当前位置:文档之家› 三角函数常考题型及解题方法

三角函数常考题型及解题方法

直线和圆的位置关系知识点补充

知识点1:判断直线和圆的位置关系:(1)利用圆心到直线的距离等于半径。(2)直线过一

定点,此定点在圆内,则直线和圆相交。

知识点2 圆),(,00222y x r y x 经过圆上点=+的切线方程为200r yy xx =+;点)

,(00y x 为圆,)()(222r b y a x =-+-上一点,则过该点的切线方程为

200))(())((r b y b y x x a x =--+--

知识点 3 ;过圆外一点可作出圆的两条切线,求切线方程时,通常

),(,00222y x r y x 经过点=+设切线的点斜式方程,若求出的k 只有一个,则说明还有一

条切线必垂直于x 轴(无斜率),。应补上。

三角函数的图象和性质

知识点1 :只要求三角函数的周期,对称轴,对称中心,单调区间,值域,一般是将三角

函数化为同角一次,在此使用辅助角公式。)sin(?+=wx A y ,使用对三角函数的整体思

想去做。

知识点2 三角函数的两种图象平移:(1)先伸缩后平移;(2)先平移后伸缩

知识点3 三角函数周期的求解方法(1)利用求解周期的定义(2)利用公式w

T w T ππ==,2 (3)对于较为复杂的三角函数转化为)sin(?+=wx A y +k 求解

知识点4 确定三角函数的单调区间

函数)sin(?+=wx A y (A>0,w>0)的单调区间的确定:基本思路是讲?+wx 看做一

个整体,由函数名称对于的原单调区间求解对于的x 的范围

若0

增区间。(2)利用复合函数的单调性。

知识点5 已知函数图象上的点求解析式)sin(?+=wx A y 的方法

(1)绘出图象确定解析式)sin(?+=wx A y 的题型,有时从寻找“五点法”的第一个零点()0,w

?-作为突破口,要从图象的升降情况找准第一个零点的位置。 (2)已知函数图象求函数)sin(?+=wx A y ()0,0>>w A 的解析式时,常用的解题方

法是待定系数法,由图中的最大值或者最小值确定A ,由周期确定w 的取值,由适合解析

式的点的坐标来确定?,但由图象求得的)sin(?+=wx A y )0,0(>>w A 的解析式一般

不唯一,只有限定了也的取值范围,才能得出唯一解,否则?的值就不确定,解析式也就不

唯一。

(3)将若干个点代入函数关系式,可以求得相关系数?,,w A ,这里需要注意的是,要人情选择的点属于“五点”中的一个位置点,并能正确代入式子中,依据五点列表法原理,点的序号和式子的关系是:第一点(即图象上升时与x 轴的交点)为0=+?wx ;第二点(即图象的最高点)为2

π=

+?wx ;第三点(即图象下降时与x 轴的交点)为π=+?wx ‘第四点(即图象曲线的最低点)为23π=+?wx ;第五点为π2=+?wx 知识点6 三角恒等变换

两角和与差的正弦,余弦,正切公式及二倍角的正弦,余弦,正切公式。并能用上述公式进行简单的三角函数化简,求值,和恒等式证明。

知识点7 当题中给出角和与差三角函数值,求较为复杂的三角函数值时,需要通过将已知角配凑成未知角,再构建三角函数名称求解。

知识点8 当分子和分母都为cos sin ,

的齐次,分子,分母同时除以cos 的齐次。 知识点9 解三角形常见题型及求解方法

(1)已知两角A,B 与一边π由=++C B A a ,,及

C

c B b A a sin sin sin ==,可先求出C ,在求出b a ,

(2)已知两边c b ,及其夹角A ,由A bc c b a cos 2222-+=,先求出a ,再由正弦定理求出角C B ,

(3)已知三边c b a ,,,由余弦定理可求出A,B,C (4)已知两边b a ,,及其中一边的对角A ,由正弦定理

B

b A a sin sin =可求出另一边b 的对角B ,由C B A C 可求出π),(-+=,再由C

c A a sin sin =可求出c ,而通过B b A a sin sin =,求B 时,可能有一解,两解,或无解的情况。判断方法根据sinA 与1的大小决定,及大角对大边,小叫对小边。

