的能量: 孤立带电体的能量:Q C Q W e 2 1 212 Φ== 离散带电体的能量:∑ == n i i i e Q W 1 2 1Φ 分布电荷的能量:l S V W l l S S V e d 21 d 2 1d 2 1ρ ?ρ?ρ??? ? = = =

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的 电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? = ?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 ~ a > 题图

解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? # 根据条件①和②,可设2 (,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。并按 2 02U W C e f =定出边缘电容。 解 在导体板(0=y )上,相应于 2(,)x y ?的电荷面密度 题 图

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版

电磁场与电磁波课后习题答案(杨儒贵)(第二版) 全套 第一章 题 解 1-1 已知三个矢量分别为 z y e e e A x 32-+=; z y e e e B x 23++=;z e e C x -=2。试求①|| |,| |,|C B A ;②单 位矢量c b a e e e , ,;③B A ?;④B A ?;⑤C B A ??)(及 B C A ??)(;⑥B C A ??)(及C B A ??)(。 解 ① ()1432122222 2=-++=++=z y x A A A A 1421322222 2=++=++=z y x B B B B ()51022 22222=-++=++=z y x C C C C ② ()z y e e e A A A e x a 32141 14-+= == ()z y e e e B B B e x b 23141 14++= == ()z e e C C C e x c -= == 25 1 5 ③ 1623-=-+=++=?z z y y x x B A B A B A B A ④ z y z y z y x z y x z y B B B A A A e e e e e e e e e B A x x x 51172 1 3 321 --=-==? ⑤ ()z y z y e e e e e e C B A x x 223111 2 5117 +-=---=??

因 z y z y z y x z y x C C C A A A e e e e e e e e e C A x x x x x 4521 2 321 ---=--==? 则 ()z y z y e e e e e e B C A x x 13862 1 3 452 +--=---=?? ⑥ ()()()152131532=?+?-+?-=??B C A ()()()1915027=-?-++?=??C B A 。 1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证 βαβαβαsin sin cos cos )cos(+=- 证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为 ααsin cos A A y e e A x += ββsin cos B B y e e B x += 已知()βα-=?c o s B A B A ,求得 ()B A B A B A β αβαβαsin sin cos cos cos += - 即 βαβαβαsin sin cos cos )cos(+=- 1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P , )3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。试问:①该三角形是否是直角三 角形;②该三角形的面积是多少? 解 由题意知,三角形三个顶点的位置矢量分别为 z y e e P 21-=; z y x e e e P 342-+=; z y x e e e P 5263++= 那么,由顶点P 1指向P 2的边矢量为 z e e P P x -=-412 同理,由顶点P 2指向P 3的边矢量由顶点P 3指向P 1的边

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁场与电磁波(第三版)课后答案第9章

第九章习题解答 9.1 设元天线的轴线沿东西方向放置,在远方有一移动接收台停在正南方而收到最大电场强度,当电台沿以元天线为中心的圆周在地面移动时,电场强度渐渐减小,问当电场强 时,电台的位置偏离正南多少度? 解:元天线(电基本振子)的辐射场为 j k r j θ-=E e 可见其方向性函数为(),sin f θφθ=,当接收台停在正南方向(即090θ=)时,得到最大电场强度。由 s i n θ= 得 045θ= 此时接收台偏离正南方向045±。 9.2 上题中如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收天线也是元天线,讨论收发两天线的相对方位对测量结果的影响。 解: 如果接收台处于正南方向不动,将天线在水平面内绕中心旋转,当天线的轴线转至沿东西方向时,接收台收到最大电场强度,随着天线地旋转,接收台收到电场强度将逐渐变小,天线的轴线转至沿东南北方向时,接收台收到电场强度为零。如果继续旋转元天线,收台收到电场强度将逐渐由零慢慢增加,直至达到最大,随着元天线地不断旋转,接收台收到电场强度将周而复始地变化。 当接收台也是元天线,只有当两天线轴线平行时接收台收到最大电场强度;当两天线轴线垂直时接收台收到的电场强度为零;当两天线轴线任意位置,接收台收到的电场强介于最大值和零值之间。 9.3 如题9.3图所示一半波天线,其上电流分布为() 11cos 2 2m I I kz z ??=-<< ??? (1)求证:当0r l >>时, 020 cos cos 22sin jkr m z I e A kr πθμπθ -?? ? ??= ? (2)求远区的磁场和电场; (3)求坡印廷矢量; (4)已知22 c o s c o s 20.609sin d π πθθθ ?? ? ?? =? ,求辐射电阻; (5)求方向性系数。 题9.3(1) 图 解:(1)沿z 方向的电流z I 在空间任意一点()0,P r θ产生的矢量磁位为