知识点10 利用正,余弦定理判断三角形的形状

在判断三角形的形状时,一般将已知条件中的边角关系利用正弦或余弦定理转化为角与角,边与边的关系(即将角或边统一),再利用三角变换或代数式的恒等变形(若因式分解法,配方法等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则会有漏掉一种形状的可能。

三角函数经典解题方法与考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π的奇函数 D. 最小正周期为2π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304≤≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

高三三角函数专题复习(题型全面)

三 角 函 数 考点1:三角函数的有关概念; 考点2:三角恒等变换;(两角和、差公式,倍角半角公式、诱导公式、同角的三角函数关系式) 考点3:正弦函数、余弦函数、正切函数的图象和性质;(定义域、值域、最值;单调区间、最小正周 期、对称轴对称中心) 考点4:函数y =Asin()0,0)(>>+???A x 的图象与性质;(定义域、值域、最值;单调区间、最小 正周期、对称轴对称中心、图像的变换) 一、三角函数求值问题 1. 三角函数的有关概念 例1. 若角θ的终边经过点(4,3)(0)P a a a -≠,则sin θ= . 练习1.已知角α的终边上一点的坐标为(3 2cos ,32sin π π),则角α的最小正值为( ) A 、65π B 、32π C 、35π D 、6 11π 2、公式法: 例2.设(0,)2πα∈,若3 sin 5α=)4 πα+=( ) A. 75 B. 15 C. 75- D. 15 - 练习1.若πtan 34α??-= ??? ,则cot α等于( ) A.2- B.12 - C.12 D.2 2.α是第四象限角,5 tan 12 α=-,则sin α=( ) A .15 B .15- C .513 D .513 - 3. cos 43cos77sin 43cos167o o o o +的值为 。 4.已知1sin cos 5θθ+=,且324 θππ ≤≤,则cos2θ的值是 . 3.化简求值 例3.已知α为第二象限角,且sin α,求sin(/4)sin 2cos21 απαα+++的值 练习:1。已知sin α=,则44sin cos αα-的值为( ) A .15 - B .35 - C .15 D .35

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数公式及常见题型

三角函数背诵 一、基本公式 1、角度与弧度、三角函数值 角度 0° 30° 45° 60° 90° 弧度 0 6π 4π 3π 2π sin α 0 12 22 32 1 cos α 1 32 22 12 tan α 33 1 3 不存在 2.三角函数在各象限内的正负 口诀“一全正, 二正弦,三正切,四余弦.” sin α cos α tan α(cot α) 3.同角三角函数基本关系式 平方关系:22sin 1cos αα+= 商的关系:sin tan cos α αα = 例题:1、已知12 sin 13 α= ,并且α是第二象限角,求cos ,tan .αα 2、已知α=αcos 2sin ,求(1)ααα αcos 2sin 5cos 4sin +- + + ——+ + + + ——— —.αααα22cos cos sin 2sin 2-+⑵

4.诱导公式 口诀:“奇变偶不变,符号看象限。” sin()sin αα-=- c o s ()c o s αα-= t a n ()t a n αα-=- 例:1.化简:.) 2 9sin()sin()3sin()cos() 211cos()2cos()cos()2sin(απ πααπαπαπ απαπαπ+-----++- 的值。 求:已知)sin(2)4cos()3sin()2cos( , 3)tan( .2απααπαπαπ-+-+--=+ 3.若cos α=23 ,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4) απαπαππαπααπ-+--------的值.

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

(新)高中数学必修4三角函数常考题型三角函数线及其应用(供参考)

三角函数线及其应用 【知识梳理】 1.有向线段 带有方向的线段叫做有向线段. 2.三角函数线 图示 正弦线 α的终边与单位圆交于P ,过P 作PM 垂直于x 轴,有向线段MP 即为正弦线 余弦线 有向线段OM 即为余弦线 正切线 过A (1,0)作x 轴的垂线,交α的终边或其终边的反向延长线于T ,有向线段AT 即 为正切线 题型一、三角函数线的作法 【例1】 作出3π4 的正弦线、余弦线和正切线. [解] 角3π4 的终边(如图)与单位圆的交点为P . 作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT , 与3π4的终边的反向延长线交于点T ,则3π4 的正弦线为MP ,余弦线为OM ,正切线为AT . 【类题通法】 三角函数线的画法 (1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.

(2)作正切线时,应从A (1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T ,即可得到正切线AT . 【对点训练】 作出-9π4的正弦线、余弦线和正切线. 解:如图所示, -9π4 的正弦线为MP ,余弦线为OM ,正切线为AT . 题型二、利用三角函数线比较大小 【例2】 分别比较sin 2π3与sin 4π5;cos 2π3与cos 4π5;tan 2π3与tan 4π5 的大小. [解] 在直角坐标系中作单位圆如图所示.以x 轴非负半轴为始边 作2π3 的终边与单位圆交于P 点,作PM ⊥Ox ,垂足为M .由单位圆与Ox 正方向的交点A 作Ox 的垂线与OP 的反向延长线交于T 点,则sin 2π3=MP ,cos 2π3=OM ,tan 2π3 =AT . 同理,可作出4π5的正弦线、余弦线和正切线,sin 4π5=M ′P ′,cos 4π5=OM ′,tan 4π5 =AT ′.由图形可知,MP >M ′P ′,符号相同,则sin 2π3>sin 4π5;OM >OM ′,符号相同,则cos 2π3>cos 4π5 ;AT

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

三角函数必考题型小综合(四)

三角函数必考题型小综合(四) 1、设向量(cos ,sin ),(cos ,sin )a b ααββ→→==,0,αβπ<<<且 若45a b →→?=,4tan 3β=,求tan α的值。 2、已知向量(cos ,sin )αα=a , (cos ,sin )ββ=b , -= a b . (Ⅰ)求cos()αβ-的值; (Ⅱ)若02πα<<, 02πβ-<<, 且5sin 13β=-, 求sin α. 3、已知函数)(32 1cos 3cos sin )(2R x x x x x f ∈+ -?=. (1)求)(x f 的最小正周期; (2)求)(x f 的单调递增区间; (3)求)(x f 图象的对称轴方程和对称中心的坐标.

4、已知函数()21sin 2sin cos cos 2f x x x ??=+1sin 22π???-+ ???()0?π<<,其图象过点(π6,12 ). (Ⅰ)求?的值;(Ⅱ)将函数()y f x =的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()g y x =的图象,求函数()g x 在[0, π4]上的最大值和最小值. 5、已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2 π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)求()f x 的单调增区间. (III )当[ ,]122x ππ ∈,求()f x 的值域. 6、在ABC ?中,角A 、B 、C 所对的边分虽为c b a ,,,且31,4 a c C === (1)求)sin(B A +的值; (2)求A sin 的值; (3)求CA CB ?的值。

三角函数与平面向量常考题型

三角函数与向量综合复习常考题型 三角函数部分 一、运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 1.已知α 为第二象限角,sin cos αα+= ,则cos 2α= . 2.若42ππθ??∈????, ,sin 2θ,则sin θ= . 3.若,,,,则 . 4.已知向量33(cos ,sin ),(cos ,sin ),[,]22222 x x x x x π π==-∈且a b 。 (1 )若||+>a b ,求x 的取值范围; (2)函数()||f x =?++a b a b ,若对任意12,[,]2 x x π π∈,恒有12|()()|f x f x t -<,求t 的取值范围。 【习题1】 1. 已知sin cos αα-=α∈(0,π),则tan α= . 2.若tan θ+1 tan θ =4,则sin2θ= . 3.sin 47sin17cos30cos17 - = . 4.如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( ) A B C D 5.α为锐角,若4cos 65απ? ?+= ?? ?,则)122sin(π+a 的值为; 若41-3sin =??? ??απ,则?? ? ??+απ23cos 等于. 02 π α<< 02 π β- <<1cos( )4 3π α+ = cos()42πβ-=cos()2βα+ =