电磁场与电磁波理论(第二版)(徐立勤曹伟)第3章习题测验解答

第3章习题解答 3.1 对于下列各种电位分布,分别求其对应的电场强度和体电荷密度: (1)()2,,x y z Ax Bx C Φ=++; (2)(),,x y z Axyz Φ=; (3)()2,,sin z A B z Φρ?ρ?ρ=+; (4)()2,,sin cos r Ar Φθ?θ?=。 解:已知空间的电位分布,由E Φ=-?和2 0/Φρε?=-可以分别计算出电场强度和体电荷密度。 (1) ()2x E e Ax B Φ=-?=-+ 0202εερA -=Φ?-= (2) () x y z E A e yz e xz e xy Φ=-?=-++ 020=Φ?-=ερ (3) (2sin )cos z E e A Bz e A e B ρ?Φρ?ρ?ρ??=-?=-+++?? 20004sin sin 3sin Bz Bz A A A ρεΦε??ε?ρρ???? =-?=-+ -=-+ ? ???? ? (4) ()2sin cos cos cos sin r E e Ar e Ar e Ar θ?Φθ?θ??=-?=-+- 200cos 2cos cos 6sin cos sin sin A A A θ??ρεΦεθ?θθ?? =-?=-+ - ?? ? 3.5 如题3.5图所示上下不对称的鼓形封闭曲面,其上均匀分布着密度为0S ρ的面电荷。 试求球心处的电位。 解:上顶面在球心产生的电位为 22001111100 ()()22S S d R d R d ρρ Φεε= +-=- 下顶面在球心产生的电位为 22 002222200 ()()22S S d R d R d ρρΦεε= +-=- 侧面在球心产生的电位为 030 014π4πS S S S R R ρρΦεε= = ? 式中2 12124π2π()2π()2π()S R R R d R R d R d d =----=+。因此球心总电位为 1230 S R ρΦΦΦΦε=++= 3.6有02εε=和05εε=的两种介质分别分布在0z >和0z <的半无限大空间。已知0z >时, 201050x y z E e e e =-+V /m 。试求0z <时的D 。 解:由电场切向分量连续的边界条件可得 1t 2t E E =? 000520510x y z D D εε<=?=-? 代入电场法向方向分量满足的边界条件可得 1n 2n D D =? 050z z D <= 于是有 0001005050x y z z D e e e εε<=-+ 3.9 如题 3.9图所示,有一厚度为2d 的无限大平面层,其中充满了密度为 ()0πcos x x d ρρ=的体电荷。若选择坐标原点为零电位参考点,试求平面层 之内以及平面层以外各区域的电位和电场强度。

电磁场与电磁波第四版课后思考题答案

2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。 2.4简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 2.6简述 和 所表征的静电场特性。 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 2.8简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2 ) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=??E 0=??E ερ/=??E 0= ??E ??=?V S dV S d E ρε01 0=??B J B 0μ=??0 =??B J B 0μ=??0 μI l d B C 0μ?= ? P ??=-p ρn sp e ?=P ρE P E D εε=+=0

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

电磁场与电磁波(第二版).

电磁场与电磁波第二章分章节复习 第二章:静电场 1、导体在静电平衡下,齐体内的电荷密度(B )。 A.为常数 B.为零 C.不为零 D.不确定 2、电介质极化后,其内部存在(D)。 A.自由正电荷 B.自由负电荷 C.自由正负电荷 D.电偶极子 3、在两种导电介质的分界面处,电场强度的(A)保持连续。 A.切向分量 B.幅值 C. 法向分量 D.所有分量 4、在相同的场源条件下,真空中的电场强度时电介质的(C)倍。 A.εoεr B.1/εoεr C. εr D.1/εr 5.导体的电容大小(B)。 A.与导体的电势有关 B.与导体的电势无关 C.与导体所带电荷有关 D.与导体间点位差有关 6、两个点电荷对试验电荷的作用力可表示为两个力的 ( D )。 A.算术和 B.代数和 C.平方和 D.矢量和 7、介质的极化程度取决于:( D )。 A. 静电场 B. 外加电场 C. 极化电场 D. 外加电场和极化电场之和 8、电场强度的方向(A)。 A.与正电荷在电场中受力的方向相同。 B.与负电荷在电场中受力的方向相同。 C.与正电荷在电场中受力的方向垂直。 D.垂直于正负电荷受力的平面。 9、在边长为a正方形的四个顶点上,各放一个电量相等的同性点电荷Q1,几何中心放置一个电荷Q2,那么Q2受力为(D); A.Q1Q2/2π B. Q1Q2/2πa C. Q1Q2/4πa D.0 10、两个相互平行的导体平板构成一个电容器,其电容与(B D)有关。 A.导体板上的电荷 B.平板间的介质 C.导体板的几何形状 D.两个导体板的距离 填空题: 1、静止电荷所产生的电场,称之为静电场。

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? =?L L , 故得到槽内的电位分布 1,3,5,41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ L 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 a 题4.1图

解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? 根据条件①和②,可设2(,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。并按 20 2U W C e f = 定出边缘电容。 解 在导体板(0=y )上,相应于 2(,)x y ?的电荷面密度 题 4.2图

电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育出版社

电磁场与电磁波第四版思考题答案 2.1 点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体 的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带 电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模 型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3 点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离 r 的平方成反比;电偶极子的电场强度与距离 r 的立方成反比。 2.4 简 述 E / 和 E 0 所表征的静电场特性 E / 表明空间任意一点电场强度的散度与该处的电荷密度有关, 静电荷是静电场的 通量源。 E 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无 关,即 E 1 dV 在电场(电荷)分布具有某些对称性时,可应用高斯定 律求解给定电荷分 dS S 0 V 布的电场强度。 2.6 简 述 B 0 和 B 0J 所表征的静电场特 性。 B 表明穿过任意闭合面的磁感应强度的 通量等于 0,磁力线是无关尾的闭合线, B 0 J 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即 0 B dl 0I 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 C 2.8 简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场

相关主题
文本预览
相关文档 最新文档