6.已知a ∈( 2 π ,π),sin αtan2α= 二、运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、对称轴及对称中心。 例1.已知0ω>,函数()sin()4f x x π ω=+在(,)2 π π上单调递减.则ω的取值范围是() ()A 15[,]24()B 13[,]24()C 1 (0,]2 ()D (0,2] 例2.已知ω>0,π?<<0,直线4π=x 和4 5π =x 是函数)(sin )(?ω+=x x f 图像的两条相邻的对称轴, 则=?( ) (A )π4 (B )π3 (C )π2 (D )3π 4 例 3.函数1 -1 y x = 的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) (A )2 (B) 4 (C) 6 (D)8 例4若,0),(cos ,sin ),0x x x ωωωω==->m n ,在函数()()f x t =?++m m n 的图象中,对称中心到对称轴的最小距离为 4π,且当[0,]3 x π ∈时,()f x 的最大值为1。 (1)求函数()f x 的解析式;(2)若1()[0,]2 f x x π=-∈,求实数x 的值。 【习题2】 1.已知函数)6 2(sin 4π + =x y )6 70π ≤ ≤x (的图像与一条与x 轴平行的直线有三个交点,其中横坐标分别为32,1,x x x )321x x x <<(,则=++3212x x x 2.已知函数b a x b x a x f ,(cos -sin )(=为常数,),0R x a ∈≠的图像关于4 π =x 对称, 则函数)-4 3( x f y π =是( ) (A )偶函数且它的图象关于点)0,(π对称 (B )偶函数且它的图象关于点)0,2 3(π 对称 (C )奇函数且它的图象关于点)0,2 3( π 对称(D )奇函数且它的图象关于点)0,(π对称 3.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4 π,则)(x f 的最小正周期是( ) A .2π B . π C. 2π D . 4 π 4.函数x x y cos 3-sin =)20π<≤x (取最大值时,=x

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳 出 锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 、 化简或求值 例1 (1) 已知tan 2cot 1,且 是锐角,求乙tan 2 cot 2 2的值。 (2) 化简 a sin bcos ? acos bsin ?。 分析 (1)由已知可以求出tan 的值,化简?、tan 2 cot 2 2可用 1 tan cot ; (2)先把平方展开,再利用sin 2 cos 2 1化简 解(1)由tan 2cot 1得tan 2 2 tan ,解关于tan 的方程得 tan 2或 tan 1。又是锐角,二 tan 2。二、tan 2 cot 2 2 = 1 2 2 2,「 tan cot 2 = tan cot (2) a sin bcos ? acos bsin 2 -2 ? 2 2 cos b sin cos = a 、已知三角函数值,求角 求C 的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cosA 和sin B 的 值,进而求出 代B 的值,然后就可求出 C 的值。 \ tan 2 2tan cot cot 2 = : (tan cot )2 tan cot 由tan 得cot a 2 sin 2 2ab sin cos b 2 cos 2 + a 2 cos 2 2ab cos sin b 2s in 2 2 2 a sin 2 b 2 tan 说明 在化简或求值问题中,经常用到 cot 1 等。 “ 1” 的代换, 即 sin 2 2 cos J 2 例2在厶ABC 中,若cosA — 2 .3 2 sin B 0 A, B 均为锐角,

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ=. 2.α是第三象限角,2 1)sin(= -πα,则αcos =)25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ???(B),3ππ?? ???(C)4,33ππ?? ???(D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是。 2.若函数()(1)cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为最大值为。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ???? 上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为. 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B C D .2 8.函数2 ()sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 32

(完整版)高中数学三角函数解题技巧和公式(已整理)

关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3cos sin -=-求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33(cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 43133]313)33[(332=?=?+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2=12+n C .n m 22= D .22m n = 分析:观察sin θ+cos θ与sin θcos θ的关系: sin θcos θ=2 121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θ θθθcos sin 1 故:1212122+=?=-n m n m ,选B 。 例3 已知:tg α+ctg α=4,则sin2α的值为( )。

(完整版)三角函数常考题型汇总,推荐文档

(x+) 三角函数y=A sin

5 3 3 3 3 一、选择题: 1. “ x = ”是“函数 y = sin 2x 取得最大值”的 ( ) 4 A. 充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2. 在?ABC 中,如果sin A = 3 sin C , B = 30° ,那么角 A 等于 ( ) A . 30 B . 45° C . 60° D .120° 3.函数 y = 1- 2 s in 2 (x - )是 ( ) 4 A. 最小正周期为 的偶函数 B. 最小正周期为 的奇函数 C. 最小正周期为 的偶函数 D. 最小正周期为 的奇函数 2 4. sin 225? = ( ) A.1 B . -1 2 C . 2 2 D . - 2 2 5. 设函数 f (x )= 3 sin θ x 3 + cos θ x 2 + 4x - 1 ,其中θ ∈ ?0∥ 5π? , 3 2 ?? 6 ?? 则导数 f '(-1)的取值范围是( ) A . [3∥ 6] B . [ 3∥ 4+ C . [ 4- 3∥ 6 D . [ 4- 3∥ 4 + 3 6. ?ABC 的内角 A , B , C 的对边分别为 a , b , c ,若cos A = 2 5 2 5 , bc = 5 , 则?ABC 的 面积等于( ) A 、 2 5 B 、4 C 、 D 、2 7. 在?ABC 中, AB = , BC = 1, AC cos B = BC cos A ,则 AC ? AB = ( ) A. 或 2 B . 3 或 2 2 C . 2 D . 3 或 2 2 8. 在?ABC 中, AB = , BC = 1, sin A = sin B ,则 AC ? AB = ( ) A. 2 B . C . 3 D . 1 2 2 2 3 2

三角函数习题及答案

第四章 三角函数 §4-1 任意角的三角函数 一、选择题: 1.使得函数lg(sin cos )y θθ=有意义的角在( ) (A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。则 (A)α+β=2κπ (B)α-β=2κπ (C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( ) (A)tan cot 2 2 θ θ (B)tan cot 2 2 θ θ (C)sin cos 2 2 θ θ (D)sin cos 2 2 θ θ 4.若4 sin cos 3 θθ+=-,则θ只可能是( ) (A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角 5.若tan sin 0θθ 且0sin cos 1θθ+ ,则θ的终边在( ) (A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限 二、填空题: 6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2 α 是第▁▁▁象限角。 7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。 8.设1 sin ,(,)sin y x x k k Z x π=+ ≠∈则Y 的取值范围是▁▁▁▁▁▁▁。 9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。 三、解答题: 10.已知角α的终边在直线y =上,求sin α及cot α的值。 11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sin β=0。 12.已知()()cos ,5n f n n N π +=∈,求?(1)+?(2)+?(3)+……+?(2000)的值。 §4-2 同角三角函数的基本关系式及诱导公式 一、选择题: 1.()sin 2cos 22ππ?? --- ??? 化简结果是( ) (A )0 (B )1- (C )2sin 2 ()2s i n 2 D - 2.若1 sin cos 5 αα+= ,且0απ ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34 - 3. 已知1sin cos 8αα=,且42 ππ α ,则cos sin αα-的值为( )

高考三角函数重要题型总结

1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域。 2.已知函数2()sin sin()(0)2f x x x x πωωωω=+f 的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数f (x )在区间[0,23 π]上的取值范围. 3.(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =g (Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. 4..(本小题满分13分)已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最 大值是1,其图像经过点π1 32M ?? ???,. (1)求()f x 的解析式; (2)已知π02αβ??∈ ??? ,,,且3()5f α=,12()13f β= ,求()f αβ-的值. 5. 已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[, ]12 f x ππ在上的最大值和最小值 6..已知函数x x x x f sin 2 sin 2cos )(22+-=. (I )求函数)(x f 的最小正周期; (II )当)4,0(0π ∈x 且524)(0=x f 时,求)6 (0π+x f 的值。 7.已知1tan 3 α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值. 8.已知函数())cos()f x x x ω?ω?=+-+(0π?<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2 . (Ⅰ)求π8f ?? ???的值; (Ⅱ)将函数()y f x =的图象向右平移π 6 个单位后,得到函数()y g x =的图象,

相关主题
文本预览
相关文档 最新文档